메뉴 건너뛰기




Volumn 9781118662755, Issue , 2014, Pages 1-364

Multiple-point Geostatistics: Stochastic Modeling with Training Images

Author keywords

[No Author keywords available]

Indexed keywords

CLIMATE MODELS; MINERAL RESOURCES;

EID: 84923257395     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1002/9781118662953     Document Type: Book
Times cited : (464)

References (336)
  • 2
    • 0031844533 scopus 로고    scopus 로고
    • Nonstationarity of the mean and unbiased variogram estimation: Extension of the weighted least-squares method
    • Beckers, F. & Boogaets, P. 1998. Nonstationarity of the mean and unbiased variogram estimation: Extension of the weighted least-squares method. Mathematical Geology, 30, 223-240.
    • (1998) Mathematical Geology , vol.30 , pp. 223-240
    • Beckers, F.1    Boogaets, P.2
  • 3
    • 33751007399 scopus 로고    scopus 로고
    • Society of Petroleum Engineers, Richardson, TX
    • Caers, J. 2005. Petroleum Geostatistics, Society of Petroleum Engineers, Richardson, TX.
    • (2005) Petroleum Geostatistics
    • Caers, J.1
  • 6
    • 0003115469 scopus 로고
    • Linear estimation of nonstationary spatial phenomena
    • In: Guarascia, M., David, M. & Huijbregts, C. (eds.), Reidel, Dordrecht
    • Delfiner, P. 1976. Linear estimation of nonstationary spatial phenomena. In: Guarascia, M., David, M. & Huijbregts, C. (eds.) Advanced Geostatistics in the Mining Industry. Reidel, Dordrecht.
    • (1976) Advanced Geostatistics in the Mining Industry
    • Delfiner, P.1
  • 7
    • 0027528127 scopus 로고
    • Kriging in a finite domain
    • Deutsch, C. V. 1993. Kriging in a finite domain. Mathematical Geology, 25, 41-52.
    • (1993) Mathematical Geology , vol.25 , pp. 41-52
    • Deutsch, C.V.1
  • 8
    • 0028572824 scopus 로고
    • Kriging with strings of data
    • Deutsch, C. V. 1994. Kriging with strings of data. Mathematical Geology, 26, 623-638.
    • (1994) Mathematical Geology , vol.26 , pp. 623-638
    • Deutsch, C.V.1
  • 11
    • 2942619617 scopus 로고    scopus 로고
    • Space and space-time modeling using process convolutions
    • Springer, London
    • Higdon, D. 2002. Space and space-time modeling using process convolutions. In: Quantitative Methods for Current Environmental Issues, 37-56. Springer, London.
    • (2002) Quantitative Methods for Current Environmental Issues , pp. 37-56
    • Higdon, D.1
  • 13
    • 0001297415 scopus 로고
    • When do we need a trend model in kriging?
    • Journel, A. & Rossi, M. E. 1989. When do we need a trend model in kriging? Mathematical Geology, 21, 715-739.
    • (1989) Mathematical Geology , vol.21 , pp. 715-739
    • Journel, A.1    Rossi, M.E.2
  • 15
    • 0004222008 scopus 로고    scopus 로고
    • Oxford University Press, New York
    • Mallet, J. L. 2002. Geomodeling, Oxford University Press, New York.
    • (2002) Geomodeling
    • Mallet, J.L.1
  • 17
    • 0008928772 scopus 로고
    • Cahiers du Centre de Morphologie Mathématique, Fontainebleau, France
    • Matheron, G. 1969. Le krigeage universel, Cahiers du Centre de Morphologie Mathématique, Fontainebleau, France.
    • (1969) Le krigeage universel
    • Matheron, G.1
  • 20
    • 0031428842 scopus 로고    scopus 로고
    • Scales of reservoir heterogeneities and impact of seismic resolution on geostatistical integration
    • Mukerji, T., Mavko, G. & Rio, P. 1997. Scales of reservoir heterogeneities and impact of seismic resolution on geostatistical integration. Mathematical Geology, 29, 933-950.
    • (1997) Mathematical Geology , vol.29 , pp. 933-950
    • Mukerji, T.1    Mavko, G.2    Rio, P.3
  • 21
    • 0003132736 scopus 로고
    • Bayesian kriging: Merging observations and qualified guesses in kriging
    • Omre, H. 1987. Bayesian kriging: Merging observations and qualified guesses in kriging. Mathematical Geology, 19, 25-39.
    • (1987) Mathematical Geology , vol.19 , pp. 25-39
    • Omre, H.1
  • 22
    • 79955908047 scopus 로고    scopus 로고
    • Continuity for kriging with moving neighborhood
    • Rivoirard, J. & Romary, T. 2011. Continuity for kriging with moving neighborhood. Mathematical Geosciences, 43, 469-481.
    • (2011) Mathematical Geosciences , vol.43 , pp. 469-481
    • Rivoirard, J.1    Romary, T.2
  • 23
  • 25
    • 0011337877 scopus 로고
    • Non-stationary spatial covariances estimated from monitoring data
    • In: Armstrong, M. (ed.), Kluwer Academic, Dordrecht
    • Switzer, P. 1989. Non-stationary spatial covariances estimated from monitoring data. In: Armstrong, M. (ed.) Geostatistics, Kluwer Academic, Dordrecht, 127-138.
    • (1989) Geostatistics , pp. 127-138
    • Switzer, P.1
  • 27
    • 84927567001 scopus 로고    scopus 로고
    • Deterministic geostatistics: A new visit
    • Journel, A. G. 1996. Deterministic geostatistics: A new visit. Geostatistics Wollongong, 85.
    • (1996) Geostatistics Wollongong , pp. 85
    • Journel, A.G.1
  • 28
    • 78649504754 scopus 로고    scopus 로고
    • The direct sampling method to perform multiple-point geostatistical simulations
    • Mariethoz, G., Renard, P. & Straubhaar, J. 2010. The direct sampling method to perform multiple-point geostatistical simulations. Water Resources Research, 46.
    • (2010) Water Resources Research , pp. 46
    • Mariethoz, G.1    Renard, P.2    Straubhaar, J.3
  • 31
    • 0033780508 scopus 로고    scopus 로고
    • Adding local accuracy to direct sequential simulation
    • Caers, J. 2000. Adding local accuracy to direct sequential simulation. Mathematical Geology, 32, 815-850.
    • (2000) Mathematical Geology , vol.32 , pp. 815-850
    • Caers, J.1
  • 36
    • 0032007819 scopus 로고    scopus 로고
    • To be or not to be multi-Gaussian? A reflection on stochastic hydrogeology
    • Gómez-hernández, J. J. & Wen, X. H. 1998. To be or not to be multi-Gaussian? A reflection on stochastic hydrogeology. Advances in Water Resources, 21, 47-61.
    • (1998) Advances in Water Resources , vol.21 , pp. 47-61
    • Gómez-hernández, J.J.1    Wen, X.H.2
  • 38
    • 0000974392 scopus 로고    scopus 로고
    • Conditioning geostatistical operations to nonlinear volume averages
    • Journel, A. 1999. Conditioning geostatistical operations to nonlinear volume averages. Mathematical Geology, 31, 931-953.
    • (1999) Mathematical Geology , vol.31 , pp. 931-953
    • Journel, A.1
  • 41
    • 58149250687 scopus 로고    scopus 로고
    • Truncated plurigaussian simulations to characterize aquifer heterogeneity
    • Mariethoz, G., Renard, P., Cornaton, F. & Jaquet, O. 2009. Truncated plurigaussian simulations to characterize aquifer heterogeneity. Ground Water, 47, 13-24.
    • (2009) Ground Water , vol.47 , pp. 13-24
    • Mariethoz, G.1    Renard, P.2    Cornaton, F.3    Jaquet, O.4
  • 43
    • 0346524901 scopus 로고    scopus 로고
    • Direct sequential simulation and cosimulation
    • Soares, A. 2001. Direct sequential simulation and cosimulation. Mathematical Geology, 33, 911-926.
    • (2001) Mathematical Geology , vol.33 , pp. 911-926
    • Soares, A.1
  • 44
    • 1542756480 scopus 로고    scopus 로고
    • When good statistical models of aquifer heterogeneity go bad: A comparison of flow, dispersion, and mass transfer in connected and multivariate Gaussian hydraulic conductivity fields
    • Zinn, B. & Harvey, C. 2003. When good statistical models of aquifer heterogeneity go bad: A comparison of flow, dispersion, and mass transfer in connected and multivariate Gaussian hydraulic conductivity fields. Water Resources Research, 39, WR001146.
    • (2003) Water Resources Research , vol.39 , pp. WR001146
    • Zinn, B.1    Harvey, C.2
  • 45
    • 34248592410 scopus 로고    scopus 로고
    • Conditional simulations with patterns
    • Arpat, B. & Caers, J. 2007. Conditional simulations with patterns. Mathematical Geology, 39, 177-203.
    • (2007) Mathematical Geology , vol.39 , pp. 177-203
    • Arpat, B.1    Caers, J.2
  • 50
    • 34147120474 scopus 로고
    • A note on two problems in connexion with graphs
    • Dijkstra, E. 1959. A note on two problems in connexion with graphs. Numerische Mathematik, 1, 269-271.
    • (1959) Numerische Mathematik , vol.1 , pp. 269-271
    • Dijkstra, E.1
  • 54
    • 0027868458 scopus 로고
    • Multivariate geostatistics: Beyond bivariate moments
    • In: Soares, A. (ed.), Dordrecht: Kluwer Academic
    • Guardiano, F. & Srivastava, M. 1993. Multivariate geostatistics: Beyond bivariate moments. In: Soares, A. (ed.) Geostatistics-Troia. Dordrecht: Kluwer Academic.
    • (1993) Geostatistics-Troia
    • Guardiano, F.1    Srivastava, M.2
  • 55
    • 77954088141 scopus 로고    scopus 로고
    • Stochastic simulation of patterns using distance-based pattern modeling
    • Honarkhah, M. & Caers, J. 2010. Stochastic simulation of patterns using distance-based pattern modeling. Mathematical Geosciences, 42, 487-517.
    • (2010) Mathematical Geosciences , vol.42 , pp. 487-517
    • Honarkhah, M.1    Caers, J.2
  • 56
    • 0001667768 scopus 로고
    • Geostatistics: Roadblocks and challenges
    • In: Soares, A. (ed.), Springer Netherlands
    • Journel, A. 1993. Geostatistics: Roadblocks and challenges. In: Soares, A. (ed.) Geostatistics Tróia '92. Springer Netherlands.
    • (1993) Geostatistics Tróia '92.
    • Journel, A.1
  • 58
    • 84880823488 scopus 로고    scopus 로고
    • Parallel patch-based texture synthesis
    • Paris, June 25-27, 2012 In: C. Dachsbacher, J. M., and J. Pantaleoni, ed
    • Lasram, A. & Lefebvre, S. Parallel patch-based texture synthesis. In: C. Dachsbacher, J. M., and J. Pantaleoni, ed. High Performance Graphics, Paris, June 25-27, 2012, 2012.
    • (2012) High Performance Graphics
    • Lasram, A.1    Lefebvre, S.2
  • 59
  • 61
    • 81555203523 scopus 로고    scopus 로고
    • Adapting a texture synthesis algorithm for conditional multiple point geostatistical simulation
    • Parra, A. & Ortiz, J. M. 2011. Adapting a texture synthesis algorithm for conditional multiple point geostatistical simulation. Stochastic Environmental Research and Risk Assessment, 25, 1101-1111.
    • (2011) Stochastic Environmental Research and Risk Assessment , vol.25 , pp. 1101-1111
    • Parra, A.1    Ortiz, J.M.2
  • 63
    • 84875265009 scopus 로고    scopus 로고
    • Multiple-point geostatistical simulation using the bunch-pasting direct sampling method
    • Rezaee, H., Mariethoz, G., Koneshloo, M. & Asghari, O. 2013. Multiple-point geostatistical simulation using the bunch-pasting direct sampling method. Computers and Geosciences, 54, 293-308.
    • (2013) Computers and Geosciences , vol.54 , pp. 293-308
    • Rezaee, H.1    Mariethoz, G.2    Koneshloo, M.3    Asghari, O.4
  • 66
    • 0042054426 scopus 로고    scopus 로고
    • Conditional simulation of complex geological structures using multiple-point statistics
    • Strebelle, S. 2002. Conditional simulation of complex geological structures using multiple-point statistics. Mathematical Geology, 34, 1-22.
    • (2002) Mathematical Geology , vol.34 , pp. 1-22
    • Strebelle, S.1
  • 67
    • 84860599900 scopus 로고    scopus 로고
    • Multiple-point geostatistical modeling based on the cross-correlation functions
    • Tahmasebi, P., Hezarkhani, A. & Sahimi, M. 2012. Multiple-point geostatistical modeling based on the cross-correlation functions. Computational Geosciences, 16, 779-797.
    • (2012) Computational Geosciences , vol.16 , pp. 779-797
    • Tahmasebi, P.1    Hezarkhani, A.2    Sahimi, M.3
  • 68
    • 84878110231 scopus 로고    scopus 로고
    • Construction of binary multi-grid Markov random field prior models from training images
    • Toftaker, H. & Tjelmeland, H. 2013. Construction of binary multi-grid Markov random field prior models from training images. Mathematical Geosciences, 45, 383-409.
    • (2013) Mathematical Geosciences , vol.45 , pp. 383-409
    • Toftaker, H.1    Tjelmeland, H.2
  • 69
    • 77955099804 scopus 로고    scopus 로고
    • State of the art in example-based texture synthesis
    • 30 March-3 April, Munich, Germany, 2009
    • Wei, L., Lefebvre, S., Kwatra, N. & Yurk, G. State of the art in example-based texture synthesis. Eurographics 2009, 30 March-3 April, Munich, Germany, 2009.
    • (2009) Eurographics
    • Wei, L.1    Lefebvre, S.2    Kwatra, N.3    Yurk, G.4
  • 71
    • 84927567092 scopus 로고    scopus 로고
    • Fast direct sampling for multiple-point stochastic simulation
    • Abdollahifard, M. J. & Faez, K. 2013. Fast direct sampling for multiple-point stochastic simulation. Arabian Journal of Geosciences, 1-13.
    • (2013) Arabian Journal of Geosciences , pp. 1-13
    • Abdollahifard, M.J.1    Faez, K.2
  • 75
    • 34248592410 scopus 로고    scopus 로고
    • Conditional simulations with patterns
    • Arpat, B. & Caers, J. 2007. Conditional simulations with patterns. Mathematical Geology, 39, 177-203.
    • (2007) Mathematical Geology , vol.39 , pp. 177-203
    • Arpat, B.1    Caers, J.2
  • 77
    • 0020192214 scopus 로고
    • A multiplicative formula for aggregating probability assessments
    • Bordley, R. 1982. A multiplicative formula for aggregating probability assessments. Management Science, 28, 1137-1148.
    • (1982) Management Science , vol.28 , pp. 1137-1148
    • Bordley, R.1
  • 78
    • 84863439884 scopus 로고    scopus 로고
    • Multi-scale stochastic simulation with a waveletbased approach
    • Chatterjee, S. & Dimitrakopoulos, R. 2012. Multi-scale stochastic simulation with a waveletbased approach. Computers and Geosciences, 45, 177-189.
    • (2012) Computers and Geosciences , vol.45 , pp. 177-189
    • Chatterjee, S.1    Dimitrakopoulos, R.2
  • 79
    • 84859102626 scopus 로고    scopus 로고
    • Dimensional reduction of patternbased simulation using wavelet analysis
    • Chatterjee, S., Dimitrakopoulos, R. & Mustapha, H. 2012. Dimensional reduction of patternbased simulation using wavelet analysis. Mathematical Geosciences, 44, 343-374.
    • (2012) Mathematical Geosciences , vol.44 , pp. 343-374
    • Chatterjee, S.1    Dimitrakopoulos, R.2    Mustapha, H.3
  • 80
    • 58049182518 scopus 로고    scopus 로고
    • Higher order models using entropy, Markov random fields and sequential simulation
    • In: Leuangthong, O. & Deutsch, C. V. (eds.), Kluwer Academic, Banff, AB
    • Daly, C. 2004. Higher order models using entropy, Markov random fields and sequential simulation. In: Leuangthong, O. & Deutsch, C. V. (eds.), Geostatistics Banff 2004, Kluwer Academic, Banff, AB, 215-224.
    • (2004) Geostatistics Banff 2004 , pp. 215-224
    • Daly, C.1
  • 83
    • 34147120474 scopus 로고
    • A note on two problems in connexion with graphs
    • Dijkstra, E. 1959. A note on two problems in connexion with graphs. Numerische Mathematik, 1, 269-271.
    • (1959) Numerische Mathematik , vol.1 , pp. 269-271
    • Dijkstra, E.1
  • 84
    • 77952884234 scopus 로고    scopus 로고
    • High-order statistics of spatial random fields: Exploring spatial cumulants for modeling complex non-Gaussian and non-linear phenomena
    • Dimitrakopoulos, R., Mustapha, H. & Gloaguen, E. 2010. High-order statistics of spatial random fields: Exploring spatial cumulants for modeling complex non-Gaussian and non-linear phenomena. Mathematical Geosciences, 42, 65-99.
    • (2010) Mathematical Geosciences , vol.42 , pp. 65-99
    • Dimitrakopoulos, R.1    Mustapha, H.2    Gloaguen, E.3
  • 86
    • 35348978714 scopus 로고    scopus 로고
    • A patchwork approach to stochastic simulation: A route towards the analysis of morphology in multiphase systems
    • EL Ouassini, A., Saucier, A., Marcotte, D. & Favis, B. D. 2008. A patchwork approach to stochastic simulation: A route towards the analysis of morphology in multiphase systems. Chaos, Solitons and Fractals, 36, 418-436.
    • (2008) Chaos, Solitons and Fractals , vol.36 , pp. 418-436
    • El Ouassini, A.1    Saucier, A.2    Marcotte, D.3    Favis, B.D.4
  • 87
    • 0016353777 scopus 로고
    • Quad trees a data structure for retrieval on composite keys
    • Finkel, R. A. & Bentley, J. L. 1974. Quad trees a data structure for retrieval on composite keys. Acta Informatica, 4, 1-9.
    • (1974) Acta Informatica , vol.4 , pp. 1-9
    • Finkel, R.A.1    Bentley, J.L.2
  • 89
    • 0027868458 scopus 로고
    • Multivariate geostatistics: Beyond bivariate moments
    • In: Soares, A. (ed.), Kluwer Academic, Dordrecht
    • Guardiano, F. & Srivastava, M. 1993. Multivariate geostatistics: Beyond bivariate moments. In: Soares, A. (ed.) Geostatistics-Troia, Kluwer Academic, Dordrecht.
    • (1993) Geostatistics-Troia
    • Guardiano, F.1    Srivastava, M.2
  • 90
    • 77954088141 scopus 로고    scopus 로고
    • Stochastic simulation of patterns using distance-based pattern modeling
    • Honarkhah, M. & Caers, J. 2010. Stochastic simulation of patterns using distance-based pattern modeling. Mathematical Geosciences, 42, 487-517.
    • (2010) Mathematical Geosciences , vol.42 , pp. 487-517
    • Honarkhah, M.1    Caers, J.2
  • 92
    • 79959293490 scopus 로고    scopus 로고
    • Direct multiple-point geostatistical simulation of edge properties for modeling thin irregularly shaped surfaces
    • Huysmans, M. & Dassargues, A. 2011. Direct multiple-point geostatistical simulation of edge properties for modeling thin irregularly shaped surfaces. Mathematical Geosciences, 43, 521-536.
    • (2011) Mathematical Geosciences , vol.43 , pp. 521-536
    • Huysmans, M.1    Dassargues, A.2
  • 93
    • 1142282028 scopus 로고    scopus 로고
    • Combining knowledge from diverse sources: An alternative to traditional data independence hypotheses
    • Journel, A. 2002. Combining knowledge from diverse sources: An alternative to traditional data independence hypotheses. Mathematical Geology, 34, 573-596.
    • (2002) Mathematical Geology , vol.34 , pp. 573-596
    • Journel, A.1
  • 95
    • 67649816043 scopus 로고    scopus 로고
    • The tau model for data redundancy and information combination in earth sciences: Theory and application
    • Krishnan, S. 2008. The tau model for data redundancy and information combination in earth sciences: Theory and application. Mathematical Geosciences, 40, 705-727.
    • (2008) Mathematical Geosciences , vol.40 , pp. 705-727
    • Krishnan, S.1
  • 97
    • 78649504754 scopus 로고    scopus 로고
    • The direct sampling method to perform multiple-point geostatistical simulations
    • Mariethoz, G., Renard, P. & Straubhaar, J. 2010. The direct sampling method to perform multiple-point geostatistical simulations. Water Resources Research, 46.
    • (2010) Water Resources Research , pp. 46
    • Mariethoz, G.1    Renard, P.2    Straubhaar, J.3
  • 98
    • 77954088598 scopus 로고    scopus 로고
    • High-order stochastic simulation of complex spatially distributed natural phenomena
    • Mustapha, H. & Dimitrakopoulos, R. 2010a. High-order stochastic simulation of complex spatially distributed natural phenomena. Mathematical Geosciences, 42, 457-485.
    • (2010) Mathematical Geosciences , vol.42 , pp. 457-485
    • Mustapha, H.1    Dimitrakopoulos, R.2
  • 99
    • 75749101326 scopus 로고    scopus 로고
    • A new approach for geological pattern recognition using high-order spatial cumulants
    • Mustapha, H. & Dimitrakopoulos, R. 2010b. A new approach for geological pattern recognition using high-order spatial cumulants. Computers and Geosciences, 36, 313-334.
    • (2010) Computers and Geosciences , vol.36 , pp. 313-334
    • Mustapha, H.1    Dimitrakopoulos, R.2
  • 100
    • 81555203523 scopus 로고    scopus 로고
    • Adapting a texture synthesis algorithm for conditional multiple point geostatistical simulation
    • Parra, A. & Ortiz, J. M. 2011. Adapting a texture synthesis algorithm for conditional multiple point geostatistical simulation. Stochastic Environmental Research and Risk Assessment, 25, 1101-1111.
    • (2011) Stochastic Environmental Research and Risk Assessment , vol.25 , pp. 1101-1111
    • Parra, A.1    Ortiz, J.M.2
  • 104
    • 0042054426 scopus 로고    scopus 로고
    • Conditional simulation of complex geological structures using multiple-point statistics
    • Strebelle, S. 2002. Conditional simulation of complex geological structures using multiple-point statistics. Mathematical Geology, 34, 1-22.
    • (2002) Mathematical Geology , vol.34 , pp. 1-22
    • Strebelle, S.1
  • 105
    • 84927569193 scopus 로고    scopus 로고
    • Coupled geological modeling and history matching of finescale curvilinear flow barriers
    • Paper presented at the 19th SCRF annual meeting, Stanford Center for Reservoir Forecasting, Stanford, CA, May
    • Stright, L., Caers, J. & Li, H. 2006. Coupled geological modeling and history matching of finescale curvilinear flow barriers. Paper presented at the 19th SCRF annual meeting, Stanford Center for Reservoir Forecasting, Stanford, CA, May.
    • (2006)
    • Stright, L.1    Caers, J.2    Li, H.3
  • 106
    • 84860599900 scopus 로고    scopus 로고
    • Multiple-point geostatistical modeling based on the cross-correlation functions
    • Tahmasebi, P., Hezarkhani, A. & Sahimi, M. 2012. Multiple-point geostatistical modeling based on the cross-correlation functions. Computational Geosciences, 16, 779-797.
    • (2012) Computational Geosciences , vol.16 , pp. 779-797
    • Tahmasebi, P.1    Hezarkhani, A.2    Sahimi, M.3
  • 107
    • 84897407874 scopus 로고    scopus 로고
    • Comparing training-image based algorithms using an analysis of distance
    • Tan, X., Tahmasebi, P. & Caers, J. 2013. Comparing training-image based algorithms using an analysis of distance. Mathematical Geosciences, 46, 149-169.
    • (2013) Mathematical Geosciences , vol.46 , pp. 149-169
    • Tan, X.1    Tahmasebi, P.2    Caers, J.3
  • 110
    • 84867478227 scopus 로고    scopus 로고
    • Memory-efficient categorical multi-point statistics algorithms based on compact search trees
    • Zhang, T., Pedersen, S. I., Knudby, C. & Mccormick, D. 2012. Memory-efficient categorical multi-point statistics algorithms based on compact search trees. Mathematical Geosciences, 44, 863-879.
    • (2012) Mathematical Geosciences , vol.44 , pp. 863-879
    • Zhang, T.1    Pedersen, S.I.2    Knudby, C.3    Mccormick, D.4
  • 111
    • 33745170745 scopus 로고    scopus 로고
    • Filter-based classification of training image patterns for spatial simulation
    • Zhang, T., Switzer, P. & Journel, A. 2006. Filter-based classification of training image patterns for spatial simulation. Mathematical Geology, 38, 63-80.
    • (2006) Mathematical Geology , vol.38 , pp. 63-80
    • Zhang, T.1    Switzer, P.2    Journel, A.3
  • 112
    • 34248592410 scopus 로고    scopus 로고
    • Conditional simulations with patterns
    • Arpat, B. & Caers, J. 2007. Conditional simulations with patterns. Mathematical Geology, 39, 177-203.
    • (2007) Mathematical Geology , vol.39 , pp. 177-203
    • Arpat, B.1    Caers, J.2
  • 113
    • 84859102626 scopus 로고    scopus 로고
    • Dimensional reduction of patternbased simulation using wavelet analysis
    • Chatterjee, S., Dimitrakopoulos, R. & Mustapha, H. 2012. Dimensional reduction of patternbased simulation using wavelet analysis. Mathematical Geosciences, 44, 343-374.
    • (2012) Mathematical Geosciences , vol.44 , pp. 343-374
    • Chatterjee, S.1    Dimitrakopoulos, R.2    Mustapha, H.3
  • 114
    • 0032124703 scopus 로고    scopus 로고
    • Cleaning categorical variable (lithofacies) realizations with maximum a-posteriori selection
    • Deutsch, C. V. 1998. Cleaning categorical variable (lithofacies) realizations with maximum a-posteriori selection. Computers and Geosciences, 24, 551-562.
    • (1998) Computers and Geosciences , vol.24 , pp. 551-562
    • Deutsch, C.V.1
  • 115
    • 0033996632 scopus 로고    scopus 로고
    • Integrating large-scale soft data by simulated annealing and probability constraints
    • Deutsch, C. V. & Wen, X. H. 2000. Integrating large-scale soft data by simulated annealing and probability constraints. Mathematical Geology, 32, 49-67.
    • (2000) Mathematical Geology , vol.32 , pp. 49-67
    • Deutsch, C.V.1    Wen, X.H.2
  • 118
    • 35348978714 scopus 로고    scopus 로고
    • A patchwork approach to stochastic simulation: A route towards the analysis of morphology in multiphase systems
    • EL Ouassini, A., Saucier, A., Marcotte, D. & Favis, B. D. 2008. A patchwork approach to stochastic simulation: A route towards the analysis of morphology in multiphase systems. Chaos, Solitons and Fractals, 36, 418-436.
    • (2008) Chaos, Solitons and Fractals , vol.36 , pp. 418-436
    • El Ouassini, A.1    Saucier, A.2    Marcotte, D.3    Favis, B.D.4
  • 119
  • 120
    • 0027868458 scopus 로고
    • Multivariate geostatistics: Beyond bivariate moments
    • In: Soares, A. (Ed.), Kluwer Academic, Dordrecht
    • Guardiano, F. & Srivastava, M. 1993. Multivariate geostatistics: Beyond bivariate moments. In: Soares, A. (Ed.), Geostatistics-Troia, Kluwer Academic, Dordrecht.
    • (1993) Geostatistics-Troia
    • Guardiano, F.1    Srivastava, M.2
  • 122
    • 77954088141 scopus 로고    scopus 로고
    • Stochastic simulation of patterns using distance-based pattern modeling
    • Honarkhah, M. & Caers, J. 2010. Stochastic simulation of patterns using distance-based pattern modeling. Mathematical Geosciences, 42, 487-517.
    • (2010) Mathematical Geosciences , vol.42 , pp. 487-517
    • Honarkhah, M.1    Caers, J.2
  • 123
    • 33747832776 scopus 로고    scopus 로고
    • Using the SNESIM program for multiple-point statistical simulation
    • Liu, Y. 2006. Using the SNESIM program for multiple-point statistical simulation. Computers & Geosciences, 23, 1544-1563.
    • (2006) Computers & Geosciences , vol.23 , pp. 1544-1563
    • Liu, Y.1
  • 125
    • 78649504754 scopus 로고    scopus 로고
    • The direct sampling method to perform multiple-point geostatistical simulations
    • Mariethoz, G., Renard, P. & Straubhaar, J. 2010. The direct sampling method to perform multiple-point geostatistical simulations. Water Resources Research, 46.
    • (2010) Water Resources Research , pp. 46
    • Mariethoz, G.1    Renard, P.2    Straubhaar, J.3
  • 127
    • 80051568480 scopus 로고    scopus 로고
    • HOSIM: A high-order stochastic simulation algorithm for generating three-dimensional complex geological patterns
    • Mustapha, H. & Dimitrakopoulos, R. 2011. HOSIM: A high-order stochastic simulation algorithm for generating three-dimensional complex geological patterns. Computers and Geosciences, 37, 1242-1253.
    • (2011) Computers and Geosciences , vol.37 , pp. 1242-1253
    • Mustapha, H.1    Dimitrakopoulos, R.2
  • 128
    • 79960895702 scopus 로고    scopus 로고
    • Parallel implementation of simulated annealing to reproduce multiple-point statistics
    • Peredo, O. & Ortiz, J. M. 2011. Parallel implementation of simulated annealing to reproduce multiple-point statistics. Computers and Geosciences, 37, 1110-1121.
    • (2011) Computers and Geosciences , vol.37 , pp. 1110-1121
    • Peredo, O.1    Ortiz, J.M.2
  • 129
    • 84875265009 scopus 로고    scopus 로고
    • Multiple-point geostatistical simulation using the bunch-pasting direct sampling method
    • Rezaee, H., Mariethoz, G., Koneshloo, M. & Asghari, O. 2013. Multiple-point geostatistical simulation using the bunch-pasting direct sampling method. Computers and Geosciences, 54, 293-308.
    • (2013) Computers and Geosciences , vol.54 , pp. 293-308
    • Rezaee, H.1    Mariethoz, G.2    Koneshloo, M.3    Asghari, O.4
  • 133
    • 84874279019 scopus 로고    scopus 로고
    • Parallel multiple-point statistics algorithm based on list and tree structures
    • Straubhaar, J., Walgenwitz, A. & Renard, P. 2013. Parallel multiple-point statistics algorithm based on list and tree structures. Mathematical Geosciences, 45, 131-147.
    • (2013) Mathematical Geosciences , vol.45 , pp. 131-147
    • Straubhaar, J.1    Walgenwitz, A.2    Renard, P.3
  • 134
    • 0042054426 scopus 로고    scopus 로고
    • Conditional simulation of complex geological structures using multiple-point statistics
    • Strebelle, S. 2002. Conditional simulation of complex geological structures using multiple-point statistics. Mathematical Geology, 34, 1-22.
    • (2002) Mathematical Geology , vol.34 , pp. 1-22
    • Strebelle, S.1
  • 135
    • 34248521511 scopus 로고    scopus 로고
    • Post-processing of multiple-point geostatistical models to improve reproduction of training patterns
    • In: Deutsch, O. L. A. C. V. (Ed.), Springer, Berlin
    • Strebelle, S. & Remy, N. 2005. Post-processing of multiple-point geostatistical models to improve reproduction of training patterns. In: Deutsch, O. L. A. C. V. (Ed.), Geostatistics Banff 2004, Springer, Berlin.
    • (2005) Geostatistics Banff 2004
    • Strebelle, S.1    Remy, N.2
  • 136
    • 84900235327 scopus 로고    scopus 로고
    • Real-time post-processing method to enhance multiplepoint statistics simulation
    • 10-14 September, Cascais, Portugal, EAGE
    • Suzuki, S. & Strebelle, S. 2007. Real-time post-processing method to enhance multiplepoint statistics simulation. In: Petroleum Geostatistics 2007, 10-14 September 2007, Cascais, Portugal, EAGE.
    • (2007) Petroleum Geostatistics 2007
    • Suzuki, S.1    Strebelle, S.2
  • 137
    • 84860599900 scopus 로고    scopus 로고
    • Multiple-point geostatistical modeling based on the cross-correlation functions
    • Tahmasebi, P., Hezarkhani, A. & Sahimi, M. 2012. Multiple-point geostatistical modeling based on the cross-correlation functions. Computational Geosciences, 16, 779-797.
    • (2012) Computational Geosciences , vol.16 , pp. 779-797
    • Tahmasebi, P.1    Hezarkhani, A.2    Sahimi, M.3
  • 138
    • 67649559903 scopus 로고    scopus 로고
    • Fast FILTERSIM simulation with score-based distance
    • Wu, J., Zhang, T. & Journel, A. 2008. Fast FILTERSIM simulation with score-based distance. Mathematical Geosciences, 40, 773-788.
    • (2008) Mathematical Geosciences , vol.40 , pp. 773-788
    • Wu, J.1    Zhang, T.2    Journel, A.3
  • 139
    • 33745170745 scopus 로고    scopus 로고
    • Filter-based classification of training image patterns for spatial simulation
    • Zhang, T., Switzer, P. & Journel, A. 2006. Filter-based classification of training image patterns for spatial simulation. Mathematical Geology, 38, 63-80.
    • (2006) Mathematical Geology , vol.38 , pp. 63-80
    • Zhang, T.1    Switzer, P.2    Journel, A.3
  • 142
    • 0028392841 scopus 로고
    • A multiscale random field model for Bayesian image segmentation
    • Bouman, C. A. & Shapiro, M. 1994. A multiscale random field model for Bayesian image segmentation. IEEE Transactions on Image Processing, 3, 162-177.
    • (1994) IEEE Transactions on Image Processing , vol.3 , pp. 162-177
    • Bouman, C.A.1    Shapiro, M.2
  • 143
    • 0031636717 scopus 로고    scopus 로고
    • Stochastic reservoir simulation using neural networks trained on outcrop data
    • no. 49026
    • Caers, J. & Journel, A. G. 1998. Stochastic reservoir simulation using neural networks trained on outcrop data. SPE Annual Technical Conference and Exhibition, no. 49026, 321-336.
    • (1998) SPE Annual Technical Conference and Exhibition , pp. 321-336
    • Caers, J.1    Journel, A.G.2
  • 144
    • 0013014453 scopus 로고    scopus 로고
    • Modeling conditional distributions of facies from seismic using neural nets
    • Caers, J. & Ma, X. 2002. Modeling conditional distributions of facies from seismic using neural nets. Mathematical Geology, 34, 143-167.
    • (2002) Mathematical Geology , vol.34 , pp. 143-167
    • Caers, J.1    Ma, X.2
  • 145
    • 0039650029 scopus 로고
    • Markov random fields in statistics
    • In: Grimmett, G. R. &Welsh, D. J. A. (eds.), Oxford University Press, Oxford
    • Clifford, P. 1990. Markov random fields in statistics. In: Grimmett, G. R. &Welsh, D. J. A. (eds.), Disorder in Physical Systems, Oxford University Press, Oxford, 19-32.
    • (1990) Disorder in Physical Systems , pp. 19-32
    • Clifford, P.1
  • 146
    • 0003548569 scopus 로고
    • revised edition, John Wiley & Sons, Inc., New York
    • Cressie, N. A. 1993. Statistics for Spatial Data, revised edition, John Wiley & Sons, Inc., New York.
    • (1993) Statistics for Spatial Data
    • Cressie, N.A.1
  • 148
    • 58049182518 scopus 로고    scopus 로고
    • Higher order models using entropy, Markov random fields and sequential simulation
    • In: Leuangthong, O. & Deutsch, C. V. (eds.), Kluwer Academic, Banff, AB
    • Daly, C. 2004. Higher order models using entropy, Markov random fields and sequential simulation. In: Leuangthong, O. & Deutsch, C. V. (eds.), Geostatistics Banff 2004, Kluwer Academic, Banff, AB, 215-224.
    • (2004) Geostatistics Banff 2004 , pp. 215-224
    • Daly, C.1
  • 151
    • 84950437936 scopus 로고
    • Annealing Markov chain Monte Carlo with applications to ancestral inference
    • Geyer, C. J. & Thompson, E. A. 1995. Annealing Markov chain Monte Carlo with applications to ancestral inference. Journal of the American Statistical Association, 90, 909-920.
    • (1995) Journal of the American Statistical Association , vol.90 , pp. 909-920
    • Geyer, C.J.1    Thompson, E.A.2
  • 156
    • 79961031118 scopus 로고    scopus 로고
    • Facies modeling using a Markov mesh model specification
    • Stien, M. & Kolbjørnsen, O. 2011. Facies modeling using a Markov mesh model specification. Mathematical Geosciences, 43, 611-624.
    • (2011) Mathematical Geosciences , vol.43 , pp. 611-624
    • Stien, M.1    Kolbjørnsen, O.2
  • 157
    • 84865354359 scopus 로고    scopus 로고
    • Exact and approximate recursive calculations for binary Markov random fields defined on graphs
    • Tjelmeland, H. & Austad, H. M. 2012. Exact and approximate recursive calculations for binary Markov random fields defined on graphs. Journal of Computational and Graphical Statistics, 21, 758-780.
    • (2012) Journal of Computational and Graphical Statistics , vol.21 , pp. 758-780
    • Tjelmeland, H.1    Austad, H.M.2
  • 158
  • 159
    • 84878110231 scopus 로고    scopus 로고
    • Construction of binary multi-grid Markov random field prior models from training images
    • Toftaker, H. & Tjelmeland, H. 2013. Construction of binary multi-grid Markov random field prior models from training images. Mathematical Geosciences, 45, 383-409.
    • (2013) Mathematical Geosciences , vol.45 , pp. 383-409
    • Toftaker, H.1    Tjelmeland, H.2
  • 161
    • 64249086793 scopus 로고    scopus 로고
    • Considering complex training images with search tree partitioning
    • Boucher, A. 2009. Considering complex training images with search tree partitioning. Computers and Geosciences, 35, 1151-1158.
    • (2009) Computers and Geosciences , vol.35 , pp. 1151-1158
    • Boucher, A.1
  • 162
    • 33645291279 scopus 로고    scopus 로고
    • Multiple-point geostatistics: A quantitative vehicle for integrating geologic analogs into multiple reservoir models
    • In: Grammer, G. M., Harris, P. M., and Eberli, G. P. (Eds.), American Association of Petroleum Geologists, Tulsa, OK
    • Caers, J. & Zhang, T. 2004. Multiple-point geostatistics: A quantitative vehicle for integrating geologic analogs into multiple reservoir models. In: Grammer, G. M., Harris, P. M., and Eberli, G. P. (Eds.), Integration of Outcrop and Modern Analog Data in Reservoir Models, AAPG Memoir 80, American Association of Petroleum Geologists, Tulsa, OK.
    • (2004) Integration of Outcrop and Modern Analog Data in Reservoir Models, AAPG Memoir 80
    • Caers, J.1    Zhang, T.2
  • 164
    • 58149085666 scopus 로고    scopus 로고
    • Multiple-point simulations constrained by continuous auxiliary data
    • Chugunova, T. & Hu, L. 2008. Multiple-point simulations constrained by continuous auxiliary data. Mathematical Geosciences, 40, 133-146.
    • (2008) Mathematical Geosciences , vol.40 , pp. 133-146
    • Chugunova, T.1    Hu, L.2
  • 165
    • 79959975039 scopus 로고    scopus 로고
    • Three-dimensional high resolution fluvio-glacial aquifer analog: Part 2: Geostatistical modeling
    • Comunian, A., Renard, P., Straubhaar, J. & Bayer, P. 2011. Three-dimensional high resolution fluvio-glacial aquifer analog: Part 2: Geostatistical modeling. Journal of Hydrology, 405, 10-23.
    • (2011) Journal of Hydrology , vol.405 , pp. 10-23
    • Comunian, A.1    Renard, P.2    Straubhaar, J.3    Bayer, P.4
  • 168
    • 84864281143 scopus 로고    scopus 로고
    • Direct pattern-based simulation of non-stationary geostatistical models
    • Honarkhah, M. & Caers, J. 2012. Direct pattern-based simulation of non-stationary geostatistical models. Mathematical Geosciences, 44, 651-672.
    • (2012) Mathematical Geosciences , vol.44 , pp. 651-672
    • Honarkhah, M.1    Caers, J.2
  • 169
    • 84908170899 scopus 로고    scopus 로고
    • Multiple-point simulation with an existing reservoir model as training image
    • Hu, L. Y., Liu, Y., Scheepens, C., Shultz, A. W. & Thompson, R. D. 2014. Multiple-point simulation with an existing reservoir model as training image. Mathematical Geosciences, 46, 227-240.
    • (2014) Mathematical Geosciences , vol.46 , pp. 227-240
    • Hu, L.Y.1    Liu, Y.2    Scheepens, C.3    Shultz, A.W.4    Thompson, R.D.5
  • 170
    • 33747832776 scopus 로고    scopus 로고
    • Using the SNESIM program for multiple-point statistical simulation
    • Liu, Y. 2006. Using the SNESIM program for multiple-point statistical simulation. Computers & Geosciences, 23, 1544-1563.
    • (2006) Computers & Geosciences , vol.23 , pp. 1544-1563
    • Liu, Y.1
  • 172
    • 79960737417 scopus 로고    scopus 로고
    • Modeling complex geological structures with elementary training images and transform-invariant distances
    • Mariethoz, G. & Kelly, B. F. J. 2011. Modeling complex geological structures with elementary training images and transform-invariant distances. Water Resources Research, 47.
    • (2011) Water Resources Research , pp. 47
    • Mariethoz, G.1    Kelly, B.F.J.2
  • 173
    • 78649504754 scopus 로고    scopus 로고
    • The direct sampling method to perform multiple-point geostatistical simulations
    • Mariethoz, G., Renard, P. & Straubhaar, J. 2010. The direct sampling method to perform multiple-point geostatistical simulations. Water Resources Research, 46.
    • (2010) Water Resources Research , pp. 46
    • Mariethoz, G.1    Renard, P.2    Straubhaar, J.3
  • 174
    • 67650566155 scopus 로고    scopus 로고
    • Direct modeling of reservoirs through forward process based models: Can we get there?
    • IPTC Paper 12729, International Petroleum Technology Conference, Kuala Lumpur, Malaysia
    • Miller, J., Sun, H., Stewart, C., Genty, D., Li, D. & Lyttle, C. 2008. Direct modeling of reservoirs through forward process based models: Can we get there? IPTC Paper 12729, International Petroleum Technology Conference, Kuala Lumpur, Malaysia.
    • (2008)
    • Miller, J.1    Sun, H.2    Stewart, C.3    Genty, D.4    Li, D.5    Lyttle, C.6
  • 175
    • 84927572868 scopus 로고    scopus 로고
    • Event-based geostatistical modeling of deepwater systems
    • 26th Annual Gulf Coast Section SEPM Conference, Houston, TX
    • Pyrcz, M. & Strebelle, S. 2006. Event-based geostatistical modeling of deepwater systems. 26th Annual Gulf Coast Section SEPM Conference, Houston, TX.
    • (2006)
    • Pyrcz, M.1    Strebelle, S.2
  • 177
    • 0042054426 scopus 로고    scopus 로고
    • Conditional simulation of complex geological structures using multiple-point statistics
    • Strebelle, S. 2002. Conditional simulation of complex geological structures using multiple-point statistics. Mathematical Geology, 34, 1-22.
    • (2002) Mathematical Geology , vol.34 , pp. 1-22
    • Strebelle, S.1
  • 178
    • 52049124779 scopus 로고    scopus 로고
    • A SGeMS code for pattern simulation of continuous and categorical variables: FILTERSIM
    • Wu, J., Boucher, A. & Zhang, T. 2008. A SGeMS code for pattern simulation of continuous and categorical variables: FILTERSIM. Computers & Geosciences, 34, 1863-1876.
    • (2008) Computers & Geosciences , vol.34 , pp. 1863-1876
    • Wu, J.1    Boucher, A.2    Zhang, T.3
  • 180
    • 77952280875 scopus 로고    scopus 로고
    • Optimization of high-reliability based hydrological design problems by robust automatic sampling of critical model realizations
    • Bayer, P., De Paly, M. & Burger, C. 2010. Optimization of high-reliability based hydrological design problems by robust automatic sampling of critical model realizations. Water Resources Research, 46, W05504.
    • (2010) Water Resources Research , vol.46 , pp. W05504
    • Bayer, P.1    De Paly, M.2    Burger, C.3
  • 181
    • 79959939837 scopus 로고    scopus 로고
    • Three-dimensional high resolution fluvio-glacial aquifer analog: Part 1: Field study
    • Bayer, P., Huggenberger, P., Renard, P. & Comunian, A. 2011. Three-dimensional high resolution fluvio-glacial aquifer analog: Part 1: Field study. Journal of hydrology, 405, 1-9.
    • (2011) Journal of hydrology , vol.405 , pp. 1-9
    • Bayer, P.1    Huggenberger, P.2    Renard, P.3    Comunian, A.4
  • 182
    • 58149085666 scopus 로고    scopus 로고
    • Multiple-point simulations constrained by continuous auxiliary data
    • Chugunova, T. & Hu, L. 2008. Multiple-point simulations constrained by continuous auxiliary data. Mathematical Geosciences, 40, 133-146.
    • (2008) Mathematical Geosciences , vol.40 , pp. 133-146
    • Chugunova, T.1    Hu, L.2
  • 185
    • 84894446197 scopus 로고    scopus 로고
    • Bridges between multiple-point geostatistics and texture synthesis
    • Mariethoz, G. & Lefebvre, S. 2014. Bridges between multiple-point geostatistics and texture synthesis. Computers & Geosciences, 66, 66-80.
    • (2014) Computers & Geosciences , vol.66 , pp. 66-80
    • Mariethoz, G.1    Lefebvre, S.2
  • 187
    • 0042054426 scopus 로고    scopus 로고
    • Conditional simulation of complex geological structures using multiple-point statistics
    • Strebelle, S. 2002. Conditional simulation of complex geological structures using multiple-point statistics. Mathematical Geology, 34, 1-22.
    • (2002) Mathematical Geology , vol.34 , pp. 1-22
    • Strebelle, S.1
  • 189
    • 1542756480 scopus 로고    scopus 로고
    • When good statistical models of aquifer heterogeneity go bad: A comparison of flow, dispersion, and mass transfer in connected and multivariate Gaussian hydraulic conductivity fields
    • Zinn, B. & Harvey, C. 2003. When good statistical models of aquifer heterogeneity go bad: A comparison of flow, dispersion, and mass transfer in connected and multivariate Gaussian hydraulic conductivity fields. Water Resources Research, 39, WR001146.
    • (2003) Water Resources Research , vol.39 , pp. WR001146
    • Zinn, B.1    Harvey, C.2
  • 190
    • 34249854122 scopus 로고    scopus 로고
    • Conditional simulation of multi-type non stationary markov object models respecting specified proportions
    • Allard, D., Froidevaux, R. & Biver, P. 2006. Conditional simulation of multi-type non stationary markov object models respecting specified proportions. Mathematical Geology, 38, 959-986.
    • (2006) Mathematical Geology , vol.38 , pp. 959-986
    • Allard, D.1    Froidevaux, R.2    Biver, P.3
  • 191
  • 192
    • 33947231427 scopus 로고    scopus 로고
    • General algorithm for building 3D spatial laws from lower dimensional structural information
    • Paper presented at the 19th Stanford Center for Reservoir Forecasting Meeting, Stanford University, Stanford, CA, May 8-9
    • Caers, J. A 2006. General algorithm for building 3D spatial laws from lower dimensional structural information. Paper presented at the 19th Stanford Center for Reservoir Forecasting Meeting, Stanford University, Stanford, CA, May 8-9.
    • (2006)
    • Caers, J.A.1
  • 193
    • 84869426056 scopus 로고    scopus 로고
    • A database approach for constraining stochastic simulations of the sedimentary heterogeneity of fluvial reservoirs
    • Colombera, L., Felletti, F., Mountney, N. P. & McCaffrey, W. D. 2012. A database approach for constraining stochastic simulations of the sedimentary heterogeneity of fluvial reservoirs. AAPG Bulletin, 96, 2143-2166.
    • (2012) AAPG Bulletin , vol.96 , pp. 2143-2166
    • Colombera, L.1    Felletti, F.2    Mountney, N.P.3    McCaffrey, W.D.4
  • 194
    • 84911090417 scopus 로고    scopus 로고
    • Training images from process-imitating methods - an application to the lower namoi aquifer, Murray-Darling Basin, Australia
    • Comunian, A., Jha, S. K., Giambastiani, B. M. S., Mariethoz, G. & Kelly, B. F. J. 2013. Training images from process-imitating methods - an application to the lower namoi aquifer, Murray-Darling Basin, Australia. Mathematical Geosciences, 1-20.
    • (2013) Mathematical Geosciences , pp. 1-20
    • Comunian, A.1    Jha, S.K.2    Giambastiani, B.M.S.3    Mariethoz, G.4    Kelly, B.F.J.5
  • 195
    • 84856619939 scopus 로고    scopus 로고
    • 3D multiple-point statistics simulation using 2D training images
    • Comunian, A., Renard, P. & Straubhaar, J. 2012. 3D multiple-point statistics simulation using 2D training images. Computers and Geosciences, 40, 49-65.
    • (2012) Computers and Geosciences , vol.40 , pp. 49-65
    • Comunian, A.1    Renard, P.2    Straubhaar, J.3
  • 197
    • 0036573032 scopus 로고    scopus 로고
    • FLUVSIM: A program for object-based stochastic modeling of fluvial depositional systems
    • Deutsch, C. V. & Tran, T. T. 2002. FLUVSIM: A program for object-based stochastic modeling of fluvial depositional systems. Computers and Geosciences, 28, 525-535.
    • (2002) Computers and Geosciences , vol.28 , pp. 525-535
    • Deutsch, C.V.1    Tran, T.T.2
  • 198
    • 84894469185 scopus 로고    scopus 로고
    • Can a training image be a substitute for a random field model?
    • Emery, J. & Lantuejoul, C. 2014. Can a training image be a substitute for a random field model? Mathematical Geosciences, 46, 133-147.
    • (2014) Mathematical Geosciences , vol.46 , pp. 133-147
    • Emery, J.1    Lantuejoul, C.2
  • 199
    • 0031714458 scopus 로고    scopus 로고
    • River and floodplain process simulation for subsurface characterization
    • Gross, L. J. & Small, M. J. 1998. River and floodplain process simulation for subsurface characterization. Water Resources Research, 34, 2365-2376.
    • (1998) Water Resources Research , vol.34 , pp. 2365-2376
    • Gross, L.J.1    Small, M.J.2
  • 200
    • 0022838165 scopus 로고
    • Notes on stochastic shales from outcrop to simulation models
    • In: Lake, L. W. & Carrol, H. B. (eds.), Academic Press, New York
    • Haldorsen, H. H. & Chang, D. M. 1986. Notes on stochastic shales from outcrop to simulation models. In: Lake, L. W. & Carrol, H. B. (eds.), Reservoir Characterization, Academic Press, New York.
    • (1986) Reservoir Characterization
    • Haldorsen, H.H.1    Chang, D.M.2
  • 201
    • 67650369995 scopus 로고    scopus 로고
    • Describing and generating facies models for reservoir characterisation: 2D map view
    • Hill, E. J. & Griffiths, C. M. 2009. Describing and generating facies models for reservoir characterisation: 2D map view. Marine and Petroleum Geology, 26, 1554-1563.
    • (2009) Marine and Petroleum Geology , vol.26 , pp. 1554-1563
    • Hill, E.J.1    Griffiths, C.M.2
  • 202
    • 0019633371 scopus 로고
    • Bend theory of river meanders. - 1. Linear development
    • Ikeda, S., Parker, G. & Sawai, K. 1981. Bend theory of river meanders. - 1. Linear development. Journal of Fluid Mechanics, 112, 363-377.
    • (1981) Journal of Fluid Mechanics , vol.112 , pp. 363-377
    • Ikeda, S.1    Parker, G.2    Sawai, K.3
  • 203
    • 83255170524 scopus 로고    scopus 로고
    • Carbonate geobodies: Hierarchical classification and database - a new workflow for 3D reservoir modelling
    • Jung, A. & Aigner, T. 2012. Carbonate geobodies: Hierarchical classification and database - a new workflow for 3D reservoir modelling. Journal of Petroleum Geology, 35(1), 49-65.
    • (2012) Journal of Petroleum Geology , vol.35 , Issue.1 , pp. 49-65
    • Jung, A.1    Aigner, T.2
  • 205
    • 0027060359 scopus 로고
    • Paleoclimatic signature in terrestrial flood deposits
    • Koltermann, C. E. & Gorelick, S. M. 1992. Paleoclimatic signature in terrestrial flood deposits. Science, 256, 1775-1782.
    • (1992) Science , vol.256 , pp. 1775-1782
    • Koltermann, C.E.1    Gorelick, S.M.2
  • 206
    • 0036154799 scopus 로고    scopus 로고
    • A simple model of river meandering and its comparison to natural channels
    • Lancaster, S. T. & Bras, R. L. 2002. A simple model of river meandering and its comparison to natural channels. Hydrological Processes, 16, 1-26.
    • (2002) Hydrological Processes , vol.16 , pp. 1-26
    • Lancaster, S.T.1    Bras, R.L.2
  • 210
    • 52049122828 scopus 로고    scopus 로고
    • TiGenerator: Object-based training image generator
    • Maharaja, A. 2008. TiGenerator: Object-based training image generator. Computers and Geosciences, 34, 1753-1761.
    • (2008) Computers and Geosciences , vol.34 , pp. 1753-1761
    • Maharaja, A.1
  • 212
    • 78649514282 scopus 로고    scopus 로고
    • Combining geologic-process models and geostatistics for conditional simulation of 3-D subsurface heterogeneity
    • Michael, H., Boucher, A., Sun, T., Caers, J. & Gorelick, S. 2010. Combining geologic-process models and geostatistics for conditional simulation of 3-D subsurface heterogeneity. Water Resources Research, 46.
    • (2010) Water Resources Research , pp. 46
    • Michael, H.1    Boucher, A.2    Sun, T.3    Caers, J.4    Gorelick, S.5
  • 213
    • 39149127926 scopus 로고    scopus 로고
    • A library of training images for fluvial and deepwater reservoirs and associated code
    • Pyrcz, M. J., Boisvert, J. B. & Deutsch, C. V. 2008. A library of training images for fluvial and deepwater reservoirs and associated code. Computers and Geosciences, 34, 542-560.
    • (2008) Computers and Geosciences , vol.34 , pp. 542-560
    • Pyrcz, M.J.1    Boisvert, J.B.2    Deutsch, C.V.3
  • 214
    • 67650567085 scopus 로고    scopus 로고
    • ALLUVSIM: A program for event-based stochastic modeling of fluvial depositional systems
    • Pyrcz, M., Boisvert, J. & Deutsch, C. 2009. ALLUVSIM: A program for event-based stochastic modeling of fluvial depositional systems. Computers & Geosciences, 35, 1671-1685.
    • (2009) Computers & Geosciences , vol.35 , pp. 1671-1685
    • Pyrcz, M.1    Boisvert, J.2    Deutsch, C.3
  • 216
    • 0034918595 scopus 로고    scopus 로고
    • A computer model for meandering rivers with multiple bed load sediment sizes 2. Computer simulations
    • Sun, T., Meakin, P. & Jøssang, T. 2001. A computer model for meandering rivers with multiple bed load sediment sizes 2. Computer simulations. Water Resources Research, 37, 2243-2258.
    • (2001) Water Resources Research , vol.37 , pp. 2243-2258
    • Sun, T.1    Meakin, P.2    Jøssang, T.3
  • 217
    • 52049124779 scopus 로고    scopus 로고
    • A SGeMS code for pattern simulation of continuous and categorical variables: FILTERSIM
    • Wu, J., Boucher, A. & Zhang, T. 2008. A SGeMS code for pattern simulation of continuous and categorical variables: FILTERSIM. Computers & Geosciences, 34, 1863-1876.
    • (2008) Computers & Geosciences , vol.34 , pp. 1863-1876
    • Wu, J.1    Boucher, A.2    Zhang, T.3
  • 218
    • 80052512466 scopus 로고    scopus 로고
    • An integrated multi-point statistics modeling workflow driven by quantification of comprehensive analogue database
    • May 23
    • Zhang, T., Li, T., Reeder, S., Yue, G. & Thachaparabil, M. 2011. An integrated multi-point statistics modeling workflow driven by quantification of comprehensive analogue database. In: 73rd EAGE Conference & Exhibition, May 23, 1054-1058.
    • (2011) 73rd EAGE Conference & Exhibition , pp. 1054-1058
    • Zhang, T.1    Li, T.2    Reeder, S.3    Yue, G.4    Thachaparabil, M.5
  • 219
    • 34247612351 scopus 로고    scopus 로고
    • Stochastic space-time regional rainfall modeling adapted to historical rain gauge data
    • Zhang, Z. & Switzer, P. 2007. Stochastic space-time regional rainfall modeling adapted to historical rain gauge data. Water Resources Research, 43.
    • (2007) Water Resources Research , pp. 43
    • Zhang, Z.1    Switzer, P.2
  • 223
    • 77955092955 scopus 로고    scopus 로고
    • Multiple point metrics to assess categorical variable models
    • Boisvert, J. B., Pyrcz, M. J. & Deutsch, C. V. 2010. Multiple point metrics to assess categorical variable models. Natural Resources Research, 19, 165-175.
    • (2010) Natural Resources Research , vol.19 , pp. 165-175
    • Boisvert, J.B.1    Pyrcz, M.J.2    Deutsch, C.V.3
  • 224
    • 33751007399 scopus 로고    scopus 로고
    • Society of Petroleum Engineers, Richardson, TX
    • Caers, J. 2005. Petroleum Geostatistics, Society of Petroleum Engineers, Richardson, TX.
    • (2005) Petroleum Geostatistics
    • Caers, J.1
  • 225
    • 33645291279 scopus 로고    scopus 로고
    • Multiple-point geostatistics: A quantitative vehicle for integrating geologic analogs into multiple reservoir models
    • In: Grammer, G. M., Harris, P. M., & Eberli, G. P. (Eds.), American Association of Petroleum Geologists, Tulsa, OK
    • Caers, J. & Zhang, T. 2004. Multiple-point geostatistics: A quantitative vehicle for integrating geologic analogs into multiple reservoir models. In: Grammer, G. M., Harris, P. M., & Eberli, G. P. (Eds.), Integration of Outcrop and Modern Analog Data in Reservoir Models, AAPG Memoir 80, American Association of Petroleum Geologists, Tulsa, OK.
    • (2004) Integration of Outcrop and Modern Analog Data in Reservoir Models, AAPG Memoir 80
    • Caers, J.1    Zhang, T.2
  • 228
    • 84894469185 scopus 로고    scopus 로고
    • Can a training image be a substitute for a random field model?
    • Emery, J. & Lantuéjoul, C. 2014. Can a training image be a substitute for a random field model? Mathematical Geosciences, 46, 133-147.
    • (2014) Mathematical Geosciences , vol.46 , pp. 133-147
    • Emery, J.1    Lantuéjoul, C.2
  • 230
  • 231
    • 2942611661 scopus 로고
    • Measures of multivariate skewness and kurtosis with applications
    • Mardia, K. V. 1970. Measures of multivariate skewness and kurtosis with applications. Biometrika, 57, 519-530.
    • (1970) Biometrika , vol.57 , pp. 519-530
    • Mardia, K.V.1
  • 234
    • 84893742107 scopus 로고    scopus 로고
    • Binary upscaling on complex heterogeneities: The role of geometry and connectivity
    • Oriani, F. & Renard, P. 2014. Binary upscaling on complex heterogeneities: The role of geometry and connectivity. Advances in Water Resources, 64, 47-61.
    • (2014) Advances in Water Resources , vol.64 , pp. 47-61
    • Oriani, F.1    Renard, P.2
  • 235
    • 0042341436 scopus 로고    scopus 로고
    • CONNEC3D: A computer program for connectivity analysis of 3D random set models
    • Pardo-Iguźquiza, E. & Dowd, P. 2003. CONNEC3D: A computer program for connectivity analysis of 3D random set models. Computers & Geosciences, 29, 775-785.
    • (2003) Computers & Geosciences , vol.29 , pp. 775-785
    • Pardo-Iguźquiza, E.1    Dowd, P.2
  • 236
    • 84903616703 scopus 로고    scopus 로고
    • A training image selection program for multiple-point geostatistics
    • Perez, C., Mariethoz, G. & Ortiz, J. 2014. A training image selection program for multiple-point geostatistics. Computers & Geosciences, 70, 190-205.
    • (2014) Computers & Geosciences , vol.70 , pp. 190-205
    • Perez, C.1    Mariethoz, G.2    Ortiz, J.3
  • 237
    • 84872851290 scopus 로고    scopus 로고
    • Connectivity metrics for subsurface flow and transport
    • Renard, P. & Allard, D. 2013. Connectivity metrics for subsurface flow and transport. Advances in Water Resources, 51, 168-196.
    • (2013) Advances in Water Resources , vol.51 , pp. 168-196
    • Renard, P.1    Allard, D.2
  • 238
    • 0042054426 scopus 로고    scopus 로고
    • Conditional simulation of complex geological structures using multiple-point statistics
    • Strebelle, S. 2002. Conditional simulation of complex geological structures using multiple-point statistics. Mathematical Geology, 34, 1-22.
    • (2002) Mathematical Geology , vol.34 , pp. 1-22
    • Strebelle, S.1
  • 239
    • 84897407874 scopus 로고    scopus 로고
    • Comparing training-image based algorithms using an analysis of distance
    • Tan, X., Tahmasebi, P. & Caers, J. 2014. Comparing training-image based algorithms using an analysis of distance. Mathematical Geosciences, 46, 149-169.
    • (2014) Mathematical Geosciences , vol.46 , pp. 149-169
    • Tan, X.1    Tahmasebi, P.2    Caers, J.3
  • 240
    • 70350168210 scopus 로고    scopus 로고
    • The ensemble Kalman filter in reservoir engineering: A review
    • Aanonsen, S. I., Nævdal, G., Oliver, D. S. & Reynolds, A. C. V., B. 2009. The ensemble Kalman filter in reservoir engineering: A review. SPE Journal, 14, 393-412.
    • (2009) SPE Journal , vol.14 , pp. 393-412
    • Aanonsen, S.I.1    Nævdal, G.2    Oliver, D.S.3    Reynolds, A.C.V.B.4
  • 242
    • 0141953929 scopus 로고    scopus 로고
    • History matching under a training image-based geological model constraint
    • SPE no. 74716
    • Caers, J. 2003. History matching under a training image-based geological model constraint. SPEJournal, 8, 218-226, SPE no. 74716.
    • (2003) SPEJournal , vol.8 , pp. 218-226
    • Caers, J.1
  • 243
    • 34247184623 scopus 로고    scopus 로고
    • Comparing the gradual deformation with the probability perturbation method for solving inverse problems
    • Caers, J. 2007. Comparing the gradual deformation with the probability perturbation method for solving inverse problems. Mathematical Geology, 39, 27-52.
    • (2007) Mathematical Geology , vol.39 , pp. 27-52
    • Caers, J.1
  • 244
    • 33644827489 scopus 로고    scopus 로고
    • Probabilistic integration of geologic scenarios, seismic, and production data - a West Africa turbidite reservoir case study
    • Caers, J., Hoffman, T., Strebelle, S. & Wen, X. H. 2006. Probabilistic integration of geologic scenarios, seismic, and production data - a West Africa turbidite reservoir case study. Leading Edge [Tulsa, OK], 25, 240-244.
    • (2006) Leading Edge [Tulsa, OK] , vol.25 , pp. 240-244
    • Caers, J.1    Hoffman, T.2    Strebelle, S.3    Wen, X.H.4
  • 246
    • 84927572866 scopus 로고    scopus 로고
    • Uncertainty assessment in PUNQ-S3: Neighbourhood algorithm framework for geostatistical modeling
    • Paper presented at the 9th European conference on the mathematics of oil recovery, Cannes, France, August 31-September 2
    • Demyanov, V., Subbey, S. & Christie, M. 2004. Uncertainty assessment in PUNQ-S3: Neighbourhood algorithm framework for geostatistical modeling. Paper presented at the 9th European conference on the mathematics of oil recovery, Cannes, France, August 31-September 2.
    • (2004)
    • Demyanov, V.1    Subbey, S.2    Christie, M.3
  • 247
    • 33746086475 scopus 로고
    • Sequential data assimilation with nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics
    • Evensen, G. 1994. Sequential data assimilation with nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. Journal of Geophysical Research C, 5, 143-162.
    • (1994) Journal of Geophysical Research C , vol.5 , pp. 143-162
    • Evensen, G.1
  • 248
    • 84884550570 scopus 로고    scopus 로고
    • The ensemble Kalman filter: Theoretical formulation and practical implementation
    • Evensen, G. 2003. The ensemble Kalman filter: Theoretical formulation and practical implementation. Ocean Dynamics, 53, 343-367.
    • (2003) Ocean Dynamics , vol.53 , pp. 343-367
    • Evensen, G.1
  • 250
    • 59649108496 scopus 로고    scopus 로고
    • A blocking Markov chain Monte Carlo method for inverse stochastic hydrogeological modeling
    • Fu, J. & Gomez-Hernandez, J. 2009. A blocking Markov chain Monte Carlo method for inverse stochastic hydrogeological modeling. Mathematical Geosciences, 2009, 105-128.
    • (2009) Mathematical Geosciences , vol.2009 , pp. 105-128
    • Fu, J.1    Gomez-Hernandez, J.2
  • 253
    • 84860586037 scopus 로고    scopus 로고
    • Inverse problems with non-trivial priors: Efficient solution through sequential Gibbs sampling
    • Hansen, T. M., Cordua, K. S. & Mosegaard, K. 2012. Inverse problems with non-trivial priors: Efficient solution through sequential Gibbs sampling. Computational Geosciences, 16, 593-611.
    • (2012) Computational Geosciences , vol.16 , pp. 593-611
    • Hansen, T.M.1    Cordua, K.S.2    Mosegaard, K.3
  • 255
    • 33846253566 scopus 로고    scopus 로고
    • A practical data-integration approach to history matching: Application to a deepwater reservoir
    • Hoffman, B. T., Caers, J. K., Wen, X. H. & Strebelle, S. 2006. A practical data-integration approach to history matching: Application to a deepwater reservoir. SPE Journal, 11, 464-479.
    • (2006) SPE Journal , vol.11 , pp. 464-479
    • Hoffman, B.T.1    Caers, J.K.2    Wen, X.H.3    Strebelle, S.4
  • 256
    • 0032024819 scopus 로고    scopus 로고
    • Data assimilation using an ensemble Kalman filter technique
    • Houtekamer, P. & Mitchell, H. L. 1998. Data assimilation using an ensemble Kalman filter technique. Monthly Weather Review, 126, 796-811.
    • (1998) Monthly Weather Review , vol.126 , pp. 796-811
    • Houtekamer, P.1    Mitchell, H.L.2
  • 257
    • 0034000842 scopus 로고    scopus 로고
    • Gradual deformation and iterative calibration of Gaussian-related stochastic models
    • Hu, L. 2000. Gradual deformation and iterative calibration of Gaussian-related stochastic models. Mathematical Geology, 32, 87-108.
    • (2000) Mathematical Geology , vol.32 , pp. 87-108
    • Hu, L.1
  • 258
    • 56349159195 scopus 로고    scopus 로고
    • Extended probability perturbation method for calibrating stochastic reservoir models
    • Hu, L. 2008. Extended probability perturbation method for calibrating stochastic reservoir models. Mathematical Geosciences, 40.
    • (2008) Mathematical Geosciences , pp. 40
    • Hu, L.1
  • 260
    • 78751645996 scopus 로고    scopus 로고
    • A probability conditioning method (PCM) for nonlinear flow data integration into multipoint statistical facies simulation
    • Jafarpour, B. & Khodabakhshi, M. 2011. A probability conditioning method (PCM) for nonlinear flow data integration into multipoint statistical facies simulation. Mathematical Geosciences, 43, 133-164.
    • (2011) Mathematical Geosciences , vol.43 , pp. 133-164
    • Jafarpour, B.1    Khodabakhshi, M.2
  • 262
    • 83255170524 scopus 로고    scopus 로고
    • Carbonate geobodies: Hierarchical classification and database - a new workflow for 3D reservoir modelling
    • Jung, A. & Aigner, T. 2012. Carbonate geobodies: Hierarchical classification and database - a new workflow for 3D reservoir modelling. Journal of Petroleum Geology, 35, 49-65.
    • (2012) Journal of Petroleum Geology , vol.35 , pp. 49-65
    • Jung, A.1    Aigner, T.2
  • 263
    • 84862786554 scopus 로고    scopus 로고
    • Sparse geologic dictionaries for subsurface flow model calibration: Part I. Inversion formulation
    • Khaninezhad, M. M., Jafarpour, B. & Li, L. 2012a. Sparse geologic dictionaries for subsurface flow model calibration: Part I. Inversion formulation. Advances in Water Resources, 39, 106-121.
    • (2012) Advances in Water Resources , vol.39 , pp. 106-121
    • Khaninezhad, M.M.1    Jafarpour, B.2    Li, L.3
  • 264
    • 84862827395 scopus 로고    scopus 로고
    • Sparse geologic dictionaries for subsurface flow model calibration: Part II. Robustness to uncertainty
    • Khaninezhad, M. M., Jafarpour, B. & Li, L. 2012b. Sparse geologic dictionaries for subsurface flow model calibration: Part II. Robustness to uncertainty. Advances in Water Resources, 39, 122-136.
    • (2012) Advances in Water Resources , vol.39 , pp. 122-136
    • Khaninezhad, M.M.1    Jafarpour, B.2    Li, L.3
  • 265
    • 84860194280 scopus 로고    scopus 로고
    • Multipoint statistical characterization of geologic facies from dynamic data and uncertain training images
    • Paper presented at the SPE Reservoir Characterisation and Simulation Conference and Exhibition 2011, Abu Dhabi, UAE, October, SPE 146935
    • Khodabakhshi, M. & Jafarpour, B. 2011. Multipoint statistical characterization of geologic facies from dynamic data and uncertain training images. Paper presented at the SPE Reservoir Characterisation and Simulation Conference and Exhibition 2011, Abu Dhabi, UAE, October, SPE 146935, 206-217.
    • (2011) , pp. 206-217
    • Khodabakhshi, M.1    Jafarpour, B.2
  • 267
    • 84867462187 scopus 로고    scopus 로고
    • A frequency matching method: Solving inverse problems by use of geologically realistic prior information
    • Lange, K., Frydendall, J., Cordua, K. S., Hansen, T. M., Melnikova, Y. & Mosegaard, K. 2012. A frequency matching method: Solving inverse problems by use of geologically realistic prior information. Mathematical Geosciences, 44, 783-803.
    • (2012) Mathematical Geosciences , vol.44 , pp. 783-803
    • Lange, K.1    Frydendall, J.2    Cordua, K.S.3    Hansen, T.M.4    Melnikova, Y.5    Mosegaard, K.6
  • 268
    • 2942611661 scopus 로고
    • Measures of multivariate skewness and kurtosis with applications
    • Mardia, K. V. 1970. Measures of multivariate skewness and kurtosis with applications. Biometrika, 57, 519-530.
    • (1970) Biometrika , vol.57 , pp. 519-530
    • Mardia, K.V.1
  • 269
    • 78649499201 scopus 로고    scopus 로고
    • Bayesian inverse problem and optimization with iterative spatial resampling
    • Mariethoz, G., Renard, P. & Caers, J. 2010. Bayesian inverse problem and optimization with iterative spatial resampling. Water Resources Research, 46.
    • (2010) Water Resources Research , pp. 46
    • Mariethoz, G.1    Renard, P.2    Caers, J.3
  • 271
    • 0029481451 scopus 로고
    • Monte Carlo sampling of solutions to inverse problems
    • Mosegaard, K. & Tarantola, A. 1995. Monte Carlo sampling of solutions to inverse problems. Journal of Geophysical Research, 100, 12, 431-447.
    • (1995) Journal of Geophysical Research , vol.100 , Issue.12 , pp. 431-447
    • Mosegaard, K.1    Tarantola, A.2
  • 272
    • 84880076387 scopus 로고    scopus 로고
    • History matching and uncertainty quantification of facies models with multiple geological interpretations
    • Park, H., Scheidt, C., Fenwick, D., Boucher, A. & Caers, J. 2013. History matching and uncertainty quantification of facies models with multiple geological interpretations. Computational Geosciences, 17, 609-621.
    • (2013) Computational Geosciences , vol.17 , pp. 609-621
    • Park, H.1    Scheidt, C.2    Fenwick, D.3    Boucher, A.4    Caers, J.5
  • 274
    • 0032753561 scopus 로고    scopus 로고
    • Geophysical inversion with a neighbourhood algorithm - I. Searching a parameter space
    • Sambridge, M. 1999a. Geophysical inversion with a neighbourhood algorithm - I. Searching a parameter space. Geophyical Journal International, 138, 479-494.
    • (1999) Geophyical Journal International , vol.138 , pp. 479-494
    • Sambridge, M.1
  • 275
    • 0032695503 scopus 로고    scopus 로고
    • Geophysical inversion with a neighborhood algorithm - II. Appraising the ensemble
    • Sambridge, M. 1999b. Geophysical inversion with a neighborhood algorithm - II. Appraising the ensemble. Geophyical Journal International, 138, 727-746.
    • (1999) Geophyical Journal International , vol.138 , pp. 727-746
    • Sambridge, M.1
  • 277
    • 46149110946 scopus 로고    scopus 로고
    • Kernel principal component analysis for efficient, differentiable parameterization of multipoint geostatistics
    • Sarma, P., Durlofsky, L. J. & Aziz, K. 2008. Kernel principal component analysis for efficient, differentiable parameterization of multipoint geostatistics. Mathematical Geosciences, 40, 3-32.
    • (2008) Mathematical Geosciences , vol.40 , pp. 3-32
    • Sarma, P.1    Durlofsky, L.J.2    Aziz, K.3
  • 280
    • 43049111440 scopus 로고    scopus 로고
    • A distance-based prior model parameterization for constraining solutions of spatial inverse problems
    • Suzuki, S. & Caers, J. 2008. A distance-based prior model parameterization for constraining solutions of spatial inverse problems. Mathematical Geosciences, 40, 445-469.
    • (2008) Mathematical Geosciences , vol.40 , pp. 445-469
    • Suzuki, S.1    Caers, J.2
  • 281
    • 39649103429 scopus 로고    scopus 로고
    • Dynamic data integration for structural modeling: Model screening approach using a distance-based model parameterization
    • Suzuki, S., Caumon, G. & Caers, J. 2008. Dynamic data integration for structural modeling: Model screening approach using a distance-based model parameterization. Computational Geosciences, 12, 105-119.
    • (2008) Computational Geosciences , vol.12 , pp. 105-119
    • Suzuki, S.1    Caumon, G.2    Caers, J.3
  • 284
    • 70350286491 scopus 로고
    • Inverse problems = quest for information
    • Tarantola, A. & Valette, B. 1982. Inverse problems = quest for information. J. Geophysics, 50, 150-170.
    • (1982) J. Geophysics , vol.50 , pp. 150-170
    • Tarantola, A.1    Valette, B.2
  • 287
    • 79957911930 scopus 로고    scopus 로고
    • An approach to handling non-Gaussianity of parameters and state variables in ensemble Kalman filtering
    • Zhou, H., Gómez-Hernández, J. J., Hendricks Franssen, H. J. & Li, L. 2011. An approach to handling non-Gaussianity of parameters and state variables in ensemble Kalman filtering. Advances in Water Resources, 34, 844-864.
    • (2011) Advances in Water Resources , vol.34 , pp. 844-864
    • Zhou, H.1    Gómez-Hernández, J.J.2    Hendricks Franssen, H.J.3    Li, L.4
  • 288
    • 85060036181 scopus 로고
    • Validity of the single processor approach to achieving large-scale computing capabilities
    • AFIPS Conference Proceedings, Thompson Books, Washington, DC
    • Amdahl, G. Validity of the single processor approach to achieving large-scale computing capabilities. AFIPS Conference Proceedings, Thompson Books, Washington, DC, 1967, 483-485.
    • (1967) , pp. 483-485
    • Amdahl, G.1
  • 289
    • 5144235519 scopus 로고    scopus 로고
    • Generalized sequential Gaussian simulation on group size and screen-effect approximations for large field simulations
    • Dimitrakopoulos, R. & Luo, X. 2004. Generalized sequential Gaussian simulation on group size and screen-effect approximations for large field simulations. Mathematical Geology, 36, 567-591.
    • (2004) Mathematical Geology , vol.36 , pp. 567-591
    • Dimitrakopoulos, R.1    Luo, X.2
  • 290
    • 0027868458 scopus 로고
    • Multivariate geostatistics: Beyond bivariate moments
    • In: Soares, A. (ed.), Kluwer Academic, Dordrecht
    • Guardiano, F. & Srivastava, M. 1993. Multivariate geostatistics: Beyond bivariate moments. In: Soares, A. (ed.) Geostatistics-Troia. Kluwer Academic, Dordrecht.
    • (1993) Geostatistics-Troia
    • Guardiano, F.1    Srivastava, M.2
  • 291
    • 84877069852 scopus 로고    scopus 로고
    • GPU-accelerated direct sampling method for multiple-point statistical simulation
    • Huang, T., Li, X., Zhang, T. & Lu, D. T. 2013a. GPU-accelerated direct sampling method for multiple-point statistical simulation. Computers and Geosciences, 57, 13-23.
    • (2013) Computers and Geosciences , vol.57 , pp. 13-23
    • Huang, T.1    Li, X.2    Zhang, T.3    Lu, D.T.4
  • 292
    • 84874703808 scopus 로고    scopus 로고
    • GPU-based SNESIM implementation for multiplepoint statistical simulation
    • Huang, T., Lu, D. T., Li, X. &Wang, L. 2013b. GPU-based SNESIM implementation for multiplepoint statistical simulation. Computers and Geosciences, 54, 75-87.
    • (2013) Computers and Geosciences , vol.54 , pp. 75-87
    • Huang, T.1    Lu, D.T.2    Li, X.3    Wang, L.4
  • 293
    • 77952888128 scopus 로고    scopus 로고
    • A general parallelization strategy for random path based geostatistical simulation methods
    • Mariethoz, G. 2010. A general parallelization strategy for random path based geostatistical simulation methods. Computers and Geosciences, 36, 953-958.
    • (2010) Computers and Geosciences , vol.36 , pp. 953-958
    • Mariethoz, G.1
  • 294
    • 79960895702 scopus 로고    scopus 로고
    • Parallel implementation of simulated annealing to reproduce multiple-point statistics
    • Peredo, O. & Ortiz, J. M. 2011. Parallel implementation of simulated annealing to reproduce multiple-point statistics. Computers and Geosciences, 37, 1110-1121.
    • (2011) Computers and Geosciences , vol.37 , pp. 1110-1121
    • Peredo, O.1    Ortiz, J.M.2
  • 296
    • 84863449993 scopus 로고    scopus 로고
    • Accelerating geostatistical simulations using graphics processing units (GPU)
    • Tahmasebi, P., Sahimi, M., Mariethoz, G. & Hezarkhani, A. 2012. Accelerating geostatistical simulations using graphics processing units (GPU). Computers and Geosciences, 46, 51-59.
    • (2012) Computers and Geosciences , vol.46 , pp. 51-59
    • Tahmasebi, P.1    Sahimi, M.2    Mariethoz, G.3    Hezarkhani, A.4
  • 297
    • 69949107948 scopus 로고    scopus 로고
    • A new parallelization approach for sequential simulation
    • In: Soares, A., Pereira, M. & Dimitrakopoulos, R. (eds.), Springer, Dordrecht
    • Vargas, H., Caetano, H. & Mata-Lima, H. 2008. A new parallelization approach for sequential simulation. In: Soares, A., Pereira, M. & Dimitrakopoulos, R. (eds.) geoENV VI - Geostatistics for Environmental Applications. Springer, Dordrecht.
    • (2008) geoENV VI - Geostatistics for Environmental Applications.
    • Vargas, H.1    Caetano, H.2    Mata-Lima, H.3
  • 298
  • 299
    • 0005357169 scopus 로고    scopus 로고
    • An overview of different techniques to quantify uncertainties on global statistics for geostatistical modeling
    • In: Baafi, E. Y. & Schofield, N. A. (eds.), Kluwer, Wollongong, Australia
    • Biver, P., Mostad, P. F. & Guillou, A. 1996. An overview of different techniques to quantify uncertainties on global statistics for geostatistical modeling. In: Baafi, E. Y. & Schofield, N. A. (eds.) Geostatistics Wollongong '96. Kluwer, Wollongong, Australia.
    • (1996) Geostatistics Wollongong '96
    • Biver, P.1    Mostad, P.F.2    Guillou, A.3
  • 300
    • 33751007399 scopus 로고    scopus 로고
    • Society of Petroleum Engineers, Richardson, TX
    • Caers, J. 2005. Petroleum Geostatistics, Society of Petroleum Engineers, Richardson, TX.
    • (2005) Petroleum Geostatistics
    • Caers, J.1
  • 303
    • 0030434565 scopus 로고    scopus 로고
    • Hierarchical object-based stochastic modeling of fluvial reservoirs
    • Deutsch, C. &Wang, L. 1996. Hierarchical object-based stochastic modeling of fluvial reservoirs. Mathematical Geology, 28, 857-880.
    • (1996) Mathematical Geology , vol.28 , pp. 857-880
    • Deutsch, C.1    Wang, L.2
  • 305
    • 84900298274 scopus 로고    scopus 로고
    • Quantifying asymmetric parameter interaction in sensitivity analysis: application to reservoir modeling
    • Fenwick, D., Scheidt, C. & Caers, J. 2014. Quantifying asymmetric parameter interaction in sensitivity analysis: application to reservoir modeling. Mathematical Geosciences, 46, 493-511.
    • (2014) Mathematical Geosciences , vol.46 , pp. 493-511
    • Fenwick, D.1    Scheidt, C.2    Caers, J.3
  • 306
    • 6444229720 scopus 로고    scopus 로고
    • Uncertainties in facies proportion estimation, I-theoretical framework
    • Haas, A. & Formery, P. 2002. Uncertainties in facies proportion estimation, I-theoretical framework. Mathematical Geosciences, 34, 679-702.
    • (2002) Mathematical Geosciences , vol.34 , pp. 679-702
    • Haas, A.1    Formery, P.2
  • 308
    • 0031763568 scopus 로고    scopus 로고
    • Modeling of fluvial reservoirs with object models
    • Holden, L. 1998. Modeling of fluvial reservoirs with object models. Mathematical Geology, 30, 473-496.
    • (1998) Mathematical Geology , vol.30 , pp. 473-496
    • Holden, L.1
  • 312
    • 78649514282 scopus 로고    scopus 로고
    • Combining geologic-process models and geostatistics for conditional simulation of 3-D subsurface heterogeneity
    • Michael, H., Boucher, A., Sun, T., Caers, J. & Gorelick, S. 2010. Combining geologic-process models and geostatistics for conditional simulation of 3-D subsurface heterogeneity. Water Resources Research, 46.
    • (2010) Water Resources Research , pp. 46
    • Michael, H.1    Boucher, A.2    Sun, T.3    Caers, J.4    Gorelick, S.5
  • 313
    • 0031428842 scopus 로고    scopus 로고
    • Scales of reservoir heterogeneities and impact of seismic resolution on geostatistical integration
    • Mukerji, T., Mavko, G. & Rio, P. 1997. Scales of reservoir heterogeneities and impact of seismic resolution on geostatistical integration. Mathematical Geology, 29, 933-950.
    • (1997) Mathematical Geology , vol.29 , pp. 933-950
    • Mukerji, T.1    Mavko, G.2    Rio, P.3
  • 314
    • 84880076387 scopus 로고    scopus 로고
    • History matching and uncertainty quantification of facies models with multiple geological interpretations
    • Park, H., Scheidt, C., Fenwick, D., Boucher, A. & Caers, J. 2013. History matching and uncertainty quantification of facies models with multiple geological interpretations. Computational Geosciences, 17, 609-621.
    • (2013) Computational Geosciences , vol.17 , pp. 609-621
    • Park, H.1    Scheidt, C.2    Fenwick, D.3    Boucher, A.4    Caers, J.5
  • 315
    • 13844317451 scopus 로고    scopus 로고
    • Stochastic surface-based modeling of turbidite lobes
    • Pyrcz, M. J., Catuneanu, O. & Deutsch, C. V. 2005. Stochastic surface-based modeling of turbidite lobes. AAPG Bulletin, 89, 177-191.
    • (2005) AAPG Bulletin , vol.89 , pp. 177-191
    • Pyrcz, M.J.1    Catuneanu, O.2    Deutsch, C.V.3
  • 317
    • 0032847690 scopus 로고    scopus 로고
    • Well conditioning in a fluvial reservoir model
    • Skorstad, A., Hauge, R. & Holden, L. 1999. Well conditioning in a fluvial reservoir model. Mathematical Geology, 31, 857-872.
    • (1999) Mathematical Geology , vol.31 , pp. 857-872
    • Skorstad, A.1    Hauge, R.2    Holden, L.3
  • 318
    • 0034918595 scopus 로고    scopus 로고
    • A computer model for meandering rivers with multiple bed load sediment sizes 2. Computer simulations
    • Sun, T., Meakin, P. & Jøssang, T. 2001. A computer model for meandering rivers with multiple bed load sediment sizes 2. Computer simulations. Water Resources Research, 37, 2243-2258.
    • (2001) Water Resources Research , vol.37 , pp. 2243-2258
    • Sun, T.1    Meakin, P.2    Jøssang, T.3
  • 320
    • 67651097936 scopus 로고    scopus 로고
    • Stochastic surface modeling of deepwater depositional systems for improved reservoir models
    • Zhang, X., Pyrcz, M. J. & Deutsch, C. V. 2009. Stochastic surface modeling of deepwater depositional systems for improved reservoir models. Journal of Petroleum Science and Engineering, 68, 118-134.
    • (2009) Journal of Petroleum Science and Engineering , vol.68 , pp. 118-134
    • Zhang, X.1    Pyrcz, M.J.2    Deutsch, C.V.3
  • 321
    • 64249086793 scopus 로고    scopus 로고
    • Considering complex training images with search tree partitioning
    • Boucher, A. 2009. Considering complex training images with search tree partitioning. Computers and Geosciences, 35, 1151-1158.
    • (2009) Computers and Geosciences , vol.35 , pp. 1151-1158
    • Boucher, A.1
  • 322
    • 84903898286 scopus 로고    scopus 로고
    • Simulation of geological contacts from interpreted geological models using multiple-point geostatistics
    • Boucher, A., Costa, J. F., Rasera, L. J. & Motta, E. 2014. Simulation of geological contacts from interpreted geological models using multiple-point geostatistics. Mathematical Geosciences, doi: 10.1007/s11004-013-9510-1.
    • (2014) Mathematical Geosciences
    • Boucher, A.1    Costa, J.F.2    Rasera, L.J.3    Motta, E.4
  • 323
    • 0032124703 scopus 로고    scopus 로고
    • Cleaning categorical variable (lithofacies) realizations with maximum a-posteriori selection
    • Deutsch, C. V. 1998. Cleaning categorical variable (lithofacies) realizations with maximum a-posteriori selection. Computers and Geosciences, 24, 551-562.
    • (1998) Computers and Geosciences , vol.24 , pp. 551-562
    • Deutsch, C.V.1
  • 324
    • 84864281143 scopus 로고    scopus 로고
    • Direct pattern-based simulation of non-stationary geostatistical models
    • Honarkhah, M. & Caers, J. 2012. Direct pattern-based simulation of non-stationary geostatistical models. Mathematical Geosciences, 44, 651-672.
    • (2012) Mathematical Geosciences , vol.44 , pp. 651-672
    • Honarkhah, M.1    Caers, J.2
  • 325
    • 84908170899 scopus 로고    scopus 로고
    • Multiple-point simulation with an existing reservoir model as training image
    • Hu, L. Y., Liu, Y., Scheepens, C., Shultz, A. W. & Thompson, R. D. 2014. Multiple-point simulation with an existing reservoir model as training image. Mathematical Geosciences, 46, 227-240.
    • (2014) Mathematical Geosciences , vol.46 , pp. 227-240
    • Hu, L.Y.1    Liu, Y.2    Scheepens, C.3    Shultz, A.W.4    Thompson, R.D.5
  • 326
    • 77952884014 scopus 로고    scopus 로고
    • Reconstruction of incomplete data sets or images using direct sampling
    • Mariethoz, G. & Renard, P. 2010. Reconstruction of incomplete data sets or images using direct sampling. Mathematical Geosciences, 42, 245-268.
    • (2010) Mathematical Geosciences , vol.42 , pp. 245-268
    • Mariethoz, G.1    Renard, P.2
  • 327
    • 33845579813 scopus 로고    scopus 로고
    • Scaling multiple-point statistics to different univariate proportions
    • Ortiz, J. M., Lyster, S. & Deutsch, C. V. 2007. Scaling multiple-point statistics to different univariate proportions. Computers and Geosciences, 33, 191-201.
    • (2007) Computers and Geosciences , vol.33 , pp. 191-201
    • Ortiz, J.M.1    Lyster, S.2    Deutsch, C.V.3
  • 328
    • 70849085832 scopus 로고    scopus 로고
    • Statistical downscaling of daily mean temperature, pan evaporation and precipitation for climate change scenarios in Haihe River, China
    • Chu, J., Xia, J., Xu, C. Y. & Singh, V. 2010. Statistical downscaling of daily mean temperature, pan evaporation and precipitation for climate change scenarios in Haihe River, China. Theoretical Applied Climatology, 99, 149-161.
    • (2010) Theoretical Applied Climatology , vol.99 , pp. 149-161
    • Chu, J.1    Xia, J.2    Xu, C.Y.3    Singh, V.4
  • 329
    • 77955380260 scopus 로고    scopus 로고
    • Regional climate simulation over Australia's Murray-Darling basin: A multitemporal assessment
    • Evans, J. P. & McCabe, M. F. 2010. Regional climate simulation over Australia's Murray-Darling basin: A multitemporal assessment. Journal of Geophysical Research D: Atmospheres, 115.
    • (2010) Journal of Geophysical Research D: Atmospheres , pp. 115
    • Evans, J.P.1    McCabe, M.F.2
  • 331
    • 0030417301 scopus 로고    scopus 로고
    • Climate downscaling: Techniques and application
    • Hewitson, B. C. & Crane, R. 1996. Climate downscaling: Techniques and application. Climate Research, 7, 85-95.
    • (1996) Climate Research , vol.7 , pp. 85-95
    • Hewitson, B.C.1    Crane, R.2
  • 332
    • 84876560975 scopus 로고    scopus 로고
    • Demonstration of a geostatistical approach to physically consistent downscaling of climate modeling simulations
    • Jha, S. K., Mariethoz, G., Evans, J. P. & McCabe, M. F. 2013. Demonstration of a geostatistical approach to physically consistent downscaling of climate modeling simulations. Water Resources Research, 49, 245-259.
    • (2013) Water Resources Research , vol.49 , pp. 245-259
    • Jha, S.K.1    Mariethoz, G.2    Evans, J.P.3    McCabe, M.F.4
  • 333
    • 59749088975 scopus 로고    scopus 로고
    • Estimating land surface evaporation: A review of methods using remotely sensed surface temperature data
    • Kalma, J. D., McVicar, T. R. & McCabe, M. F. 2008. Estimating land surface evaporation: A review of methods using remotely sensed surface temperature data. Surveys in Geophysics, 29, 421-469.
    • (2008) Surveys in Geophysics , vol.29 , pp. 421-469
    • Kalma, J.D.1    McVicar, T.R.2    McCabe, M.F.3
  • 335
    • 80054870839 scopus 로고    scopus 로고
    • A comparison of three methods for downscaling daily precipitation in the Punjab region
    • Raje, D. & Mujumdar, P. P. 2011. A comparison of three methods for downscaling daily precipitation in the Punjab region. Hydrological Processes, 25, 3575-3589.
    • (2011) Hydrological Processes , vol.25 , pp. 3575-3589
    • Raje, D.1    Mujumdar, P.P.2
  • 336
    • 0031412203 scopus 로고    scopus 로고
    • Downscaling general circulation model output: A review
    • Wilby, R. & Wigley, T. 1997. Downscaling general circulation model output: A review. Progresses in Physical Geography, 21, 530-548.
    • (1997) Progresses in Physical Geography , vol.21 , pp. 530-548
    • Wilby, R.1    Wigley, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.