메뉴 건너뛰기




Volumn 43, Issue 2, 2011, Pages 133-164

A Probability Conditioning Method (PCM) for Nonlinear Flow Data Integration into Multipoint Statistical Facies Simulation

Author keywords

Ensemble Kalman filter; Facies characterization; Flow data integration; Multipoint geostatistics; Probability map

Indexed keywords

DATA INTEGRATION; FLOW MEASUREMENT; GEOLOGIC MODELS; HIGHER ORDER STATISTICS; KALMAN FILTERS; STATISTICS;

EID: 78751645996     PISSN: 18748961     EISSN: 18748953     Source Type: Journal    
DOI: 10.1007/s11004-011-9316-y     Document Type: Article
Times cited : (120)

References (54)
  • 1
    • 70350168210 scopus 로고    scopus 로고
    • The ensemble Kalman filter in reservoir engineering-a review, paper spe-117274-pa
    • Aanonsen SI, Naevdal G, Oliver D, Reynolds AC (2009) The ensemble Kalman filter in reservoir engineering-a review, paper spe-117274-pa. Soc Pet Eng J 14(4): 393-412.
    • (2009) Soc Pet Eng J , vol.14 , Issue.4 , pp. 393-412
    • Aanonsen, S.I.1    Naevdal, G.2    Oliver, D.3    Reynolds, A.C.4
  • 2
    • 43049139562 scopus 로고    scopus 로고
    • Application of the EnKF and localization to automatic history matching of facies distribution and production data
    • Agbalaka C, Oliver D (2008) Application of the EnKF and localization to automatic history matching of facies distribution and production data. Math Geosci 40(4): 353-374.
    • (2008) Math Geosci , vol.40 , Issue.4 , pp. 353-374
    • Agbalaka, C.1    Oliver, D.2
  • 3
    • 34248592410 scopus 로고    scopus 로고
    • Conditional simulation with patterns
    • Arpat G, Caers J (2007) Conditional simulation with patterns. Math Geol 39(2): 177-203.
    • (2007) Math Geol , vol.39 , Issue.2 , pp. 177-203
    • Arpat, G.1    Caers, J.2
  • 4
    • 13244283096 scopus 로고    scopus 로고
    • Dynamic optimization of waterflooding with smart wells using optimal control theory
    • Brouwer R, Jansen J (2004) Dynamic optimization of waterflooding with smart wells using optimal control theory. Soc Pet Eng J 9(4): 391-402.
    • (2004) Soc Pet Eng J , vol.9 , Issue.4 , pp. 391-402
    • Brouwer, R.1    Jansen, J.2
  • 5
    • 70349415093 scopus 로고    scopus 로고
    • Petroleum geostatistics
    • Caers J (2005) Petroleum geostatistics. Soc Pet Eng.
    • (2005) Soc Pet Eng
    • Caers, J.1
  • 6
    • 33745177370 scopus 로고    scopus 로고
    • The probability perturbation method: A new look at Bayesian inverse modeling
    • Caers J, Hoffman T (2006) The probability perturbation method: a new look at Bayesian inverse modeling. Math Geol 38: 81-100.
    • (2006) Math Geol , vol.38 , pp. 81-100
    • Caers, J.1    Hoffman, T.2
  • 7
    • 33645291279 scopus 로고    scopus 로고
    • Multiple-point geostatistics: a quantitative vehicle for integrating geologic analogs into multiple reservoir models
    • G. M. Grammer (Ed.)
    • Caers J, Zhang T (2004) Multiple-point geostatistics: a quantitative vehicle for integrating geologic analogs into multiple reservoir models. In: Grammer GM (ed) AAPG memoir, integration of outcrop and modern analogs in reservoir modeling, vol 80, pp 383-394.
    • (2004) AAPG Memoir, Integration of Outcrop and Modern Analogs in Reservoir Modeling , vol.80 , pp. 383-394
    • Caers, J.1    Zhang, T.2
  • 10
    • 0030434565 scopus 로고    scopus 로고
    • Hierarchical object-based stochastic modeling of fluvial reservoirs
    • Deutsch C, Wang L (1996) Hierarchical object-based stochastic modeling of fluvial reservoirs. Math Geol 28(7): 857-880.
    • (1996) Math Geol , vol.28 , Issue.7 , pp. 857-880
    • Deutsch, C.1    Wang, L.2
  • 11
    • 77952884234 scopus 로고    scopus 로고
    • High-order statistics of spatial random fields: Exploring spatial cumulants for modelling complex, non-Gaussian and non-linear phenomena
    • Dimitrakopoulos R, Mustapha H, Gloaguen E (2010) High-order statistics of spatial random fields: exploring spatial cumulants for modelling complex, non-Gaussian and non-linear phenomena. Math Geosci 42(1): 65-97.
    • (2010) Math Geosci , vol.42 , Issue.1 , pp. 65-97
    • Dimitrakopoulos, R.1    Mustapha, H.2    Gloaguen, E.3
  • 12
    • 44449156252 scopus 로고    scopus 로고
    • History matching of petroleum reservoirs using a level set technique
    • 035015(29 pp)
    • Dorn O, Villegas R (2008) History matching of petroleum reservoirs using a level set technique. Inverse Problems 24: 035015 (29 pp).
    • (2008) Inverse Problems , vol.24
    • Dorn, O.1    Villegas, R.2
  • 13
    • 84900217574 scopus 로고    scopus 로고
    • Ensemble Kalman filter for Gaussian mixture models
    • Cascais, Portugal10-14 SeptemberA16
    • Dovera L, Rossa ED (2007) Ensemble Kalman filter for Gaussian mixture models. In: Petroleum geostatistics 2007, 10-14 September, Cascais, Portugal, A16.
    • (2007) Petroleum Geostatistics 2007
    • Dovera, L.1    Rossa, E.D.2
  • 14
    • 0028193070 scopus 로고
    • Sequential data assimilation with a non-linear quasi-geostrophic model using Monte Carlo methods to forecast error statistics
    • Evensen G (1994) Sequential data assimilation with a non-linear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J Geophys Res 99: 143-162.
    • (1994) J Geophys Res , vol.99 , pp. 143-162
    • Evensen, G.1
  • 15
    • 84884550570 scopus 로고    scopus 로고
    • The ensemble Kalman filter: theoretical formulation and practical implementation
    • Evensen G (2003) The ensemble Kalman filter: theoretical formulation and practical implementation. Ocean Dyn 53: 343-367.
    • (2003) Ocean Dyn , vol.53 , pp. 343-367
    • Evensen, G.1
  • 16
    • 10844229034 scopus 로고    scopus 로고
    • Sampling strategies and square root analysis schemes for the EnKF
    • Evensen G (2004) Sampling strategies and square root analysis schemes for the EnKF. Ocean Dyn 54: 539-560.
    • (2004) Ocean Dyn , vol.54 , pp. 539-560
    • Evensen, G.1
  • 17
    • 0017269896 scopus 로고
    • Reservoir history matching by Bayesian estimation
    • Gavalas G, Shah P, Seinfeld J (1976) Reservoir history matching by Bayesian estimation. Soc Pet Eng J 16(6): 337-350.
    • (1976) Soc Pet Eng J , vol.16 , Issue.6 , pp. 337-350
    • Gavalas, G.1    Shah, P.2    Seinfeld, J.3
  • 19
    • 38349192524 scopus 로고    scopus 로고
    • An iterative ensemble Kalman filter for multiphase fluid flow data integration, paper spe-108438-pa
    • Gu Y, Oliver D (2007) An iterative ensemble Kalman filter for multiphase fluid flow data integration, paper spe-108438-pa. Soc Pet Eng J 12(4): 438-446.
    • (2007) Soc Pet Eng J , vol.12 , Issue.4 , pp. 438-446
    • Gu, Y.1    Oliver, D.2
  • 20
    • 0027868458 scopus 로고
    • Multivariate geostatistics: beyond bivariate moments
    • Dordrecht: Kluwer Academic
    • Guardiano F, Srivastava R (1993) Multivariate geostatistics: beyond bivariate moments In: Geostatistics-Troia, vol 1, pp 133-144. Kluwer Academic, Dordrecht.
    • (1993) Geostatistics-Troia , vol.1 , pp. 133-144
    • Guardiano, F.1    Srivastava, R.2
  • 21
    • 0032024819 scopus 로고    scopus 로고
    • Data assimilation using an ensemble Kalman filter technique
    • Houtekamer PL, Mitchell HL (1998) Data assimilation using an ensemble Kalman filter technique. Mon Weather Rev 126: 796-811.
    • (1998) Mon Weather Rev , vol.126 , pp. 796-811
    • Houtekamer, P.L.1    Mitchell, H.L.2
  • 22
    • 0000602632 scopus 로고
    • Permeability distribution from field pressure data
    • Jacquard P, Jain C (1965) Permeability distribution from field pressure data. Soc Pet Eng J 5(4): 281-294.
    • (1965) Soc Pet Eng J , vol.5 , Issue.4 , pp. 281-294
    • Jacquard, P.1    Jain, C.2
  • 23
    • 79955595057 scopus 로고    scopus 로고
    • Wavelet reconstruction of geologic facies from nonlinear dynamic flow measurements
    • doi:10.1109/TGRS.2010.2089464
    • Jafarpour B (2010) Wavelet reconstruction of geologic facies from nonlinear dynamic flow measurements. IEEE Trans Geosci Remote Sens. doi: 10. 1109/TGRS. 2010. 2089464.
    • (2010) IEEE Trans Geosci Remote Sens
    • Jafarpour, B.1
  • 24
    • 67650494026 scopus 로고    scopus 로고
    • Estimating channelized reservoir permeabilities with the ensemble Kalman filter: the importance of the ensemble design
    • Jafarpour B, McLaughlin D (2009a) Estimating channelized reservoir permeabilities with the ensemble Kalman filter: the importance of the ensemble design. Soc Pet Eng J 14(2): 374-388.
    • (2009) Soc Pet Eng J , vol.14 , Issue.2 , pp. 374-388
    • Jafarpour, B.1    McLaughlin, D.2
  • 25
    • 78751645613 scopus 로고    scopus 로고
    • Reservoir characterization with discrete cosine transform. Part-1: Parameterization; Part-2: History matching
    • Jafarpour B, McLaughlin D (2009b) Reservoir characterization with discrete cosine transform. Part-1: Parameterization; Part-2: History matching. Soc Pet Eng J 14(1): 181-202.
    • (2009) Soc Pet Eng J , vol.14 , Issue.1 , pp. 181-202
    • Jafarpour, B.1    McLaughlin, D.2
  • 26
    • 78751645035 scopus 로고    scopus 로고
    • Assessing the performance of the ensemble Kalman filter for subsurface flow data integration under variogram uncertainty
    • doi:10.1029/2010WR009090
    • Jafarpour B, Tarrahi M (2010) Assessing the performance of the ensemble Kalman filter for subsurface flow data integration under variogram uncertainty. Water Res Res. doi: 10. 1029/2010WR009090.
    • (2010) Water Res Res
    • Jafarpour, B.1    Tarrahi, M.2
  • 27
    • 0001196728 scopus 로고
    • A rapid method for obtaining a two-dimensional reservoir description from well pressure response data
    • Jahns O (1966) A rapid method for obtaining a two-dimensional reservoir description from well pressure response data. Soc Pet Eng J 6(12): 315-327.
    • (1966) Soc Pet Eng J , vol.6 , Issue.12 , pp. 315-327
    • Jahns, O.1
  • 29
    • 1142282028 scopus 로고    scopus 로고
    • Combining knowledge from diverse sources: an alternative to traditional data independence hypotheses
    • Journel A (2002) Combining knowledge from diverse sources: an alternative to traditional data independence hypotheses. Math Geol 34(5): 573-596.
    • (2002) Math Geol , vol.34 , Issue.5 , pp. 573-596
    • Journel, A.1
  • 31
    • 85024429815 scopus 로고
    • A new approach to linear filtering and prediction problems
    • Kalman R (1960) A new approach to linear filtering and prediction problems. Trans ASME J Basic Eng 82: 35-45.
    • (1960) Trans ASME J Basic Eng , vol.82 , pp. 35-45
    • Kalman, R.1
  • 32
    • 20444479133 scopus 로고    scopus 로고
    • Ensemble Kalman filter for automatic history matching of geologic facies
    • Liu N, Oliver D (2005) Ensemble Kalman filter for automatic history matching of geologic facies. J Pet Sci Eng 47(3-4): 147-161.
    • (2005) J Pet Sci Eng , vol.47 , Issue.3-4 , pp. 147-161
    • Liu, N.1    Oliver, D.2
  • 34
    • 0042064930 scopus 로고    scopus 로고
    • Tuning of parameters in a two-phase flow model using an ensemble Kalman filter
    • Lorentzen R, Nævdal G, Lage A (2003) Tuning of parameters in a two-phase flow model using an ensemble Kalman filter. Int J Multiph Flow 29: 1283-1309.
    • (2003) Int J Multiph Flow , vol.29 , pp. 1283-1309
    • Lorentzen, R.1    Nævdal, G.2    Lage, A.3
  • 36
    • 0036853557 scopus 로고    scopus 로고
    • Ensemble size, and model-error representation in an ensemble Kalman filter
    • Mitchell H, Houtekamer P, Pellerin G (2002) Ensemble size, and model-error representation in an ensemble Kalman filter. Mon Weather Rev 130: 2791-2808.
    • (2002) Mon Weather Rev , vol.130 , pp. 2791-2808
    • Mitchell, H.1    Houtekamer, P.2    Pellerin, G.3
  • 37
    • 84900218921 scopus 로고    scopus 로고
    • Stochastic facies modeling using the level set method
    • Cascais, Portugal10-14 September 2007A18
    • Moreno D, Aanonsen S (2007) Stochastic facies modeling using the level set method. In: In petroleum geostatistics, 10-14 September 2007, Cascais, Portugal, A18.
    • (2007) In Petroleum Geostatistics
    • Moreno, D.1    Aanonsen, S.2
  • 38
    • 77952886476 scopus 로고    scopus 로고
    • High-order stochastic simulations for complex non-Gaussian and non-linear geological patterns
    • Mustapha H, Dimitrakopoulos R (2010) High-order stochastic simulations for complex non-Gaussian and non-linear geological patterns. Math Geosci 42(5): 455-473.
    • (2010) Math Geosci , vol.42 , Issue.5 , pp. 455-473
    • Mustapha, H.1    Dimitrakopoulos, R.2
  • 39
    • 17744366835 scopus 로고    scopus 로고
    • Reservoir monitoring and continuous model updating using ensemble Kalman filter
    • Nævdal G, Johnsen L, Aanonsen S, Vefring EH (2005) Reservoir monitoring and continuous model updating using ensemble Kalman filter. Soc Pet Eng J 10(1): 66-74.
    • (2005) Soc Pet Eng J , vol.10 , Issue.1 , pp. 66-74
    • Nævdal, G.1    Johnsen, L.2    Aanonsen, S.3    Vefring, E.H.4
  • 41
    • 0036322061 scopus 로고    scopus 로고
    • Hydrologic data assimilation with the ensemble Kalman filter
    • Reichle R, McLaughlin D, Entekhabi D (2002) Hydrologic data assimilation with the ensemble Kalman filter. Mon Weather Rev 130: 103-114.
    • (2002) Mon Weather Rev , vol.130 , pp. 103-114
    • Reichle, R.1    McLaughlin, D.2    Entekhabi, D.3
  • 43
    • 0030349281 scopus 로고    scopus 로고
    • Reparameterization techniques for generating reservoir descriptions conditioned to variograms and well-test pressure data
    • Reynolds A, He N, Chu L, Oliver DS (1996) Reparameterization techniques for generating reservoir descriptions conditioned to variograms and well-test pressure data. Soc Pet Eng J 1(4): 413-426.
    • (1996) Soc Pet Eng J , vol.1 , Issue.4 , pp. 413-426
    • Reynolds, A.1    He, N.2    Chu, L.3    Oliver, D.S.4
  • 47
    • 46149110946 scopus 로고    scopus 로고
    • Kernel principal component analysis for efficient, differentiable parameterization of multipoint geostatistics
    • Sarma P, Durlofsky L, Aziz K (2008) Kernel principal component analysis for efficient, differentiable parameterization of multipoint geostatistics. Math Geosci 40(1): 3-32.
    • (2008) Math Geosci , vol.40 , Issue.1 , pp. 3-32
    • Sarma, P.1    Durlofsky, L.2    Aziz, K.3
  • 48
    • 35448930680 scopus 로고    scopus 로고
    • Incorporating 4d seismic data in reservoir simulation model using ensemble Kalman filter
    • Skjervheim J, Evensen G, Aanonsen S, Johansen T (2007) Incorporating 4d seismic data in reservoir simulation model using ensemble Kalman filter. Soc Pet Eng J 12(3): 282-292.
    • (2007) Soc Pet Eng J , vol.12 , Issue.3 , pp. 282-292
    • Skjervheim, J.1    Evensen, G.2    Aanonsen, S.3    Johansen, T.4
  • 49
    • 0042054426 scopus 로고    scopus 로고
    • Conditional simulation of complex geological structures using multiple-point statistics
    • Strebelle S (2002) Conditional simulation of complex geological structures using multiple-point statistics. Math Geol 34(1): 1-22.
    • (2002) Math Geol , vol.34 , Issue.1 , pp. 1-22
    • Strebelle, S.1
  • 51
    • 33846187189 scopus 로고    scopus 로고
    • Real-time reservoir model updating using ensemble Kalman filter with confirming option
    • Wen X, Chen W (2006) Real-time reservoir model updating using ensemble Kalman filter with confirming option. Soc Pet Eng J 11(4): 431-442.
    • (2006) Soc Pet Eng J , vol.11 , Issue.4 , pp. 431-442
    • Wen, X.1    Chen, W.2
  • 52
    • 34447293103 scopus 로고    scopus 로고
    • Some practical issues on real-time reservoir model updating using ensemble Kalman filter
    • Wen X, Chen W (2007) Some practical issues on real-time reservoir model updating using ensemble Kalman filter. Soc Pet Eng J 12(2): 156-166.
    • (2007) Soc Pet Eng J , vol.12 , Issue.2 , pp. 156-166
    • Wen, X.1    Chen, W.2
  • 53
    • 33745170745 scopus 로고    scopus 로고
    • Filter-based classification of training image patterns for spatial simulation
    • Zhang T, Switzer P, Journel A (2006) Filter-based classification of training image patterns for spatial simulation. Math Geol 38(1): 63-80.
    • (2006) Math Geol , vol.38 , Issue.1 , pp. 63-80
    • Zhang, T.1    Switzer, P.2    Journel, A.3
  • 54
    • 55149121652 scopus 로고    scopus 로고
    • Generating facies maps by assimilating production data and seismic data with the ensemble Kalman filter, paper spe113990
    • Tulsa20-23 April
    • Zhao Y, Reynolds A, Li G (2008) Generating facies maps by assimilating production data and seismic data with the ensemble Kalman filter, paper spe113990. In: Proceedings of SPE/DOE symposium on improved oil recovery, Tulsa, 20-23 April.
    • (2008) Proceedings of SPE/DOE Symposium on Improved Oil Recovery
    • Zhao, Y.1    Reynolds, A.2    Li, G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.