메뉴 건너뛰기




Volumn 352, Issue 3, 2015, Pages 987-1006

Quality-relevant fault detection and diagnosis for hot strip mill process with multi-specification and multi-batch measurements

Author keywords

[No Author keywords available]

Indexed keywords

BATCH DATA PROCESSING; FINITE DIFFERENCE METHOD; PROCESS MONITORING; SPECIFICATIONS; STRIP METAL; STRIP MILLS;

EID: 84922876812     PISSN: 00160032     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jfranklin.2014.12.002     Document Type: Article
Times cited : (60)

References (52)
  • 1
    • 84886674516 scopus 로고    scopus 로고
    • A novel scheme for key performance indicator prediction and diagnosis with application to an industrial hot strip mill
    • S.X. Ding, S. Yin, K.X. Peng, H.Y. Hao, and B. Shen A novel scheme for key performance indicator prediction and diagnosis with application to an industrial hot strip mill IEEE Trans. Ind. Inform. 9 4 2013 39 47
    • (2013) IEEE Trans. Ind. Inform. , vol.9 , Issue.4 , pp. 39-47
    • Ding, S.X.1    Yin, S.2    Peng, K.X.3    Hao, H.Y.4    Shen, B.5
  • 2
    • 84885571740 scopus 로고    scopus 로고
    • Real-time implementation of fault-tolerant control systems with performance optimization
    • S. Yin, H. Luo, and S.X. Ding Real-time implementation of fault-tolerant control systems with performance optimization IEEE Trans. Ind. Electron. 61 5 2014 2402 2411
    • (2014) IEEE Trans. Ind. Electron. , vol.61 , Issue.5 , pp. 2402-2411
    • Yin, S.1    Luo, H.2    Ding, S.X.3
  • 3
    • 84873707576 scopus 로고    scopus 로고
    • Contribution rate plot for nonlinear quality-relevant fault diagnosis with application to the hot strip mill process
    • K.X. Peng, K. Zhang, G. Li, and D.H. Zhou Contribution rate plot for nonlinear quality-relevant fault diagnosis with application to the hot strip mill process Control Eng. Pract. 21 3 2013 360 369
    • (2013) Control Eng. Pract. , vol.21 , Issue.3 , pp. 360-369
    • Peng, K.X.1    Zhang, K.2    Li, G.3    Zhou, D.H.4
  • 4
    • 84864545783 scopus 로고    scopus 로고
    • Coupling dynamic model and control of chatter in cold rolling
    • X. Yang, and C.N. Tong Coupling dynamic model and control of chatter in cold rolling J. Dyn. Syst. Meas. Control Trans. ASME 134 4 2012 1 8
    • (2012) J. Dyn. Syst. Meas. Control Trans. ASME , vol.134 , Issue.4 , pp. 1-8
    • Yang, X.1    Tong, C.N.2
  • 5
    • 78650728404 scopus 로고    scopus 로고
    • Coupling dynamic model of chatter in cold rolling
    • X. Yang, C. Tong, G. Yue, and J. Meng Coupling dynamic model of chatter in cold rolling J. Iron. Steel Res. Int. 17 12 2010 30 34
    • (2010) J. Iron. Steel Res. Int. , vol.17 , Issue.12 , pp. 30-34
    • Yang, X.1    Tong, C.2    Yue, G.3    Meng, J.4
  • 6
    • 84908462324 scopus 로고    scopus 로고
    • New kernel independent and principal components analysis-based process monitoring approach with application to hot strip mill process
    • K.X. Peng, K. Zhang, X. He, G. Li, and X. Yang New kernel independent and principal components analysis-based process monitoring approach with application to hot strip mill process IET Control Theory Appl. 8 16 2014 1723 1731
    • (2014) IET Control Theory Appl. , vol.8 , Issue.16 , pp. 1723-1731
    • Peng, K.X.1    Zhang, K.2    He, X.3    Li, G.4    Yang, X.5
  • 7
    • 84906317438 scopus 로고    scopus 로고
    • A new data-driven process monitoring scheme for key performance indictors with application to hot strip mill process
    • K.X. Peng, K. Zhang, J. Dong, and X. Yang A new data-driven process monitoring scheme for key performance indictors with application to hot strip mill process J. Frankl. Inst. 351 9 2014 4555 4569
    • (2014) J. Frankl. Inst. , vol.351 , Issue.9 , pp. 4555-4569
    • Peng, K.X.1    Zhang, K.2    Dong, J.3    Yang, X.4
  • 8
    • 84899481774 scopus 로고    scopus 로고
    • A review on basic data-driven approaches for industrial process monitoring
    • S. Yin, S.X. Ding, X. Xie, and H. Luo A review on basic data-driven approaches for industrial process monitoring IEEE Trans. Ind. Electron. 61 11 2014 6418 6428
    • (2014) IEEE Trans. Ind. Electron. , vol.61 , Issue.11 , pp. 6418-6428
    • Yin, S.1    Ding, S.X.2    Xie, X.3    Luo, H.4
  • 9
    • 84867317492 scopus 로고    scopus 로고
    • Fault detection for Markovian jump systems with sensor saturations and randomly varying nonlinearities
    • H.L. Dong, Z.D. Wang, and H.J. Gao Fault detection for Markovian jump systems with sensor saturations and randomly varying nonlinearities IEEE Trans. Circuits Syst. I: Regul. Pap. 59 10 2012 2354 2362
    • (2012) IEEE Trans. Circuits Syst. I: Regul. Pap. , vol.59 , Issue.10 , pp. 2354-2362
    • Dong, H.L.1    Wang, Z.D.2    Gao, H.J.3
  • 10
    • 78651327603 scopus 로고    scopus 로고
    • Bounded synchronization and state estimation for discrete time-varying stochastic complex networks over a finite horizon
    • B. Shen, Z.D. Wang, and X.H. Liu Bounded synchronization and state estimation for discrete time-varying stochastic complex networks over a finite horizon IEEE Trans. Neural Netw. 22 1 2011 145 157
    • (2011) IEEE Trans. Neural Netw. , vol.22 , Issue.1 , pp. 145-157
    • Shen, B.1    Wang, Z.D.2    Liu, X.H.3
  • 11
    • 84883395199 scopus 로고    scopus 로고
    • Networked strong tracking filtering with multiple packet dropouts algorithms and applications
    • X. He, X.F. Wang, Z.D. Wang, and D.H. Zhou Networked strong tracking filtering with multiple packet dropouts algorithms and applications IEEE Trans. Ind. Electron. 61 3 2014 1454 1463
    • (2014) IEEE Trans. Ind. Electron. , vol.61 , Issue.3 , pp. 1454-1463
    • He, X.1    Wang, X.F.2    Wang, Z.D.3    Zhou, D.H.4
  • 12
    • 84878121569 scopus 로고    scopus 로고
    • Distributed H-infinity filtering for a class of Markovian jump nonlinear time-delay systems over lossy sensor networks
    • H. Dong, Z. Wang, and H. Gao Distributed H-infinity filtering for a class of Markovian jump nonlinear time-delay systems over lossy sensor networks Trans. Ind. Electron. 60 10 2013 4665 4672
    • (2013) Trans. Ind. Electron. , vol.60 , Issue.10 , pp. 4665-4672
    • Dong, H.1    Wang, Z.2    Gao, H.3
  • 13
    • 84962489534 scopus 로고    scopus 로고
    • Data driven control and process monitoring for industrial applications - Part i
    • S. Yin, H.J. Gao, and O. Kaynak Data driven control and process monitoring for industrial applications - part I IEEE Trans. Ind. Electron. 61 11 2014 6356 6359
    • (2014) IEEE Trans. Ind. Electron. , vol.61 , Issue.11 , pp. 6356-6359
    • Yin, S.1    Gao, H.J.2    Kaynak, O.3
  • 14
    • 84859009318 scopus 로고    scopus 로고
    • Fuzzy-model-based robust fault detection with stochastic mixed time delays and successive packet dropouts
    • H.L. Dong, Z.D. Wang, J. Lam, and H.J. Gao Fuzzy-model-based robust fault detection with stochastic mixed time delays and successive packet dropouts IEEE Trans. Syst. Man Cybern. - Part B: Cybern. 42 2 2012 365 376
    • (2012) IEEE Trans. Syst. Man Cybern. - Part B: Cybern. , vol.42 , Issue.2 , pp. 365-376
    • Dong, H.L.1    Wang, Z.D.2    Lam, J.3    Gao, H.J.4
  • 15
    • 84883000023 scopus 로고    scopus 로고
    • Least-squares fault detection and diagnosis for networked sensing systems using direct state estimation approach
    • X. He, Z.D. Wang, Y. Liu, and D.H. Zhou Least-squares fault detection and diagnosis for networked sensing systems using direct state estimation approach IEEE Trans. Ind. Inform. 9 3 2013 1670 1679
    • (2013) IEEE Trans. Ind. Inform. , vol.9 , Issue.3 , pp. 1670-1679
    • He, X.1    Wang, Z.D.2    Liu, Y.3    Zhou, D.H.4
  • 16
    • 84902536552 scopus 로고    scopus 로고
    • Robust PLS approach for KPI related prediction and diagnosis against outliers and missing data
    • S. Yin, and G. Wang Robust PLS approach for KPI related prediction and diagnosis against outliers and missing data Int. J. Syst. Sci. 45 7 2014 1375 1382
    • (2014) Int. J. Syst. Sci. , vol.45 , Issue.7 , pp. 1375-1382
    • Yin, S.1    Wang, G.2
  • 17
    • 79960904943 scopus 로고    scopus 로고
    • Data-driven fault detection and diagnosis for complex industrial processes
    • S.J. Qin, Data-driven fault detection and diagnosis for complex industrial processes, in: Proceedings of IFAC SAFEPROCESS Symposium, 2009, pp. 1115-1125.
    • (2009) Proceedings of IFAC SAFEPROCESS Symposium , pp. 1115-1125
    • Qin, S.J.1
  • 18
    • 84866069902 scopus 로고    scopus 로고
    • A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process
    • S. Yin, S.X. Ding, A. Gaghani, H.Y. Hao, and P. Zhang A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process J. Process Control 22 9 2012 1567 1568
    • (2012) J. Process Control , vol.22 , Issue.9 , pp. 1567-1568
    • Yin, S.1    Ding, S.X.2    Gaghani, A.3    Hao, H.Y.4    Zhang, P.5
  • 19
    • 84857790824 scopus 로고    scopus 로고
    • Fault detection and isolation in transient states using principal component analysis
    • D. Garcia-Alvares, M.J. Fuente, and G.J. Sainz Fault detection and isolation in transient states using principal component analysis J. Process Control 22 3 2012 551 563
    • (2012) J. Process Control , vol.22 , Issue.3 , pp. 551-563
    • Garcia-Alvares, D.1    Fuente, M.J.2    Sainz, G.J.3
  • 20
    • 84897108321 scopus 로고    scopus 로고
    • Data-driven design of monitoring and diagnosis systems for dynamic processes a review of subspace technique based schemes and some recent results
    • S.X. Ding Data-driven design of monitoring and diagnosis systems for dynamic processes a review of subspace technique based schemes and some recent results J. Process Control 24 2 2014 431 449
    • (2014) J. Process Control , vol.24 , Issue.2 , pp. 431-449
    • Ding, S.X.1
  • 21
    • 84872232310 scopus 로고    scopus 로고
    • Strip thickness monitoring in hot strip mill processes based on dynamic total projection to latent structures (T-PLS) algorithm
    • K.X. Peng, G. Li, and K. Zhang Strip thickness monitoring in hot strip mill processes based on dynamic total projection to latent structures (T-PLS) algorithm Control Theory Appl. 29 11 2012 1446 1451
    • (2012) Control Theory Appl. , vol.29 , Issue.11 , pp. 1446-1451
    • Peng, K.X.1    Li, G.2    Zhang, K.3
  • 22
    • 83655184657 scopus 로고    scopus 로고
    • Quality relevant data-driven modeling and monitoring of multivariate dynamic processes the dynamic T-PLS approach
    • G. Li, S.J. Qin, B.S. Liu, and D.H. Zhou Quality relevant data-driven modeling and monitoring of multivariate dynamic processes the dynamic T-PLS approach IEEE Trans. Neural Netw. 22 12 2011 2262 2271
    • (2011) IEEE Trans. Neural Netw. , vol.22 , Issue.12 , pp. 2262-2271
    • Li, G.1    Qin, S.J.2    Liu, B.S.3    Zhou, D.H.4
  • 23
    • 84872859706 scopus 로고    scopus 로고
    • Quality-relevant and process-relevant fault monitoring with concurrent projection to latent structures
    • S.J. Qin, and Y.Y. Zheng Quality-relevant and process-relevant fault monitoring with concurrent projection to latent structures AIChE J. 59 2 2013 496 504
    • (2013) AIChE J. , vol.59 , Issue.2 , pp. 496-504
    • Qin, S.J.1    Zheng, Y.Y.2
  • 24
    • 79958703777 scopus 로고    scopus 로고
    • Localized Fisher discriminant analysis based complex chemical processes monitoring
    • J. Yu Localized Fisher discriminant analysis based complex chemical processes monitoring AIChE J. 57 7 2011 1817 1828
    • (2011) AIChE J. , vol.57 , Issue.7 , pp. 1817-1828
    • Yu, J.1
  • 25
    • 81055156706 scopus 로고    scopus 로고
    • A nonlinear kernel Gaussian mixture model based inferential monitoring approach for fault detection and diagnosis of chemical processes
    • J. Yu A nonlinear kernel Gaussian mixture model based inferential monitoring approach for fault detection and diagnosis of chemical processes Chem. Eng. Sci. 68 1 2012 506 519
    • (2012) Chem. Eng. Sci. , vol.68 , Issue.1 , pp. 506-519
    • Yu, J.1
  • 26
    • 47549099484 scopus 로고    scopus 로고
    • Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models
    • J. Yu, and S.J. Qin Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models AIChE J. 54 7 2008 1811 1829
    • (2008) AIChE J. , vol.54 , Issue.7 , pp. 1811-1829
    • Yu, J.1    Qin, S.J.2
  • 27
    • 79958136331 scopus 로고    scopus 로고
    • Batch process monitoring based on support vector data description method
    • Z.Q. Ge, F.R. Gao, and Z.H. Song Batch process monitoring based on support vector data description method J. Process Control 21 6 2011 949 959
    • (2011) J. Process Control , vol.21 , Issue.6 , pp. 949-959
    • Ge, Z.Q.1    Gao, F.R.2    Song, Z.H.3
  • 28
    • 84859903438 scopus 로고    scopus 로고
    • Hidden Markov model based adaptive independent component analysis approach for complex chemical process monitoring and fault detection
    • M.M. Rashid, and J. Yu Hidden Markov model based adaptive independent component analysis approach for complex chemical process monitoring and fault detection Ind. Eng. Chem. Res. 51 15 2012 5506 5514
    • (2012) Ind. Eng. Chem. Res. , vol.51 , Issue.15 , pp. 5506-5514
    • Rashid, M.M.1    Yu, J.2
  • 29
    • 84861191986 scopus 로고    scopus 로고
    • A new dissimilarity method integrating multi-dimensional mutual information and independent component analysis for non-Gaussian dynamic process monitoring
    • M.M. Rashid, and J. Yu A new dissimilarity method integrating multi-dimensional mutual information and independent component analysis for non-Gaussian dynamic process monitoring Chemom. Intell. Lab. Syst. 115 15 2012 44 58
    • (2012) Chemom. Intell. Lab. Syst. , vol.115 , Issue.15 , pp. 44-58
    • Rashid, M.M.1    Yu, J.2
  • 31
    • 84908117989 scopus 로고    scopus 로고
    • A data-driven multiplicative fault diagnosis approach for automation processes
    • H.Y. Hao, K. Zhang, S.X. Ding, Z.W. Chen, and Y.G. Lei A data-driven multiplicative fault diagnosis approach for automation processes ISA Trans. 53 5 2014 1436 1445
    • (2014) ISA Trans. , vol.53 , Issue.5 , pp. 1436-1445
    • Hao, H.Y.1    Zhang, K.2    Ding, S.X.3    Chen, Z.W.4    Lei, Y.G.5
  • 32
    • 84890854491 scopus 로고    scopus 로고
    • Quality relevant nonlinear batch process performance monitoring using a kernel based multiway non-Gaussian latent subspace projection approach
    • J. Mori, and J. Yu Quality relevant nonlinear batch process performance monitoring using a kernel based multiway non-Gaussian latent subspace projection approach J. Process Control 24 1 2014 57 71
    • (2014) J. Process Control , vol.24 , Issue.1 , pp. 57-71
    • Mori, J.1    Yu, J.2
  • 33
    • 84866132201 scopus 로고    scopus 로고
    • Data-driven monitoring for stochastic systems and its application on batch process
    • S. Yin, S.X. Ding, A. Haghani, and H.J. Hao Data-driven monitoring for stochastic systems and its application on batch process Int. J. Syst. Sci. 44 7 2013 1366 1376
    • (2013) Int. J. Syst. Sci. , vol.44 , Issue.7 , pp. 1366-1376
    • Yin, S.1    Ding, S.X.2    Haghani, A.3    Hao, H.J.4
  • 34
    • 84869089680 scopus 로고    scopus 로고
    • Survey on data-driven industrial process monitoring and diagnosis
    • S.J. Qin Survey on data-driven industrial process monitoring and diagnosis Annu. Rev. Control 36 2 2012 220 234
    • (2012) Annu. Rev. Control , vol.36 , Issue.2 , pp. 220-234
    • Qin, S.J.1
  • 35
    • 0028825273 scopus 로고
    • Multi-way partial least squares in monitoring batch processes
    • P. Nomikos, and J.F. MacGregor Multi-way partial least squares in monitoring batch processes Chemom. Intell. Lab. Syst. 30 1 1995 97 108
    • (1995) Chemom. Intell. Lab. Syst. , vol.30 , Issue.1 , pp. 97-108
    • Nomikos, P.1    Macgregor, J.F.2
  • 36
    • 77957599856 scopus 로고    scopus 로고
    • Total projection to latent structures for process monitoring
    • D.H. Zhou, G. Li, and S.J. Qin Total projection to latent structures for process monitoring AIChE J. 56 1 2010 168 178
    • (2010) AIChE J. , vol.56 , Issue.1 , pp. 168-178
    • Zhou, D.H.1    Li, G.2    Qin, S.J.3
  • 37
    • 0242354134 scopus 로고    scopus 로고
    • Statistical process monitoring basics and beyond
    • S.J. Qin Statistical process monitoring basics and beyond J. Chemom. 17 8-9 2003 480 502
    • (2003) J. Chemom. , vol.17 , Issue.89 , pp. 480-502
    • Qin, S.J.1
  • 38
    • 0000235653 scopus 로고
    • Some theorems on quadratic forms applied in the study of analysis of variance problems. I. Effect of inequality of variance in the one-way classification
    • G. Box Some theorems on quadratic forms applied in the study of analysis of variance problems. I. Effect of inequality of variance in the one-way classification Ann. Math. Stat. 25 2 1954 290 302
    • (1954) Ann. Math. Stat. , vol.25 , Issue.2 , pp. 290-302
    • Box, G.1
  • 39
    • 73049084841 scopus 로고    scopus 로고
    • Geometric properties of partial least squares for process monitoring
    • G. Li, S.J. Qin, and D.H. Zhou Geometric properties of partial least squares for process monitoring Automatica 46 1 2010 204 210
    • (2010) Automatica , vol.46 , Issue.1 , pp. 204-210
    • Li, G.1    Qin, S.J.2    Zhou, D.H.3
  • 41
    • 67349245154 scopus 로고    scopus 로고
    • Reconstruction-based contribution for process monitoring
    • C.F. Alcala, and S.J. Qin Reconstruction-based contribution for process monitoring Automatica 45 7 2009 1593 1600
    • (2009) Automatica , vol.45 , Issue.7 , pp. 1593-1600
    • Alcala, C.F.1    Qin, S.J.2
  • 42
    • 79952573528 scopus 로고    scopus 로고
    • Analysis and generalization of fault diagnosis methods for process monitoring
    • C.F. Alcala, and S.J. Qin Analysis and generalization of fault diagnosis methods for process monitoring J. Process Control 21 3 2011 322 330
    • (2011) J. Process Control , vol.21 , Issue.3 , pp. 322-330
    • Alcala, C.F.1    Qin, S.J.2
  • 43
    • 84897549027 scopus 로고    scopus 로고
    • Online contribution rate based fault diagnosis for nonlinear industrial processes
    • K.X. Peng, K. Zhang, and G. Li Online contribution rate based fault diagnosis for nonlinear industrial processes Acta Autom Sin 40 3 2014 423 430
    • (2014) Acta Autom Sin , vol.40 , Issue.3 , pp. 423-430
    • Peng, K.X.1    Zhang, K.2    Li, G.3
  • 44
    • 80051912783 scopus 로고    scopus 로고
    • Generalized reconstruction-based contributions for output-relevant fault diagnosis with application to the Tennessee Eastman process
    • G. Li, C.F. Alcala, S.J. Qin, and D.H. Zhou Generalized reconstruction-based contributions for output-relevant fault diagnosis with application to the Tennessee Eastman process IEEE Trans. Control Syst. Technol. 19 5 2011 1114 1127
    • (2011) IEEE Trans. Control Syst. Technol. , vol.19 , Issue.5 , pp. 1114-1127
    • Li, G.1    Alcala, C.F.2    Qin, S.J.3    Zhou, D.H.4
  • 45
    • 0028424619 scopus 로고
    • Process monitoring and diagnosis by multiblock PLS methods
    • J.F. MacGregor, C. Jaeckle, C. Kiparissides, and M. Koutoudi Process monitoring and diagnosis by multiblock PLS methods AIChE J. 40 5 1994 826 838
    • (1994) AIChE J. , vol.40 , Issue.5 , pp. 826-838
    • Macgregor, J.F.1    Jaeckle, C.2    Kiparissides, C.3    Koutoudi, M.4
  • 46
    • 0032045464 scopus 로고    scopus 로고
    • Synchronization of batch trajectories using dynamic time warping
    • A. Kassidas, J.F. MacGregor, and P.A. Taylor Synchronization of batch trajectories using dynamic time warping AIChE J. 44 4 1998 864 875
    • (1998) AIChE J. , vol.44 , Issue.4 , pp. 864-875
    • Kassidas, A.1    Macgregor, J.F.2    Taylor, P.A.3
  • 47
    • 0017930815 scopus 로고
    • Dynamic programming algorithm optimization for spoken word recognition
    • H. Sakoe, and S. Chiba Dynamic programming algorithm optimization for spoken word recognition IEEE Trans. Acoust. Speech Signal Process. 26 1 1978 43 49
    • (1978) IEEE Trans. Acoust. Speech Signal Process. , vol.26 , Issue.1 , pp. 43-49
    • Sakoe, H.1    Chiba, S.2
  • 48
    • 78649324794 scopus 로고    scopus 로고
    • A global averaging method for dynamic time warping, with applications to clustering
    • F. Petitjean, A. Ketterlin, and P. Gancarski A global averaging method for dynamic time warping, with applications to clustering Pattern Recognit. 44 3 2011 678 693
    • (2011) Pattern Recognit. , vol.44 , Issue.3 , pp. 678-693
    • Petitjean, F.1    Ketterlin, A.2    Gancarski, P.3
  • 49
    • 84923027588 scopus 로고    scopus 로고
    • On-line flatness measurement in the steelmaking industry
    • J. Molleda, R. Usamentiaga, and D.F. Garciía On-line flatness measurement in the steelmaking industry Sensor 13 8 2013 10245 10272
    • (2013) Sensor , vol.13 , Issue.8 , pp. 10245-10272
    • Molleda, J.1    Usamentiaga, R.2    Garciía, D.F.3
  • 50
    • 84903209249 scopus 로고    scopus 로고
    • Strip shape modeling and its setup strategy in hot strip mill process
    • K.X. Peng, H. Zhong, L. Zhao, K. Xue, and Y.D. Ji Strip shape modeling and its setup strategy in hot strip mill process Int. J. Adv. Manuf. Technol. 72 5-8 2014 589 605
    • (2014) Int. J. Adv. Manuf. Technol. , vol.72 , Issue.58 , pp. 589-605
    • Peng, K.X.1    Zhong, H.2    Zhao, L.3    Xue, K.4    Ji, Y.D.5
  • 51
    • 84864913978 scopus 로고    scopus 로고
    • Between-phase-based statistical analysis and modeling for transition monitoring in multiphase batch processes
    • C.H. Zhao, and F.R. Gao Between-phase-based statistical analysis and modeling for transition monitoring in multiphase batch processes AIChE J. 58 9 2012 2682 2692
    • (2012) AIChE J. , vol.58 , Issue.9 , pp. 2682-2692
    • Zhao, C.H.1    Gao, F.R.2
  • 52
    • 84886668222 scopus 로고    scopus 로고
    • Modeling and monitoring between-mode transition of multimodes processes
    • Y.W. Zhang, and S. Li Modeling and monitoring between-mode transition of multimodes processes IEEE Trans. Ind. Inform. 9 4 2013 2248 2255
    • (2013) IEEE Trans. Ind. Inform. , vol.9 , Issue.4 , pp. 2248-2255
    • Zhang, Y.W.1    Li, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.