-
1
-
-
0025498642
-
Light-emitting-diodes based on conjugated polymers
-
Burroughes JH, Bradley DDC, Brown AR, Marks RN, Mackay K, Friend RH, et al. Light-emitting-diodes based on conjugated polymers. Nature. 1990;347:539–41.
-
(1990)
Nature.
, vol.347
, pp. 539-541
-
-
Burroughes, J.H.1
Bradley, D.D.C.2
Brown, A.R.3
Marks, R.N.4
Mackay, K.5
Friend, R.H.6
-
2
-
-
34249938954
-
Large-area blown bubble films of aligned nanowires and carbon nanotubes
-
Yu G, Cao A, Lieber CM. Large-area blown bubble films of aligned nanowires and carbon nanotubes. Nature Nanotech. 2007;2:372–7.
-
(2007)
Nature Nanotech.
, vol.2
, pp. 372-377
-
-
Yu, G.1
Cao, A.2
Lieber, C.M.3
-
3
-
-
4344647530
-
Transparent, conductive carbon nanotube films
-
Wu Z, Chen Z, Du X, Logan JM, Sippel J, Nikolou M, et al. Transparent, conductive carbon nanotube films. Science. 2004;305:1273–6.
-
(2004)
Science.
, vol.305
, pp. 1273-1276
-
-
Wu, Z.1
Chen, Z.2
Du, X.3
Logan, J.M.4
Sippel, J.5
Nikolou, M.6
-
4
-
-
77955545600
-
Transparent conductors from layer-by-layer assembled SWNT films: importance of mechanical properties and a new figure of merit
-
Shim BS, Zhu J, Jan E, Critchley KKotov NA. Transparent conductors from layer-by-layer assembled SWNT films: importance of mechanical properties and a new figure of merit. ACS Nano. 2010;4:3725–34.
-
(2010)
ACS Nano
, vol.4
, pp. 3725-3734
-
-
Shim, B.S.1
Zhu, J.2
Jan, E.3
Critchley KKotov, N.A.4
-
5
-
-
31044447211
-
In situ deposition and patterning of single-walled carbon nanotubes by laminar flow and controlled flocculation in microfluidic channels
-
Park J-U, Meitl MA, Hur S-H, Usrey ML, Strano MS, Kenis PJA, et al. In situ deposition and patterning of single-walled carbon nanotubes by laminar flow and controlled flocculation in microfluidic channels. Angew Chem Int Ed. 2006;45:581–5.
-
(2006)
Angew Chem Int Ed.
, vol.45
, pp. 581-585
-
-
Park, J.-U.1
Meitl, M.A.2
Hur, S.-H.3
Usrey, M.L.4
Strano, M.S.5
Kenis, P.J.A.6
-
6
-
-
84900513693
-
In-situ synthesis of carbon nanotube-graphite electronic devices and their integrations onto surfaces of live plants and insects
-
Lee K, Park J, Lee M-S, Kim J, Hyun BG, Kang DJ, et al. In-situ synthesis of carbon nanotube-graphite electronic devices and their integrations onto surfaces of live plants and insects. Nano Lett. 2014;14:2647–54.
-
(2014)
Nano Lett.
, vol.14
, pp. 2647-2654
-
-
Lee, K.1
Park, J.2
Lee, M.-S.3
Kim, J.4
Hyun, B.G.5
Kang, D.J.6
-
7
-
-
59649099717
-
Large-scale pattern growth of graphene films for stretchable transparent electrodes
-
Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature. 2009;457:706–10.
-
(2009)
Nature.
, vol.457
, pp. 706-710
-
-
Kim, K.S.1
Zhao, Y.2
Jang, H.3
Lee, S.Y.4
Kim, J.M.5
Kim, K.S.6
-
8
-
-
60749097071
-
Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide
-
Emtsev KV, Bostwick A, Horn K, Jobst J, Kellogg GL, Ley L, et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nature Mater. 2009;8:203–7.
-
(2009)
Nature Mater.
, vol.8
, pp. 203-207
-
-
Emtsev, K.V.1
Bostwick, A.2
Horn, K.3
Jobst, J.4
Kellogg, G.L.5
Ley, L.6
-
9
-
-
71949115543
-
Transfer of large-area graphene films for high-performance transparent conductive electrodes
-
Li X, Zhu Y, Cai W, Borysiak M, Han B, Chen D, et al. Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett. 2009;9:4359–63.
-
(2009)
Nano Lett.
, vol.9
, pp. 4359-4363
-
-
Li, X.1
Zhu, Y.2
Cai, W.3
Borysiak, M.4
Han, B.5
Chen, D.6
-
10
-
-
84856103146
-
Synthesis of monolithic graphene-graphite integrated electronics
-
Park J-U, Nam SW, Lee M-S, Lieber CM. Synthesis of monolithic graphene-graphite integrated electronics. Nature Mater. 2012;11:120–5.
-
(2012)
Nature Mater.
, vol.11
, pp. 120-125
-
-
Park, J.-U.1
Nam, S.W.2
Lee, M.-S.3
Lieber, C.M.4
-
11
-
-
66749119012
-
Large-area synthesis of high-quality and uniform graphene films on copper foils
-
Li X, Cai W, An J, Kim S, Nah J, Yang D, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science. 2009;324:1312–4.
-
(2009)
Science.
, vol.324
, pp. 1312-1314
-
-
Li, X.1
Cai, W.2
An, J.3
Kim, S.4
Nah, J.5
Yang, D.6
-
12
-
-
77956430820
-
Roll-to-roll production of 30-inch graphene films for transparent electrodes
-
Bae S, Kim H, Lee Y, Xu X, Park J-S, Zheng Y, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotech. 2010;5:574–8.
-
(2010)
Nature Nanotech.
, vol.5
, pp. 574-578
-
-
Bae, S.1
Kim, H.2
Lee, Y.3
Xu, X.4
Park, J.-S.5
Zheng, Y.6
-
13
-
-
80052046389
-
Rational design of hybrid graphene films for high-performance transparent electrodes
-
Zhu Y, Sun Z, Yan Z, Jin Z, Tour JM. Rational design of hybrid graphene films for high-performance transparent electrodes. ACS Nano. 2011;5:6472–9.
-
(2011)
ACS Nano.
, vol.5
, pp. 6472-6479
-
-
Zhu, Y.1
Sun, Z.2
Yan, Z.3
Jin, Z.4
Tour, J.M.5
-
14
-
-
45349092986
-
Fine structure constant defines visual transparency of graphene
-
Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, et al. Fine structure constant defines visual transparency of graphene. Science. 2008;320:1308.
-
(2008)
Science.
, vol.320
, pp. 1308
-
-
Nair, R.R.1
Blake, P.2
Grigorenko, A.N.3
Novoselov, K.S.4
Booth, T.J.5
Stauber, T.6
-
15
-
-
47349102743
-
Ultrathin Au nanowires and their transport properties
-
Wang C, Hu Y, Lieber CM, Sun S. Ultrathin Au nanowires and their transport properties. J Am Chem Soc. 2008;130:8902–3.
-
(2008)
J Am Chem Soc.
, vol.130
, pp. 8902-8903
-
-
Wang, C.1
Hu, Y.2
Lieber, C.M.3
Sun, S.4
-
16
-
-
83755207609
-
Semiconductor nanowires: a platform for nanoscience and nanotechnology
-
Lieber CM. Semiconductor nanowires: a platform for nanoscience and nanotechnology. MRS Bull. 2011;36:1052–63.
-
(2011)
MRS Bull.
, vol.36
, pp. 1052-1063
-
-
Lieber, C.M.1
-
17
-
-
80054945840
-
The effects of percolation in nanostructured transparent conductors
-
De S, Coleman JN. The effects of percolation in nanostructured transparent conductors. MRS Bull. 2011;36:774–81.
-
(2011)
MRS Bull.
, vol.36
, pp. 774-781
-
-
De, S.1
Coleman, J.N.2
-
18
-
-
3142684485
-
Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures
-
Wu Y, Xiang J, Yang C, Lu W, Lieber CM. Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures. Nature. 2004;430:61–5.
-
(2004)
Nature.
, vol.430
, pp. 61-65
-
-
Wu, Y.1
Xiang, J.2
Yang, C.3
Lu, W.4
Lieber, C.M.5
-
19
-
-
0042709844
-
Inorganic materials: nanocrystals branch out
-
Wang D, Lieber CM. Inorganic materials: nanocrystals branch out. Nature Mater. 2003;2:355–6.
-
(2003)
Nature Mater.
, vol.2
, pp. 355-356
-
-
Wang, D.1
Lieber, C.M.2
-
20
-
-
77952936230
-
Scalable coating and properties of transparent, flexible, silver nanowire electrodes
-
Hu L, Kim HS, Lee J-Y, Peumans P, Cui Y. Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano. 2010;4:2955–63.
-
(2010)
ACS Nano.
, vol.4
, pp. 2955-2963
-
-
Hu, L.1
Kim, H.S.2
Lee, J.-Y.3
Peumans, P.4
Cui, Y.5
-
21
-
-
80054925470
-
Metal nanogrids, nanowires, and nanofibers for transparent electrodes
-
Hu L, Wu H, Cui Y. Metal nanogrids, nanowires, and nanofibers for transparent electrodes. MRS Bull. 2011;36:760–5.
-
(2011)
MRS Bull.
, vol.36
, pp. 760-765
-
-
Hu, L.1
Wu, H.2
Cui, Y.3
-
22
-
-
84867197400
-
Solution-processed flexible polymer solar cells with silver nanowire electrodes
-
Yang L, Zhang T, Zhou H, Price SC, Wiley BJ, You W. Solution-processed flexible polymer solar cells with silver nanowire electrodes. ACS Appl Mater Inter. 2011;3:4075–84.
-
(2011)
ACS Appl Mater Inter.
, vol.3
, pp. 4075-4084
-
-
Yang, L.1
Zhang, T.2
Zhou, H.3
Price, S.C.4
Wiley, B.J.5
You, W.6
-
23
-
-
77958026767
-
Spontaneous formation of periodic nanostructures by localized dynamic wrinkling
-
Ahn SH, Guo LJ. Spontaneous formation of periodic nanostructures by localized dynamic wrinkling. Nano Lett. 2010;10:4228–34.
-
(2010)
Nano Lett.
, vol.10
, pp. 4228-4234
-
-
Ahn, S.H.1
Guo, L.J.2
-
24
-
-
77955568367
-
Nanopatterned metallic films for use as transparent conductive electrodes in optoelectronic devices
-
Catrysse PB, Fan S. Nanopatterned metallic films for use as transparent conductive electrodes in optoelectronic devices. Nano Lett. 2010;10:2944–9.
-
(2010)
Nano Lett.
, vol.10
, pp. 2944-2949
-
-
Catrysse, P.B.1
Fan, S.2
-
25
-
-
84910133384
-
Stretchable and transparent electrodes using hybrid structures of graphene-metal nanotrough networks with high performances and ultimate uniformity
-
An BW, Hyun BG, Kim S-Y, Kim M, Lee M-S, Lee K, et al. Stretchable and transparent electrodes using hybrid structures of graphene-metal nanotrough networks with high performances and ultimate uniformity. Nano Lett. 2014;14:6322–8.
-
(2014)
Nano Lett.
, vol.14
, pp. 6322-6328
-
-
An, B.W.1
Hyun, B.G.2
Kim, S.-Y.3
Kim, M.4
Lee, M.-S.5
Lee, K.6
-
26
-
-
68749098686
-
Silver nanowire networks as flexible, transparent, conducting films: extremely high DC to optical conductivity ratios
-
De S, Higgins TM, Lyons PE, Doherty EM, Nirmalraj PN, Blau WJ, et al. Silver nanowire networks as flexible, transparent, conducting films: extremely high DC to optical conductivity ratios. ACS Nano. 2009;3:1767–74.
-
(2009)
ACS Nano.
, vol.3
, pp. 1767-1774
-
-
De, S.1
Higgins, T.M.2
Lyons, P.E.3
Doherty, E.M.4
Nirmalraj, P.N.5
Blau, W.J.6
-
27
-
-
84865043635
-
Intrinsically stretchable transparent electrodes based on silver-nanowire-crosslinked-polyacrylate composites
-
Hu W, Niu X, Li L, Yun S, Yu Z, Pei Q. Intrinsically stretchable transparent electrodes based on silver-nanowire-crosslinked-polyacrylate composites. Nanotechnology. 2012;23:344002.
-
(2012)
Nanotechnology.
, vol.23
, pp. 344002
-
-
Hu, W.1
Niu, X.2
Li, L.3
Yun, S.4
Yu, Z.5
Pei, Q.6
-
29
-
-
83655165255
-
Solution-processed metallic nanowire electrodes as indium tin oxide replacement for thin-film solar cells
-
Krantz J, Richter M, Spallek S, Spiecker E, Brabec CJ. Solution-processed metallic nanowire electrodes as indium tin oxide replacement for thin-film solar cells. Adv Funct Mater. 2011;21:4784–7.
-
(2011)
Adv Funct Mater.
, vol.21
, pp. 4784-4787
-
-
Krantz, J.1
Richter, M.2
Spallek, S.3
Spiecker, E.4
Brabec, C.J.5
-
30
-
-
84872725701
-
Annealing-free, flexible silver nanowire–polymer composite electrodes via a continuous two-step spray-coating method
-
Choi DY, Kang HW, Sung HJ, Kim SS. Annealing-free, flexible silver nanowire–polymer composite electrodes via a continuous two-step spray-coating method. Nanoscale. 2013;5:977–83.
-
(2013)
Nanoscale.
, vol.5
, pp. 977-983
-
-
Choi, D.Y.1
Kang, H.W.2
Sung, H.J.3
Kim, S.S.4
-
32
-
-
60749107706
-
Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition
-
Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, et al. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2009;9:30–5.
-
(2009)
Nano Lett.
, vol.9
, pp. 30-35
-
-
Reina, A.1
Jia, X.2
Ho, J.3
Nezich, D.4
Son, H.5
Bulovic, V.6
-
33
-
-
77954161992
-
Enhancing the conductivity of transparent graphene films via doping
-
Kim KK, Reina A, Shi Y, Park H, Li L-J, Lee YH, et al. Enhancing the conductivity of transparent graphene films via doping. Nanotechnology. 2010;21:285205.
-
(2010)
Nanotechnology.
, vol.21
, pp. 285205
-
-
Kim, K.K.1
Reina, A.2
Shi, Y.3
Park, H.4
Li, L.-J.5
Lee, Y.H.6
-
34
-
-
80755189373
-
Prospects for nanowire-doped polycrystalline graphene films for ultratransparent, highly conductive electrodes
-
Jeong C, Nair P, Khan M, Lundstrom M, Alam MA. Prospects for nanowire-doped polycrystalline graphene films for ultratransparent, highly conductive electrodes. Nano Lett. 2011;11:5020–5.
-
(2011)
Nano Lett.
, vol.11
, pp. 5020-5025
-
-
Jeong, C.1
Nair, P.2
Khan, M.3
Lundstrom, M.4
Alam, M.A.5
-
35
-
-
84862885700
-
Nanostructured hybrid transparent conductive films with antibacterial properties
-
Kholmanov IN, Stoller MD, Edgeworth J, Lee WH, Li H, Lee J, et al. Nanostructured hybrid transparent conductive films with antibacterial properties. ACS Nano. 2012;6:5157–63.
-
(2012)
ACS Nano.
, vol.6
, pp. 5157-5163
-
-
Kholmanov, I.N.1
Stoller, M.D.2
Edgeworth, J.3
Lee, W.H.4
Li, H.5
Lee, J.6
-
36
-
-
84869155437
-
Improved electrical conductivity of graphene films integrated with metal nanowires
-
Kholmanov IN, Magnuson CW, Aliev AE, Li H, Zhang B, Suk JW, et al. Improved electrical conductivity of graphene films integrated with metal nanowires. Nano Lett. 2012;12:5679–83.
-
(2012)
Nano Lett.
, vol.12
, pp. 5679-5683
-
-
Kholmanov, I.N.1
Magnuson, C.W.2
Aliev, A.E.3
Li, H.4
Zhang, B.5
Suk, J.W.6
-
37
-
-
84857871055
-
The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films
-
Bergin SM, Chen Y-H, Rathmell AR, Charbonneau P, Li Z-Y, Wiley BJ. The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films. Nanoscale. 2012;4:1996.
-
(2012)
Nanoscale.
, vol.4
, pp. 1996
-
-
Bergin, S.M.1
Chen, Y.-H.2
Rathmell, A.R.3
Charbonneau, P.4
Li, Z.-Y.5
Wiley, B.J.6
-
38
-
-
84884946436
-
Electrical percolation in quasi-two-dimensional metal nanowire networks for transparent conductors
-
Mutiso RM, Winey KI. Electrical percolation in quasi-two-dimensional metal nanowire networks for transparent conductors. Phys Rev E. 2013;88:032134.
-
(2013)
Phys Rev E.
, vol.88
, pp. 032134
-
-
Mutiso, R.M.1
Winey, K.I.2
-
39
-
-
84867304446
-
From percolating to dense random stick networks: conductivity model investigation
-
Zezelj M, Stankovic I. From percolating to dense random stick networks: conductivity model investigation. Phys Rev B. 2012;86:134202.
-
(2012)
Phys Rev B.
, vol.86
, pp. 134202
-
-
Zezelj, M.1
Stankovic, I.2
-
40
-
-
84879080520
-
High performance, transparent, and stretchable electrodes using graphene-metal nanowire hybrid structures
-
Lee M-S, Lee K, Kim S-Y, Lee H, Park J, Choi K-H, et al. High performance, transparent, and stretchable electrodes using graphene-metal nanowire hybrid structures. Nano Lett. 2013;13:2814–21.
-
(2013)
Nano Lett.
, vol.13
, pp. 2814-2821
-
-
Lee, M.-S.1
Lee, K.2
Kim, S.-Y.3
Lee, H.4
Park, J.5
Choi, K.-H.6
-
41
-
-
47749150628
-
Measurement of the elastic properties and intrinsic strength of monolayer graphene
-
Lee C, Wei X, Kysar JW, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science. 2008;321:385–8.
-
(2008)
Science.
, vol.321
, pp. 385-388
-
-
Lee, C.1
Wei, X.2
Kysar, J.W.3
Hone, J.4
-
42
-
-
58049149830
-
Stretchable electronics: materials strategies and devices
-
Kim D-H, Rogers JA. Stretchable electronics: materials strategies and devices. Adv Mater. 2008;20:4887–92.
-
(2008)
Adv Mater.
, vol.20
, pp. 4887-4892
-
-
Kim, D.-H.1
Rogers, J.A.2
-
43
-
-
84905648758
-
Stretchable, wireless sensors and functional substrates for epidermal characterization of sweat
-
Huang X, Liu Y, Chen K, Shin W-J, Lu C-J, Kong G-W, et al. Stretchable, wireless sensors and functional substrates for epidermal characterization of sweat. Small. 2014;10:3083–90.
-
(2014)
Small.
, vol.10
, pp. 3083-3090
-
-
Huang, X.1
Liu, Y.2
Chen, K.3
Shin, W.-J.4
Lu, C.-J.5
Kong, G.-W.6
-
44
-
-
84943194466
-
Fractal design concepts for stretchable electronics
-
Fan JA, Yeo W-H, Su Y, Hattori Y, Lee W, Jung S-Y, et al. Fractal design concepts for stretchable electronics. Nature Comm. 2014;5:3266.
-
(2014)
Nature Comm.
, vol.5
, pp. 3266
-
-
Fan, J.A.1
Yeo, W.-H.2
Su, Y.3
Hattori, Y.4
Lee, W.5
Jung, S.-Y.6
-
45
-
-
77958500761
-
Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics
-
Kim R-H, Kim D-H, Xiao J, Kim BH, Park S-I, Panilaitis B, et al. Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics. Nature Mater. 2010;9:929–37.
-
(2010)
Nature Mater.
, vol.9
, pp. 929-937
-
-
Kim, R.-H.1
Kim, D.-H.2
Xiao, J.3
Kim, B.H.4
Park, S.-I.5
Panilaitis, B.6
-
46
-
-
84908423974
-
Flexible transparent conducting hybrid film using a surface-embedded copper nanowire network: a highly oxidation-resistant copper nanowire electrode for flexible optoelectronics
-
Im HG, Jung SH, Jin J, Lee D, Lee J, Lee D, et al. Flexible transparent conducting hybrid film using a surface-embedded copper nanowire network: a highly oxidation-resistant copper nanowire electrode for flexible optoelectronics. ACS Nano. 2014;8:10973–9.
-
(2014)
ACS Nano.
, vol.8
, pp. 10973-10979
-
-
Im, H.G.1
Jung, S.H.2
Jin, J.3
Lee, D.4
Lee, J.5
Lee, D.6
-
47
-
-
84893864810
-
An intrinsically stretchable nanowire photodetector with a fully embedded structure
-
Yan C, Wang J, Wang X, Kang W, Cui M, Foo CY, et al. An intrinsically stretchable nanowire photodetector with a fully embedded structure. Adv Mater. 2014;26:943–50.
-
(2014)
Adv Mater.
, vol.26
, pp. 943-950
-
-
Yan, C.1
Wang, J.2
Wang, X.3
Kang, W.4
Cui, M.5
Foo, C.Y.6
-
48
-
-
51749096677
-
A rubberlike stretchable active matrix using elastic conductors
-
Tsuyoshi S, Yoshiaki N, Kenji H, Takanori F, Takuzo A, Takao S. A rubberlike stretchable active matrix using elastic conductors. Science. 2008;321:1468.
-
(2008)
Science.
, vol.321
, pp. 1468
-
-
Tsuyoshi, S.1
Yoshiaki, N.2
Kenji, H.3
Takanori, F.4
Takuzo, A.5
Takao, S.6
-
49
-
-
84866486776
-
Highly conductive and stretchable silver nanowire conductors
-
Xu F, Zhu Y. Highly conductive and stretchable silver nanowire conductors. Adv Mater. 2012;24:5117–22.
-
(2012)
Adv Mater.
, vol.24
, pp. 5117-5122
-
-
Xu, F.1
Zhu, Y.2
-
50
-
-
80755159173
-
Electrical breakdown of nanowires
-
Zhao J, Sun H, Dai S, Wang Y, Zhu J. Electrical breakdown of nanowires. Nano Lett. 2011;11:4647–51.
-
(2011)
Nano Lett.
, vol.11
, pp. 4647-4651
-
-
Zhao, J.1
Sun, H.2
Dai, S.3
Wang, Y.4
Zhu, J.5
-
51
-
-
80054977743
-
Enhanced current drivability of CVD graphene interconnect in oxygen-deficient environment
-
Kang CG, Lee SK, Lee YG, Hwang HJ, Cho C, Lim SK, et al. Enhanced current drivability of CVD graphene interconnect in oxygen-deficient environment. IEEE Electron Device Lett. 2011;32:1591–3.
-
(2011)
IEEE Electron Device Lett.
, vol.32
, pp. 1591-1593
-
-
Kang, C.G.1
Lee, S.K.2
Lee, Y.G.3
Hwang, H.J.4
Cho, C.5
Lim, S.K.6
|