-
1
-
-
0035399946
-
Virulence factors of Candida albicans
-
Calderone R.A., Fonzi W.A. Virulence factors of Candida albicans. Trends Microbiol. 2001, 9:327-335.
-
(2001)
Trends Microbiol.
, vol.9
, pp. 327-335
-
-
Calderone, R.A.1
Fonzi, W.A.2
-
3
-
-
0028088413
-
Chronic mucocutaneous candidiasis
-
Kirkpatrick C.H. Chronic mucocutaneous candidiasis. J. Am. Acad. Dermatol. 1994, 31:S14-S17.
-
(1994)
J. Am. Acad. Dermatol.
, vol.31
, pp. S14-S17
-
-
Kirkpatrick, C.H.1
-
5
-
-
0038341229
-
Deep-seated candidal infections
-
ASM Press, R.A. Calderone (Ed.)
-
Filler S.G., Kullberg B.J. Deep-seated candidal infections. Candida and Candidiasis 2002, 341-348. ASM Press. R.A. Calderone (Ed.).
-
(2002)
Candida and Candidiasis
, pp. 341-348
-
-
Filler, S.G.1
Kullberg, B.J.2
-
7
-
-
0043197392
-
Adaptation of Candida albicans to the host environment: the role of morphogenesis in virulence and survival in mammalian hosts
-
Romani L., et al. Adaptation of Candida albicans to the host environment: the role of morphogenesis in virulence and survival in mammalian hosts. Curr. Opin. Microbiol. 2003, 6:338-343.
-
(2003)
Curr. Opin. Microbiol.
, vol.6
, pp. 338-343
-
-
Romani, L.1
-
8
-
-
77649229368
-
Cellular interactions of Candida albicans with human oral epithelial cells and enterocytes
-
Dalle F., et al. Cellular interactions of Candida albicans with human oral epithelial cells and enterocytes. Cell. Microbiol. 2010, 12:248-271.
-
(2010)
Cell. Microbiol.
, vol.12
, pp. 248-271
-
-
Dalle, F.1
-
9
-
-
6344285788
-
Transcriptional response of Candida albicans upon internalization by macrophages
-
Lorenz M.C., et al. Transcriptional response of Candida albicans upon internalization by macrophages. Eukaryot. Cell 2004, 3:1076-1087.
-
(2004)
Eukaryot. Cell
, vol.3
, pp. 1076-1087
-
-
Lorenz, M.C.1
-
10
-
-
44949243150
-
UME6, a novel filament-specific regulator of Candida albicans hyphal extension and virulence
-
Banerjee M., et al. UME6, a novel filament-specific regulator of Candida albicans hyphal extension and virulence. Mol. Biol. Cell 2008, 19:1354-1365.
-
(2008)
Mol. Biol. Cell
, vol.19
, pp. 1354-1365
-
-
Banerjee, M.1
-
11
-
-
58149339808
-
UME6 is a crucial downstream target of other transcriptional regulators of true hyphal development in Candida albicans
-
Zeidler U., et al. UME6 is a crucial downstream target of other transcriptional regulators of true hyphal development in Candida albicans. FEMS Yeast Res. 2009, 9:126-142.
-
(2009)
FEMS Yeast Res.
, vol.9
, pp. 126-142
-
-
Zeidler, U.1
-
12
-
-
58849131459
-
Expression levels of a filament-specific transcriptional regulator are sufficient to determine Candida albicans morphology and virulence
-
Carlisle P.L., et al. Expression levels of a filament-specific transcriptional regulator are sufficient to determine Candida albicans morphology and virulence. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:599-604.
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 599-604
-
-
Carlisle, P.L.1
-
13
-
-
2442548488
-
Hgc1, a novel hypha-specific G1 cyclin-related protein regulates Candida albicans hyphal morphogenesis
-
Zheng X., et al. Hgc1, a novel hypha-specific G1 cyclin-related protein regulates Candida albicans hyphal morphogenesis. EMBO J. 2004, 23:1845-1856.
-
(2004)
EMBO J.
, vol.23
, pp. 1845-1856
-
-
Zheng, X.1
-
14
-
-
34548078090
-
Phosphorylation of Rga2, a Cdc42 GAP, by CDK/Hgc1 is crucial for Candida albicans hyphal growth
-
Zheng X.D., et al. Phosphorylation of Rga2, a Cdc42 GAP, by CDK/Hgc1 is crucial for Candida albicans hyphal growth. EMBO J. 2007, 26:3760-3769.
-
(2007)
EMBO J.
, vol.26
, pp. 3760-3769
-
-
Zheng, X.D.1
-
15
-
-
68949158410
-
Hyphal chain formation in Candida albicans: Cdc28-Hgc1 phosphorylation of Efg1 represses cell separation genes
-
Wang A., et al. Hyphal chain formation in Candida albicans: Cdc28-Hgc1 phosphorylation of Efg1 represses cell separation genes. Mol. Cell. Biol. 2009, 29:4406-4416.
-
(2009)
Mol. Cell. Biol.
, vol.29
, pp. 4406-4416
-
-
Wang, A.1
-
16
-
-
77956395106
-
Hyphal growth in Candida albicans requires the phosphorylation of Sec2 by the Cdc28-Ccn1/Hgc1 kinase
-
Bishop A., et al. Hyphal growth in Candida albicans requires the phosphorylation of Sec2 by the Cdc28-Ccn1/Hgc1 kinase. EMBO J. 2010, 29:2930-2942.
-
(2010)
EMBO J.
, vol.29
, pp. 2930-2942
-
-
Bishop, A.1
-
17
-
-
79960300024
-
CDK-dependent phosphorylation of Mob2 is essential for hyphal development in Candida albicans
-
Gutierrez-Escribano P., et al. CDK-dependent phosphorylation of Mob2 is essential for hyphal development in Candida albicans. Mol. Biol. Cell 2011, 22:2458-2469.
-
(2011)
Mol. Biol. Cell
, vol.22
, pp. 2458-2469
-
-
Gutierrez-Escribano, P.1
-
18
-
-
44949151700
-
Sep7 is essential to modify septin ring dynamics and inhibit cell separation during Candida albicans hyphal growth
-
Gonzalez-Novo A., et al. Sep7 is essential to modify septin ring dynamics and inhibit cell separation during Candida albicans hyphal growth. Mol. Biol. Cell 2008, 19:1509-1518.
-
(2008)
Mol. Biol. Cell
, vol.19
, pp. 1509-1518
-
-
Gonzalez-Novo, A.1
-
19
-
-
84898711985
-
In Candida albicans, phosphorylation of Exo84 by Cdk1-Hgc1 is necessary for efficient hyphal extension
-
Caballero-Lima D., Sudbery P.E. In Candida albicans, phosphorylation of Exo84 by Cdk1-Hgc1 is necessary for efficient hyphal extension. Mol. Biol. Cell 2014, 25:1097-1110.
-
(2014)
Mol. Biol. Cell
, vol.25
, pp. 1097-1110
-
-
Caballero-Lima, D.1
Sudbery, P.E.2
-
20
-
-
34548190576
-
Cyclin-dependent kinases control septin phosphorylation in Candida albicans hyphal development
-
Sinha I., et al. Cyclin-dependent kinases control septin phosphorylation in Candida albicans hyphal development. Dev. Cell 2007, 13:421-432.
-
(2007)
Dev. Cell
, vol.13
, pp. 421-432
-
-
Sinha, I.1
-
21
-
-
81955167940
-
Polarized growth in fungi: symmetry breaking and hyphal formation
-
Arkowitz R.A., Bassilana M. Polarized growth in fungi: symmetry breaking and hyphal formation. Semin. Cell Dev. Biol. 2011, 22:806-815.
-
(2011)
Semin. Cell Dev. Biol.
, vol.22
, pp. 806-815
-
-
Arkowitz, R.A.1
Bassilana, M.2
-
22
-
-
0345391036
-
Adhesive and mammalian transglutaminase substrate properties of Candida albicans Hwp1
-
Staab J.F., et al. Adhesive and mammalian transglutaminase substrate properties of Candida albicans Hwp1. Science 1999, 283:1535-1538.
-
(1999)
Science
, vol.283
, pp. 1535-1538
-
-
Staab, J.F.1
-
23
-
-
57149114313
-
The hyphal-associated adhesin and invasin Als3 of Candida albicans mediates iron acquisition from host ferritin
-
Almeida R.S., et al. the hyphal-associated adhesin and invasin Als3 of Candida albicans mediates iron acquisition from host ferritin. PLoS Pathog. 2008, 4:e1000217.
-
(2008)
PLoS Pathog.
, vol.4
, pp. e1000217
-
-
Almeida, R.S.1
-
24
-
-
33947273030
-
Als3 is a Candida albicans invasin that binds to cadherins and induces endocytosis by host cells
-
Phan Q.T., et al. Als3 is a Candida albicans invasin that binds to cadherins and induces endocytosis by host cells. PLoS Biol. 2007, 5:e64.
-
(2007)
PLoS Biol.
, vol.5
, pp. e64
-
-
Phan, Q.T.1
-
25
-
-
4344604358
-
A family of Candida cell surface haem-binding proteins involved in haemin and haemoglobin-iron utilization
-
Weissman Z., Kornitzer D. A family of Candida cell surface haem-binding proteins involved in haemin and haemoglobin-iron utilization. Mol. Microbiol. 2004, 53:1209-1220.
-
(2004)
Mol. Microbiol.
, vol.53
, pp. 1209-1220
-
-
Weissman, Z.1
Kornitzer, D.2
-
26
-
-
41849099497
-
Rapid identification of Candida albicans by filamentation on serum and serum substitutes
-
Taschdjian C.L., et al. Rapid identification of Candida albicans by filamentation on serum and serum substitutes. AMA J. Dis. Child. 1960, 99:212-215.
-
(1960)
AMA J. Dis. Child.
, vol.99
, pp. 212-215
-
-
Taschdjian, C.L.1
-
27
-
-
0016319838
-
Yeast-mycelial conversion induced by N-acetyl-D-glucosamine in Candida albicans
-
Simonetti N., et al. Yeast-mycelial conversion induced by N-acetyl-D-glucosamine in Candida albicans. Nature 1974, 250:344-346.
-
(1974)
Nature
, vol.250
, pp. 344-346
-
-
Simonetti, N.1
-
28
-
-
0021268761
-
A characterization of pH-regulated dimorphism in Candida albicans
-
Buffo J., et al. A characterization of pH-regulated dimorphism in Candida albicans. Mycopathologia 1984, 85:21-30.
-
(1984)
Mycopathologia
, vol.85
, pp. 21-30
-
-
Buffo, J.1
-
29
-
-
79960921059
-
Hyphal development in Candida albicans requires two temporally linked changes in promoter chromatin for initiation and maintenance
-
Lu Y., et al. Hyphal development in Candida albicans requires two temporally linked changes in promoter chromatin for initiation and maintenance. PLoS Biol. 2011, 9:e1001105.
-
(2011)
PLoS Biol.
, vol.9
, pp. e1001105
-
-
Lu, Y.1
-
30
-
-
27844459081
-
2 sensing with cAMP signaling and virulence
-
2 sensing with cAMP signaling and virulence. Curr. Biol. 2005, 15:2021-2026.
-
(2005)
Curr. Biol.
, vol.15
, pp. 2021-2026
-
-
Klengel, T.1
-
31
-
-
0032746554
-
Filamentous growth of Candida albicans in response to physical environmental cues and its regulation by the unique CZF1 gene
-
Brown D.H., et al. Filamentous growth of Candida albicans in response to physical environmental cues and its regulation by the unique CZF1 gene. Mol. Microbiol. 1999, 34:651-662.
-
(1999)
Mol. Microbiol.
, vol.34
, pp. 651-662
-
-
Brown, D.H.1
-
32
-
-
0035200240
-
Signaling through adenylyl cyclase is essential for hyphal growth and virulence in the pathogenic fungus Candida albicans
-
Rocha C.R., et al. Signaling through adenylyl cyclase is essential for hyphal growth and virulence in the pathogenic fungus Candida albicans. Mol. Biol. Cell 2001, 12:3631-3643.
-
(2001)
Mol. Biol. Cell
, vol.12
, pp. 3631-3643
-
-
Rocha, C.R.1
-
33
-
-
0035033538
-
CAP1, an adenylate cyclase-associated protein gene, regulates bud-hypha transitions, filamentous growth, and cyclic AMP levels and is required for virulence of Candida albicans
-
Bahn Y.S., Sundstrom P. CAP1, an adenylate cyclase-associated protein gene, regulates bud-hypha transitions, filamentous growth, and cyclic AMP levels and is required for virulence of Candida albicans. J. Bacteriol. 2001, 183:3211-3223.
-
(2001)
J. Bacteriol.
, vol.183
, pp. 3211-3223
-
-
Bahn, Y.S.1
Sundstrom, P.2
-
34
-
-
75149198375
-
Candida albicans Cyr1, Cap1 and G-actin form a sensor/effector apparatus for activating cAMP synthesis in hyphal growth
-
Zou H., et al. Candida albicans Cyr1, Cap1 and G-actin form a sensor/effector apparatus for activating cAMP synthesis in hyphal growth. Mol. Microbiol. 2009, 75:579-591.
-
(2009)
Mol. Microbiol.
, vol.75
, pp. 579-591
-
-
Zou, H.1
-
35
-
-
74749098838
-
The Ras/cAMP/PKA signaling pathway and virulence in Candida albicans
-
Hogan D.A., Sundstrom P. The Ras/cAMP/PKA signaling pathway and virulence in Candida albicans. Future Microbiol. 2009, 4:1263-1270.
-
(2009)
Future Microbiol.
, vol.4
, pp. 1263-1270
-
-
Hogan, D.A.1
Sundstrom, P.2
-
36
-
-
80052965456
-
Growth of Candida albicans hyphae
-
Sudbery P.E. Growth of Candida albicans hyphae. Nat. Rev. Microbiol. 2011, 9:737-748.
-
(2011)
Nat. Rev. Microbiol.
, vol.9
, pp. 737-748
-
-
Sudbery, P.E.1
-
37
-
-
84862905987
-
Regulation of phenotypic transitions in the fungal pathogen Candida albicans
-
Huang G. Regulation of phenotypic transitions in the fungal pathogen Candida albicans. Virulence 2012, 3:251-261.
-
(2012)
Virulence
, vol.3
, pp. 251-261
-
-
Huang, G.1
-
38
-
-
34250759780
-
Environmental sensing and signal transduction pathways regulating morphopathogenic determinants of Candida albicans
-
Biswas S., et al. Environmental sensing and signal transduction pathways regulating morphopathogenic determinants of Candida albicans. Microbiol. Mol. Biol. Rev. 2007, 71:348-376.
-
(2007)
Microbiol. Mol. Biol. Rev.
, vol.71
, pp. 348-376
-
-
Biswas, S.1
-
39
-
-
82555169608
-
Candida albicans developmental regulation: adenylyl cyclase as a coincidence detector of parallel signals
-
Hogan D.A., Muhlschlegel F.A. Candida albicans developmental regulation: adenylyl cyclase as a coincidence detector of parallel signals. Curr. Opin. Microbiol. 2011, 14:682-686.
-
(2011)
Curr. Opin. Microbiol.
, vol.14
, pp. 682-686
-
-
Hogan, D.A.1
Muhlschlegel, F.A.2
-
40
-
-
0030824249
-
Control of filament formation in Candida albicans by the transcriptional repressor TUP1
-
Braun B.R., Johnson A.D. Control of filament formation in Candida albicans by the transcriptional repressor TUP1. Science 1997, 277:105-109.
-
(1997)
Science
, vol.277
, pp. 105-109
-
-
Braun, B.R.1
Johnson, A.D.2
-
41
-
-
19644385116
-
Induction of the Candida albicans filamentous growth program by relief of transcriptional repression: a genome-wide analysis
-
Kadosh D., Johnson A.D. Induction of the Candida albicans filamentous growth program by relief of transcriptional repression: a genome-wide analysis. Mol. Biol. Cell 2005, 16:2903-2912.
-
(2005)
Mol. Biol. Cell
, vol.16
, pp. 2903-2912
-
-
Kadosh, D.1
Johnson, A.D.2
-
42
-
-
0035801610
-
NRG1, a repressor of filamentous growth in C.albicans, is down-regulated during filament induction
-
Braun B.R., et al. NRG1, a repressor of filamentous growth in C.albicans, is down-regulated during filament induction. EMBO J. 2001, 20:4753-4761.
-
(2001)
EMBO J.
, vol.20
, pp. 4753-4761
-
-
Braun, B.R.1
-
43
-
-
17944370004
-
NRG1 represses yeast-hypha morphogenesis and hypha-specific gene expression in Candida albicans
-
Murad A.M., et al. NRG1 represses yeast-hypha morphogenesis and hypha-specific gene expression in Candida albicans. EMBO J. 2001, 20:4742-4752.
-
(2001)
EMBO J.
, vol.20
, pp. 4742-4752
-
-
Murad, A.M.1
-
44
-
-
23844485512
-
Tetracycline-inducible gene expression and gene deletion in Candida albicans
-
Park Y.N., Morschhauser J. Tetracycline-inducible gene expression and gene deletion in Candida albicans. Eukaryot. Cell 2005, 4:1328-1342.
-
(2005)
Eukaryot. Cell
, vol.4
, pp. 1328-1342
-
-
Park, Y.N.1
Morschhauser, J.2
-
45
-
-
33749513604
-
Inhibition of filamentation can be used to treat disseminated candidiasis
-
Saville S.P., et al. Inhibition of filamentation can be used to treat disseminated candidiasis. Antimicrob. Agents Chemother. 2006, 50:3312-3316.
-
(2006)
Antimicrob. Agents Chemother.
, vol.50
, pp. 3312-3316
-
-
Saville, S.P.1
-
46
-
-
74249093221
-
A phenotypic profile of the Candida albicans regulatory network
-
Homann O.R., et al. A phenotypic profile of the Candida albicans regulatory network. PLoS Genet. 2009, 5:e1000783.
-
(2009)
PLoS Genet.
, vol.5
, pp. e1000783
-
-
Homann, O.R.1
-
47
-
-
84893454260
-
Quorum sensing controls hyphal initiation in Candida albicans through Ubr1-mediated protein degradation
-
Lu Y., et al. Quorum sensing controls hyphal initiation in Candida albicans through Ubr1-mediated protein degradation. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:1975-1980.
-
(2014)
Proc. Natl. Acad. Sci. U.S.A.
, vol.111
, pp. 1975-1980
-
-
Lu, Y.1
-
48
-
-
4644309973
-
Transcription profiling of cyclic AMP signaling in Candida albicans
-
Harcus D., et al. Transcription profiling of cyclic AMP signaling in Candida albicans. Mol. Biol. Cell 2004, 15:4490-4499.
-
(2004)
Mol. Biol. Cell
, vol.15
, pp. 4490-4499
-
-
Harcus, D.1
-
49
-
-
0035724309
-
Distinct and redundant roles of the two protein kinase A isoforms Tpk1p and Tpk2p in morphogenesis and growth of Candida albicans
-
Bockmuhl D.P., et al. Distinct and redundant roles of the two protein kinase A isoforms Tpk1p and Tpk2p in morphogenesis and growth of Candida albicans. Mol. Microbiol. 2001, 42:1243-1257.
-
(2001)
Mol. Microbiol.
, vol.42
, pp. 1243-1257
-
-
Bockmuhl, D.P.1
-
50
-
-
0345270046
-
The two isoforms of the cAMP-dependent protein kinase catalytic subunit are involved in the control of dimorphism in the human fungal pathogen Candida albicans
-
Cloutier M., et al. The two isoforms of the cAMP-dependent protein kinase catalytic subunit are involved in the control of dimorphism in the human fungal pathogen Candida albicans. Fungal Genet. Biol. 2003, 38:133-141.
-
(2003)
Fungal Genet. Biol.
, vol.38
, pp. 133-141
-
-
Cloutier, M.1
-
51
-
-
0035053398
-
A potential phosphorylation site for an A-type kinase in the Efg1 regulator protein contributes to hyphal morphogenesis of Candida albicans
-
Bockmuhl D.P., Ernst J.F. A potential phosphorylation site for an A-type kinase in the Efg1 regulator protein contributes to hyphal morphogenesis of Candida albicans. Genetics 2001, 157:1523-1530.
-
(2001)
Genetics
, vol.157
, pp. 1523-1530
-
-
Bockmuhl, D.P.1
Ernst, J.F.2
-
52
-
-
30044432810
-
The Flo8 transcription factor is essential for hyphal development and virulence in Candida albicans
-
Cao F., et al. The Flo8 transcription factor is essential for hyphal development and virulence in Candida albicans. Mol. Biol. Cell 2006, 17:295-307.
-
(2006)
Mol. Biol. Cell
, vol.17
, pp. 295-307
-
-
Cao, F.1
-
53
-
-
65049086509
-
Hsp90 orchestrates temperature-dependent Candida albicans morphogenesis via Ras1-PKA signaling
-
Shapiro R.S., et al. Hsp90 orchestrates temperature-dependent Candida albicans morphogenesis via Ras1-PKA signaling. Curr. Biol. 2009, 19:621-629.
-
(2009)
Curr. Biol.
, vol.19
, pp. 621-629
-
-
Shapiro, R.S.1
-
54
-
-
77954999438
-
Coupling temperature sensing and development: Hsp90 regulates morphogenetic signalling in Candida albicans
-
Shapiro R.S., Cowen L. Coupling temperature sensing and development: Hsp90 regulates morphogenetic signalling in Candida albicans. Virulence 2010, 1:45-48.
-
(2010)
Virulence
, vol.1
, pp. 45-48
-
-
Shapiro, R.S.1
Cowen, L.2
-
55
-
-
46749132932
-
Bacterial peptidoglycan triggers Candida albicans hyphal growth by directly activating the adenylyl cyclase Cyr1p
-
Xu X.L., et al. Bacterial peptidoglycan triggers Candida albicans hyphal growth by directly activating the adenylyl cyclase Cyr1p. Cell Host Microbe 2008, 4:28-39.
-
(2008)
Cell Host Microbe
, vol.4
, pp. 28-39
-
-
Xu, X.L.1
-
56
-
-
77950456763
-
N-acetylglucosamine induces white to opaque switching, a mating prerequisite in Candida albicans
-
Huang G., et al. N-acetylglucosamine induces white to opaque switching, a mating prerequisite in Candida albicans. PLoS Pathog. 2010, 6:e1000806.
-
(2010)
PLoS Pathog.
, vol.6
, pp. e1000806
-
-
Huang, G.1
-
57
-
-
84864086156
-
BRG1 and NRG1 form a novel feedback circuit regulating Candida albicans hypha formation and virulence
-
Cleary I.A., et al. BRG1 and NRG1 form a novel feedback circuit regulating Candida albicans hypha formation and virulence. Mol. Microbiol. 2012, 85:557-573.
-
(2012)
Mol. Microbiol.
, vol.85
, pp. 557-573
-
-
Cleary, I.A.1
-
58
-
-
0035406382
-
Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol
-
Hornby J.M., et al. Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. Appl. Environ. Microbiol. 2001, 67:2982-2992.
-
(2001)
Appl. Environ. Microbiol.
, vol.67
, pp. 2982-2992
-
-
Hornby, J.M.1
-
59
-
-
36849075751
-
Farnesol and dodecanol effects on the Candida albicans Ras1-cAMP signalling pathway and the regulation of morphogenesis
-
Davis-Hanna A., et al. Farnesol and dodecanol effects on the Candida albicans Ras1-cAMP signalling pathway and the regulation of morphogenesis. Mol. Microbiol. 2008, 67:47-62.
-
(2008)
Mol. Microbiol.
, vol.67
, pp. 47-62
-
-
Davis-Hanna, A.1
-
60
-
-
0034213352
-
Peptides accelerate their uptake by activating a ubiquitin-dependent proteolytic pathway
-
Turner G.C., et al. Peptides accelerate their uptake by activating a ubiquitin-dependent proteolytic pathway. Nature 2000, 405:579-583.
-
(2000)
Nature
, vol.405
, pp. 579-583
-
-
Turner, G.C.1
-
61
-
-
38349098190
-
The N-end rule pathway is a sensor of heme
-
Hu R.G., et al. The N-end rule pathway is a sensor of heme. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:76-81.
-
(2008)
Proc. Natl. Acad. Sci. U.S.A.
, vol.105
, pp. 76-81
-
-
Hu, R.G.1
-
62
-
-
79961066995
-
The quorum-sensing molecules farnesol/homoserine lactone and dodecanol operate via distinct modes of action in Candida albicans
-
Hall R.A., et al. The quorum-sensing molecules farnesol/homoserine lactone and dodecanol operate via distinct modes of action in Candida albicans. Eukaryot. Cell 2011, 10:1034-1040.
-
(2011)
Eukaryot. Cell
, vol.10
, pp. 1034-1040
-
-
Hall, R.A.1
-
63
-
-
9644264336
-
A Pseudomonas aeruginosa quorum-sensing molecule influences Candida albicans morphology
-
Hogan D.A., et al. A Pseudomonas aeruginosa quorum-sensing molecule influences Candida albicans morphology. Mol. Microbiol. 2004, 54:1212-1223.
-
(2004)
Mol. Microbiol.
, vol.54
, pp. 1212-1223
-
-
Hogan, D.A.1
-
64
-
-
0034932733
-
The histone deacetylase genes HDA1 and RPD3 play distinct roles in regulation of high-frequency phenotypic switching in Candida albicans
-
Srikantha T., et al. The histone deacetylase genes HDA1 and RPD3 play distinct roles in regulation of high-frequency phenotypic switching in Candida albicans. J. Bacteriol. 2001, 183:4614-4625.
-
(2001)
J. Bacteriol.
, vol.183
, pp. 4614-4625
-
-
Srikantha, T.1
-
65
-
-
84907128740
-
An amino acid liquid synthetic medium for the development of mycelial and yeast forms of Candida albicans
-
Lee K.L., et al. An amino acid liquid synthetic medium for the development of mycelial and yeast forms of Candida albicans. Sabouraudia 1975, 13:148-153.
-
(1975)
Sabouraudia
, vol.13
, pp. 148-153
-
-
Lee, K.L.1
-
66
-
-
0028569082
-
Suppression of hyphal formation in Candida albicans by mutation of a STE12 homolog
-
Liu H., et al. Suppression of hyphal formation in Candida albicans by mutation of a STE12 homolog. Science 1994, 266:1723-1726.
-
(1994)
Science
, vol.266
, pp. 1723-1726
-
-
Liu, H.1
-
67
-
-
32044465506
-
TOR signaling in growth and metabolism
-
Wullschleger S., et al. TOR signaling in growth and metabolism. Cell 2006, 124:471-484.
-
(2006)
Cell
, vol.124
, pp. 471-484
-
-
Wullschleger, S.1
-
68
-
-
61449094788
-
The protein kinase Tor1 regulates adhesin gene expression in Candida albicans
-
Bastidas R.J., et al. The protein kinase Tor1 regulates adhesin gene expression in Candida albicans. PLoS Pathog. 2009, 5:e1000294.
-
(2009)
PLoS Pathog.
, vol.5
, pp. e1000294
-
-
Bastidas, R.J.1
-
69
-
-
1942439646
-
The highly conserved and multifunctional NuA4 HAT complex
-
Doyon Y., Cote J. The highly conserved and multifunctional NuA4 HAT complex. Curr. Opin. Genet. Dev. 2004, 14:147-154.
-
(2004)
Curr. Opin. Genet. Dev.
, vol.14
, pp. 147-154
-
-
Doyon, Y.1
Cote, J.2
-
70
-
-
77954076396
-
The Set3/Hos2 histone deacetylase complex attenuates cAMP/PKA signaling to regulate morphogenesis and virulence of Candida albicans
-
Hnisz D., et al. The Set3/Hos2 histone deacetylase complex attenuates cAMP/PKA signaling to regulate morphogenesis and virulence of Candida albicans. PLoS Pathog. 2010, 6:e1000889.
-
(2010)
PLoS Pathog.
, vol.6
, pp. e1000889
-
-
Hnisz, D.1
-
71
-
-
84872007065
-
A histone deacetylase adjusts transcription kinetics at coding sequences during Candida albicans morphogenesis
-
Hnisz D., et al. A histone deacetylase adjusts transcription kinetics at coding sequences during Candida albicans morphogenesis. PLoS Genet. 2012, 8:e1003118.
-
(2012)
PLoS Genet.
, vol.8
, pp. e1003118
-
-
Hnisz, D.1
-
72
-
-
84861205961
-
A GATA transcription factor recruits Hda1 in response to reduced Tor1 signaling to establish a hyphal chromatin state in Candida albicans
-
Lu Y., et al. A GATA transcription factor recruits Hda1 in response to reduced Tor1 signaling to establish a hyphal chromatin state in Candida albicans. PLoS Pathog. 2012, 8:e1002663.
-
(2012)
PLoS Pathog.
, vol.8
, pp. e1002663
-
-
Lu, Y.1
-
73
-
-
84855998530
-
Roles of Candida albicans Gat2, a GATA-type zinc finger transcription factor, in biofilm formation, filamentous growth and virulence
-
Du H., et al. Roles of Candida albicans Gat2, a GATA-type zinc finger transcription factor, in biofilm formation, filamentous growth and virulence. PLoS ONE 2012, 7:e29707.
-
(2012)
PLoS ONE
, vol.7
, pp. e29707
-
-
Du, H.1
-
74
-
-
84856117019
-
A recently evolved transcriptional network controls biofilm development in Candida albicans
-
Nobile C.J., et al. A recently evolved transcriptional network controls biofilm development in Candida albicans. Cell 2012, 148:126-138.
-
(2012)
Cell
, vol.148
, pp. 126-138
-
-
Nobile, C.J.1
-
75
-
-
84873328069
-
Reduced TOR signaling sustains hyphal development in Candida albicans by lowering Hog1 basal activity
-
Su C., et al. Reduced TOR signaling sustains hyphal development in Candida albicans by lowering Hog1 basal activity. Mol. Biol. Cell 2013, 24:385-397.
-
(2013)
Mol. Biol. Cell
, vol.24
, pp. 385-397
-
-
Su, C.1
-
76
-
-
0032908687
-
Role of the mitogen-activated protein kinase Hog1p in morphogenesis and virulence of Candida albicans
-
Alonso-Monge R., et al. Role of the mitogen-activated protein kinase Hog1p in morphogenesis and virulence of Candida albicans. J. Bacteriol. 1999, 181:3058-3068.
-
(1999)
J. Bacteriol.
, vol.181
, pp. 3058-3068
-
-
Alonso-Monge, R.1
-
77
-
-
4344587177
-
A conserved stress-activated protein kinase regulates a core stress response in the human pathogen Candida albicans
-
Smith D.A., et al. A conserved stress-activated protein kinase regulates a core stress response in the human pathogen Candida albicans. Mol. Biol. Cell 2004, 15:4179-4190.
-
(2004)
Mol. Biol. Cell
, vol.15
, pp. 4179-4190
-
-
Smith, D.A.1
-
78
-
-
17644384332
-
The Pbs2 MAP kinase kinase is essential for the oxidative-stress response in the fungal pathogen Candida albicans
-
Arana D.M., et al. The Pbs2 MAP kinase kinase is essential for the oxidative-stress response in the fungal pathogen Candida albicans. Microbiology 2005, 151:1033-1049.
-
(2005)
Microbiology
, vol.151
, pp. 1033-1049
-
-
Arana, D.M.1
-
79
-
-
31944434598
-
Role of the Hog1 stress-activated protein kinase in the global transcriptional response to stress in the fungal pathogen Candida albicans
-
Enjalbert B., et al. Role of the Hog1 stress-activated protein kinase in the global transcriptional response to stress in the fungal pathogen Candida albicans. Mol. Biol. Cell 2006, 17:1018-1032.
-
(2006)
Mol. Biol. Cell
, vol.17
, pp. 1018-1032
-
-
Enjalbert, B.1
-
80
-
-
79954556424
-
The Candida albicans-specific gene EED1 encodes a key regulator of hyphal extension
-
Martin R., et al. The Candida albicans-specific gene EED1 encodes a key regulator of hyphal extension. PLoS ONE 2011, 6:e18394.
-
(2011)
PLoS ONE
, vol.6
, pp. e18394
-
-
Martin, R.1
-
81
-
-
58149269544
-
Dynamic, morphotype-specific Candida albicans beta-glucan exposure during infection and drug treatment
-
Wheeler R.T., et al. Dynamic, morphotype-specific Candida albicans beta-glucan exposure during infection and drug treatment. PLoS Pathog. 2008, 4:e1000227.
-
(2008)
PLoS Pathog.
, vol.4
, pp. e1000227
-
-
Wheeler, R.T.1
-
82
-
-
75849128743
-
Comparative transcript profiling of Candida albicans and Candida dubliniensis identifies SFL2, a C. albicans gene required for virulence in a reconstituted epithelial infection model
-
Spiering M.J., et al. Comparative transcript profiling of Candida albicans and Candida dubliniensis identifies SFL2, a C. albicans gene required for virulence in a reconstituted epithelial infection model. Eukaryot. Cell 2010, 9:251-265.
-
(2010)
Eukaryot. Cell
, vol.9
, pp. 251-265
-
-
Spiering, M.J.1
-
83
-
-
79951494040
-
Candida albicans Sfl2, a temperature-induced transcriptional regulator, is required for virulence in a murine gastrointestinal infection model
-
Song W., et al. Candida albicans Sfl2, a temperature-induced transcriptional regulator, is required for virulence in a murine gastrointestinal infection model. FEMS Yeast Res. 2011, 11:209-222.
-
(2011)
FEMS Yeast Res.
, vol.11
, pp. 209-222
-
-
Song, W.1
-
84
-
-
0034811675
-
The basic helix-loop-helix transcription factor Cph2 regulates hyphal development in Candida albicans partly via TEC1
-
Lane S., et al. The basic helix-loop-helix transcription factor Cph2 regulates hyphal development in Candida albicans partly via TEC1. Mol. Cell. Biol. 2001, 21:6418-6428.
-
(2001)
Mol. Cell. Biol.
, vol.21
, pp. 6418-6428
-
-
Lane, S.1
-
85
-
-
0033985662
-
RIM101-dependent and-independent pathways govern pH responses in Candida albicans
-
Davis D., et al. RIM101-dependent and-independent pathways govern pH responses in Candida albicans. Mol. Cell. Biol. 2000, 20:971-978.
-
(2000)
Mol. Cell. Biol.
, vol.20
, pp. 971-978
-
-
Davis, D.1
-
86
-
-
0034116761
-
Dominant active alleles of RIM101 (PRR2) bypass the pH restriction on filamentation of Candida albicans
-
El Barkani A., et al. Dominant active alleles of RIM101 (PRR2) bypass the pH restriction on filamentation of Candida albicans. Mol. Cell. Biol. 2000, 20:4635-4647.
-
(2000)
Mol. Cell. Biol.
, vol.20
, pp. 4635-4647
-
-
El Barkani, A.1
-
87
-
-
84899623973
-
A 5' UTR-mediated translational efficiency mechanism inhibits the Candida albicans morphological transition
-
Childers D.S., et al. A 5' UTR-mediated translational efficiency mechanism inhibits the Candida albicans morphological transition. Mol. Microbiol. 2014, 92:570-585.
-
(2014)
Mol. Microbiol.
, vol.92
, pp. 570-585
-
-
Childers, D.S.1
-
88
-
-
84887860497
-
Synergistic regulation of hyphal elongation by hypoxia, CO(2), and nutrient conditions controls the virulence of Candida albicans
-
Lu Y., et al. Synergistic regulation of hyphal elongation by hypoxia, CO(2), and nutrient conditions controls the virulence of Candida albicans. Cell Host Microbe 2013, 14:499-509.
-
(2013)
Cell Host Microbe
, vol.14
, pp. 499-509
-
-
Lu, Y.1
-
89
-
-
44349091967
-
Oxygen-regulated degradation of fission yeast SREBP by Ofd1, a prolyl hydroxylase family member
-
Hughes B.T., Espenshade P.J. Oxygen-regulated degradation of fission yeast SREBP by Ofd1, a prolyl hydroxylase family member. EMBO J. 2008, 27:1491-1501.
-
(2008)
EMBO J.
, vol.27
, pp. 1491-1501
-
-
Hughes, B.T.1
Espenshade, P.J.2
-
90
-
-
77954095162
-
Systematic screens of a Candida albicans homozygous deletion library decouple morphogenetic switching and pathogenicity
-
Noble S.M., et al. Systematic screens of a Candida albicans homozygous deletion library decouple morphogenetic switching and pathogenicity. Nat. Genet. 2010, 42:590-598.
-
(2010)
Nat. Genet.
, vol.42
, pp. 590-598
-
-
Noble, S.M.1
|