메뉴 건너뛰기




Volumn 25, Issue 23, 2011, Pages 3575-3589

A comparison of three methods for downscaling daily precipitation in the Punjab region

Author keywords

Comparison; Downscaling; Monsoon; Precipitation; Punjab

Indexed keywords

ATMOSPHERIC VARIABLES; COMPARISON; CONDITIONAL RANDOM FIELD; DAILY RAINFALL; DAILY RAINFALL AMOUNTS; DOWN-SCALING; DOWNSCALING METHODS; DRY AND WET; GENERAL CIRCULATION MODEL; GIVEN FEATURES; GLOBAL CLIMATE MODEL; HYDROLOGICAL IMPACTS; HYDROLOGICAL VARIABLES; INTERSITE CORRELATION; K NEAREST NEIGHBOURS (K-NN); LENGTH DISTRIBUTIONS; MACHINE-LEARNING; MODEL PERFORMANCE; MONSOON; MONSOON REGIMES; NON-LINEAR RELATIONSHIPS; PROBABILISTIC FRAMEWORK; PUNJAB; RANDOM SAMPLING; SVM MODEL; TRAINING DATA; TRAINING EXAMPLE; WEIGHTED SET; WET AND DRY;

EID: 80054870839     PISSN: 08856087     EISSN: 10991085     Source Type: Journal    
DOI: 10.1002/hyp.8083     Document Type: Article
Times cited : (78)

References (45)
  • 1
    • 40949134707 scopus 로고    scopus 로고
    • Downscaling precipitation to river basin in India for IPCC SRES scenarios using support vector machine
    • Anandhi A, Srinivas VV, Nanjundiah RS, Kumar DN. 2008. Downscaling precipitation to river basin in India for IPCC SRES scenarios using support vector machine. International Journal of Climatology 28: 401-420.
    • (2008) International Journal of Climatology , vol.28 , pp. 401-420
    • Anandhi, A.1    Srinivas, V.V.2    Nanjundiah, R.S.3    Kumar, D.N.4
  • 2
    • 0034777088 scopus 로고    scopus 로고
    • Multisite simulation of daily precipitation and temperature in the Rhine basin by nearest-neighbor resampling
    • Buishand TA, Brandsma T. 2001. Multisite simulation of daily precipitation and temperature in the Rhine basin by nearest-neighbor resampling. Water Resources Research 37(11): 2761-2776.
    • (2001) Water Resources Research , vol.37 , Issue.11 , pp. 2761-2776
    • Buishand, T.A.1    Brandsma, T.2
  • 3
    • 80054847688 scopus 로고    scopus 로고
    • Census of India. National Summary Data Page. Government of India ( Retrieved 24 August 2010).
    • Census of India. 2001. National Summary Data Page. Government of India ( Retrieved 24 August 2010).
    • (2001)
  • 5
    • 15444377037 scopus 로고    scopus 로고
    • Statistical downscaling using K-nearest neighbors
    • DOI: 10.1029/2004WR003444.
    • Gangopadhyay S, Clark M, Rajagopalan B. 2005. Statistical downscaling using K-nearest neighbors. Water Resources Research 41: W02024, DOI: 10.1029/2004WR003444.
    • (2005) Water Resources Research , vol.41
    • Gangopadhyay, S.1    Clark, M.2    Rajagopalan, B.3
  • 8
    • 33746907039 scopus 로고    scopus 로고
    • Downscaling heavy precipitation over the UK: a comparison of dynamical and statistical methods and their future scenarios
    • Haylock MR, Cawley GC, Harpham C, Wilby RL, Goodess CM. 2006. Downscaling heavy precipitation over the UK: a comparison of dynamical and statistical methods and their future scenarios. International Journal of Climatology 26: 1397-1415.
    • (2006) International Journal of Climatology , vol.26 , pp. 1397-1415
    • Haylock, M.R.1    Cawley, G.C.2    Harpham, C.3    Wilby, R.L.4    Goodess, C.M.5
  • 10
    • 0344120654 scopus 로고    scopus 로고
    • Discriminative random fields: A discriminative framework for contextual interaction in classification. In Proceedings of the Ninth IEEE International Conference on Computer Vision (ICCV '03), IEEE Computer Society Press: Washington, DC; 2
    • Kumar S, Hebert M. 2003. Discriminative random fields: A discriminative framework for contextual interaction in classification. In Proceedings of the Ninth IEEE International Conference on Computer Vision (ICCV '03), IEEE Computer Society Press: Washington, DC; 2 1150-1157.
    • (2003) , pp. 1150-1157
    • Kumar, S.1    Hebert, M.2
  • 11
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: probabilistic models for segmenting and labeling sequence data. In Proceedings of the 18th International Conference on Machine Learning. Morgan Kaufmann: San Francisco, CA
    • Lafferty J, McCallum A, Pereira F. 2001. Conditional random fields: probabilistic models for segmenting and labeling sequence data. In Proceedings of the 18th International Conference on Machine Learning. Morgan Kaufmann: San Francisco, CA; 282-289.
    • (2001) , pp. 282-289
    • Lafferty, J.1    McCallum, A.2    Pereira, F.3
  • 12
    • 80054847132 scopus 로고    scopus 로고
    • Punjab: A tale of prosperity and decline. Columbia Water Center (Retrieved 18 August 2010).
    • Lall U. "Punjab: A tale of prosperity and decline." 2009. Columbia Water Center (Retrieved 18 August 2010).
    • (2009)
    • Lall, U.1
  • 13
    • 0029663871 scopus 로고    scopus 로고
    • A nearest neighbor bootstrap for time series resampling
    • Lall U, Sharma A. 1996. A nearest neighbor bootstrap for time series resampling. Water Resources Research 32(3): 679-693.
    • (1996) Water Resources Research , vol.32 , Issue.3 , pp. 679-693
    • Lall, U.1    Sharma, A.2
  • 14
    • 33845734599 scopus 로고    scopus 로고
    • Extracting places and activities from gps traces using hierarchical conditional random fields
    • Liao L, Fox D, Kautz H. 2007. Extracting places and activities from gps traces using hierarchical conditional random fields. International Journal of Robotics Research 26: 119-134.
    • (2007) International Journal of Robotics Research , vol.26 , pp. 119-134
    • Liao, L.1    Fox, D.2    Kautz, H.3
  • 15
    • 77954700859 scopus 로고    scopus 로고
    • Precipitation downscaling under climate change. Recent developments to bridge the gap between dynamical models and the end user
    • DOI: 10.1029/2009RG000314.
    • Maraun D, Wetterhall F, Ireson AM, et al. 2010. Precipitation downscaling under climate change. Recent developments to bridge the gap between dynamical models and the end user. Reviews of Geophysics 48(3): RG3003, DOI: 10.1029/2009RG000314.
    • (2010) Reviews of Geophysics , vol.48 , Issue.3
    • Maraun, D.1    Wetterhall, F.2    Ireson, A.M.3
  • 18
    • 0024190739 scopus 로고
    • Climatic changes in and around the Rajasthan desert during the 20th century
    • Pant GB, Hingane LS. 1988. Climatic changes in and around the Rajasthan desert during the 20th century. Journal of Climatology 8(4): 391-401.
    • (1988) Journal of Climatology , vol.8 , Issue.4 , pp. 391-401
    • Pant, G.B.1    Hingane, L.S.2
  • 19
    • 0024610919 scopus 로고
    • A tutorial on hidden Markov models and selected applications in speech recognition
    • Rabiner L. 1989. A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE 77(2): 257-285.
    • (1989) Proceedings of the IEEE , vol.77 , Issue.2 , pp. 257-285
    • Rabiner, L.1
  • 20
    • 0032170230 scopus 로고    scopus 로고
    • Interannual variability in western US precipitation
    • Rajagopalan B, Lall U. 1998. Interannual variability in western US precipitation. Journal of Hydrology 210: 51-67.
    • (1998) Journal of Hydrology , vol.210 , pp. 51-67
    • Rajagopalan, B.1    Lall, U.2
  • 21
    • 72149097338 scopus 로고    scopus 로고
    • A conditional random field based downscaling method for assessment of climate change impact on multisite daily precipitation in the Mahanadi basin
    • DOI: 10.1029/2008WR007487.
    • Raje D, Mujumdar PP. 2009. A conditional random field based downscaling method for assessment of climate change impact on multisite daily precipitation in the Mahanadi basin. Water Resources Research 45(10): W10404, DOI: 10.1029/2008WR007487.
    • (2009) Water Resources Research , vol.45 , Issue.10
    • Raje, D.1    Mujumdar, P.P.2
  • 22
    • 77955981261 scopus 로고    scopus 로고
    • Reservoir performance under uncertainty in hydrologic impacts of climate change
    • DOI: 10.1016/j.advwatres.2009.12.008.
    • Raje, D, Mujumdar PP. 2010a. Reservoir performance under uncertainty in hydrologic impacts of climate change. Advances in Water Resources 33: 312-326, DOI: 10.1016/j.advwatres.2009.12.008.
    • (2010) Advances in Water Resources , vol.33 , pp. 312-326
    • Raje, D.1    Mujumdar, P.P.2
  • 23
    • 77957018830 scopus 로고    scopus 로고
    • Hydrologic drought prediction under climate change: Uncertainty modeling with Dempster-Shafer and Bayesian approaches
    • DOI: 10.1016/j.advwatres.2010.08.001.
    • Raje D, Mujumdar PP. 2010b. Hydrologic drought prediction under climate change: Uncertainty modeling with Dempster-Shafer and Bayesian approaches. Advances in Water Resources 33: 1176-1186. DOI: 10.1016/j.advwatres.2010.08.001.
    • (2010) Advances in Water Resources , vol.33 , pp. 1176-1186
    • Raje, D.1    Mujumdar, P.P.2
  • 24
    • 80054849434 scopus 로고    scopus 로고
    • Development of a high resolution daily gridded rainfall data set for the Indian region. IMD Meteorological Monograph No. Climatology 22/2005, India Meteorological Department, Pune, India.
    • Rajeevan M, Bhate J, Kale JD, Lal B. 2006a. Development of a high resolution daily gridded rainfall data set for the Indian region. IMD Meteorological Monograph No. Climatology 22/2005, India Meteorological Department, Pune, India.
    • (2006)
    • Rajeevan, M.1    Bhate, J.2    Kale, J.D.3    Lal, B.4
  • 25
    • 33747833684 scopus 로고    scopus 로고
    • High resolution daily gridded rainfall data for the Indian region: Analysis of break and active monsoon spells
    • Rajeevan M, Bhate J, Kale JD, Lal B. 2006b. High resolution daily gridded rainfall data for the Indian region: Analysis of break and active monsoon spells. Current Science 86(3): 296-306.
    • (2006) Current Science , vol.86 , Issue.3 , pp. 296-306
    • Rajeevan, M.1    Bhate, J.2    Kale, J.D.3    Lal, B.4
  • 26
    • 76849103737 scopus 로고    scopus 로고
    • Comparison of three downscaling methods in simulating the impact of climate change on the hydrology of Mediterranean basins
    • DOI: 10.1016/j.jhydrol.2009.09.050.
    • Segui PQ, Ribes A, Martin E, Habets F, Boe J. 2010. Comparison of three downscaling methods in simulating the impact of climate change on the hydrology of Mediterranean basins. Journal of Hydrology 383:(1-2): 111-124. DOI: 10.1016/j.jhydrol.2009.09.050.
    • (2010) Journal of Hydrology , vol.383 , Issue.1-2 , pp. 111-124
    • Segui, P.Q.1    Ribes, A.2    Martin, E.3    Habets, F.4    Boe, J.5
  • 29
    • 0032098361 scopus 로고    scopus 로고
    • The connection between regularization operators and support vector kernels
    • Smola AJ, Scholkopf B, Muller KR. 1998. The connection between regularization operators and support vector kernels. Neural Networks 11(4): 637-649.
    • (1998) Neural Networks , vol.11 , Issue.4 , pp. 637-649
    • Smola, A.J.1    Scholkopf, B.2    Muller, K.R.3
  • 30
    • 42949114356 scopus 로고    scopus 로고
    • Resolving Orographic Rainfall On The Indian West Coast
    • DOI: 10.1002/joc.1566.
    • Suprit K, Shakar D. 2008. Resolving Orographic Rainfall On The Indian West Coast. International Journal of Climatology 28(5): 643-657. DOI: 10.1002/joc.1566.
    • (2008) International Journal of Climatology , vol.28 , Issue.5 , pp. 643-657
    • Suprit, K.1    Shakar, D.2
  • 31
    • 33750032384 scopus 로고    scopus 로고
    • An Introduction to Conditional Random Fields for Relational Learning
    • Getoor L, Taskar B (eds). MIT Press: Cambridge, Mass
    • Sutton C, McCallum A. 2006. An Introduction to Conditional Random Fields for Relational Learning. In Introduction to Statistical Relational Learning, Getoor L, Taskar B (eds). MIT Press: Cambridge, Mass; 1-35.
    • (2006) Introduction to Statistical Relational Learning , pp. 1-35
    • Sutton, C.1    McCallum, A.2
  • 32
    • 0034822542 scopus 로고    scopus 로고
    • th IEEE Instrumentation and Measurement Technology Conference, IEEE Standards Office, NJ, 1 -. DOI: 10.1109/IMTC.2001.928828.
    • th IEEE Instrumentation and Measurement Technology Conference, IEEE Standards Office, NJ, 1 287-294. DOI: 10.1109/IMTC.2001.928828.
    • (2001) , pp. 287-294
    • Suykens, J.A.K.1
  • 33
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • Suykens JAK, Vandewalle J 1999. Least squares support vector machine classifiers. Neural Processing Letters 9(3): 293-300.
    • (1999) Neural Processing Letters , vol.9 , Issue.3 , pp. 293-300
    • Suykens, J.A.K.1    Vandewalle, J.2
  • 34
    • 33750018142 scopus 로고    scopus 로고
    • Downscaling of precipitation for climate change scenarios: a support vector machine approach
    • Tripathi S, Srinivas VV, Nanjundiah RS. 2006. Downscaling of precipitation for climate change scenarios: a support vector machine approach. Journal of Hydrology 330: 621-640.
    • (2006) Journal of Hydrology , vol.330 , pp. 621-640
    • Tripathi, S.1    Srinivas, V.V.2    Nanjundiah, R.S.3
  • 38
    • 0033651962 scopus 로고    scopus 로고
    • A spectral nudging technique for dynamical downscaling purposes
    • von Storch H, Langenberg H, Feser F. 2000. A spectral nudging technique for dynamical downscaling purposes. Monthly Weather Review 128: 3664-3673.
    • (2000) Monthly Weather Review , vol.128 , pp. 3664-3673
    • von Storch, H.1    Langenberg, H.2    Feser, F.3
  • 39
    • 18844449383 scopus 로고    scopus 로고
    • Statistical precipitation downscaling in central Sweden with the analogue method
    • Wetterhall F, Halldin S, Xu C. 2005. Statistical precipitation downscaling in central Sweden with the analogue method. Journal of Hydrology 306: 174-190.
    • (2005) Journal of Hydrology , vol.306 , pp. 174-190
    • Wetterhall, F.1    Halldin, S.2    Xu, C.3
  • 40
    • 0034210154 scopus 로고    scopus 로고
    • Validation of mesoscale precipitation in the NCEP reanalysis using a new gridcell dataset for the Northwestern United States
    • Widmann M, and Bretherton CS. 2000. Validation of mesoscale precipitation in the NCEP reanalysis using a new gridcell dataset for the Northwestern United States. Journal of Climate 13: 1936-1950.
    • (2000) Journal of Climate , vol.13 , pp. 1936-1950
    • Widmann, M.1    Bretherton, C.S.2
  • 41
    • 0031412203 scopus 로고    scopus 로고
    • Downscaling general circulation model output: a review of methods and limitations
    • Wilby RL, Wigley TML. 1997. Downscaling general circulation model output: a review of methods and limitations. Progress in Physical Geography 21: 530-548.
    • (1997) Progress in Physical Geography , vol.21 , pp. 530-548
    • Wilby, R.L.1    Wigley, T.M.L.2
  • 42
    • 0033596115 scopus 로고    scopus 로고
    • A comparison of downscaled and raw GCM output: implications for climate change scenarios in the San Juan River Basin, Colorado
    • Wilby RL, Hay LE, Leavesly GH. 1999. A comparison of downscaled and raw GCM output: implications for climate change scenarios in the San Juan River Basin, Colorado. Journal of Hydrology 225: 67-91.
    • (1999) Journal of Hydrology , vol.225 , pp. 67-91
    • Wilby, R.L.1    Hay, L.E.2    Leavesly, G.H.3
  • 43
    • 80054865747 scopus 로고    scopus 로고
    • The guidelines for use of climate scenarios developed from statistical downscaling methods. Supporting material of the Intergovernmental Panel on Climate Change (IPCC), prepared on behalf of Task Group on Data and Scenario Support for Impacts and Climate Analysis (TGICA) (<>).
    • Wilby RL, Charles SP, Zorita E, Timbal B, Whetton P, Mearns LO. 2004. The guidelines for use of climate scenarios developed from statistical downscaling methods. Supporting material of the Intergovernmental Panel on Climate Change (IPCC), prepared on behalf of Task Group on Data and Scenario Support for Impacts and Climate Analysis (TGICA) (<>).
    • (2004)
    • Wilby, R.L.1    Charles, S.P.2    Zorita, E.3    Timbal, B.4    Whetton, P.5    Mearns, L.O.6
  • 44
    • 0033237208 scopus 로고    scopus 로고
    • Climate change and hydrologic models: a review of existing gaps and recent research developments
    • Xu C-Y. 1999. Climate change and hydrologic models: a review of existing gaps and recent research developments. Water Resources Management 13(5): 369-382.
    • (1999) Water Resources Management , vol.13 , Issue.5 , pp. 369-382
    • Xu, C.-Y.1
  • 45
    • 17144438118 scopus 로고    scopus 로고
    • A technique for generating regional climate scenarios using a nearest neighbor algorithm
    • DOI: 10.1029/2002WR001769.
    • Yates D, Gangopadhyay S, Rajagopalan B, Strzepek K. 2003. A technique for generating regional climate scenarios using a nearest neighbor algorithm. Water Resources Research 39(7): 1199, DOI: 10.1029/2002WR001769.
    • (2003) Water Resources Research , vol.39 , Issue.7 , pp. 1199
    • Yates, D.1    Gangopadhyay, S.2    Rajagopalan, B.3    Strzepek, K.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.