메뉴 건너뛰기




Volumn 293, Issue , 2015, Pages 80-96

Memetic feature selection algorithm for multi-label classification

Author keywords

Local refinement; Memetic algorithm; Multi label feature selection

Indexed keywords

FEATURE EXTRACTION; GENETIC ALGORITHMS;

EID: 84922621907     PISSN: 00200255     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ins.2014.09.020     Document Type: Article
Times cited : (145)

References (39)
  • 1
    • 3042597440 scopus 로고    scopus 로고
    • Learning multi-label scene classification
    • M. Boutell, J. Luo, X. Shen, and C. Brown Learning multi-label scene classification Pattern Recognit. 37 9 2004 1757 1771
    • (2004) Pattern Recognit. , vol.37 , Issue.9 , pp. 1757-1771
    • Boutell, M.1    Luo, J.2    Shen, X.3    Brown, C.4
  • 2
    • 49749095082 scopus 로고    scopus 로고
    • Document transformation for multi-label feature selection in text categorization
    • Omaha, USA
    • W. Chen, J. Yan, B. Zhang, Z. Chen, Q. Yang, Document transformation for multi-label feature selection in text categorization, in: Proc. 7th IEEE Int. Conf. Data Mining, Omaha, USA, 2007, pp. 451-456.
    • (2007) Proc. 7th IEEE Int. Conf. Data Mining , pp. 451-456
    • Chen, W.1    Yan, J.2    Zhang, B.3    Chen, Z.4    Yang, Q.5
  • 4
    • 78049326859 scopus 로고    scopus 로고
    • Regret analysis for performance metrics in multi-label classification: The case of hamming and subset zero-one loss
    • K. Dembczyński, W. Waegeman, W. Cheng, and E. Hüllermeier Regret analysis for performance metrics in multi-label classification: the case of hamming and subset zero-one loss Lect. Note Comput. Sci. 6321 2010 280 295
    • (2010) Lect. Note Comput. Sci. , vol.6321 , pp. 280-295
    • Dembczyński, K.1    Waegeman, W.2    Cheng, W.3    Hüllermeier, E.4
  • 5
    • 84865223006 scopus 로고    scopus 로고
    • On label dependence and loss minimization in multi-label classification
    • K. Dembczyński, W. Waegeman, W. Cheng, and E. Hüllermeier On label dependence and loss minimization in multi-label classification Mach. Learn. 88 1-2 2012 5 45
    • (2012) Mach. Learn. , vol.88 , Issue.12 , pp. 5-45
    • Dembczyński, K.1    Waegeman, W.2    Cheng, W.3    Hüllermeier, E.4
  • 6
    • 79960535211 scopus 로고    scopus 로고
    • A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
    • J. Derrac, S. García, D. Molina, and F. Herrera A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms Swarm Evol. Comput. 1 2011 3 18
    • (2011) Swarm Evol. Comput. , vol.1 , pp. 3-18
    • Derrac, J.1    García, S.2    Molina, D.3    Herrera, F.4
  • 8
    • 79957967497 scopus 로고    scopus 로고
    • Feature selection for multi-label classification problems
    • G. Doquire, and M. Verleysen Feature selection for multi-label classification problems Lect. Note Comput. Sci. 6691 2011 9 16
    • (2011) Lect. Note Comput. Sci. , vol.6691 , pp. 9-16
    • Doquire, G.1    Verleysen, M.2
  • 9
    • 84884203069 scopus 로고    scopus 로고
    • Mutual information-based feature selection for multilabel classification
    • G. Doquire, and M. Verleysen Mutual information-based feature selection for multilabel classification Neurocomputing 122 2013 148 155
    • (2013) Neurocomputing , vol.122 , pp. 148-155
    • Doquire, G.1    Verleysen, M.2
  • 10
    • 85139983802 scopus 로고
    • Supervised and unsupervised discretization of continuous features
    • Tahoe City, USA
    • J. Dougherty, R. Kohavi, M. Sahami, Supervised and unsupervised discretization of continuous features, in: Proc. 12th Int. Conf. Machine Learning, Tahoe City, USA, 1995, pp. 194-202.
    • (1995) Proc. 12th Int. Conf. Machine Learning , pp. 194-202
    • Dougherty, J.1    Kohavi, R.2    Sahami, M.3
  • 11
  • 13
    • 77953179079 scopus 로고    scopus 로고
    • Linear dimensionality reduction for multi-label classification
    • Pasadena, USA
    • S. Ji, J. Ye, Linear dimensionality reduction for multi-label classification, in: Proc. 21th Int. Joint Conf. Artificial Intelligence, Pasadena, USA, 2009, pp. 1077-1082.
    • (2009) Proc. 21th Int. Joint Conf. Artificial Intelligence , pp. 1077-1082
    • Ji, S.1    Ye, J.2
  • 14
    • 22944464423 scopus 로고    scopus 로고
    • The enron corpus: A new dataset for email classification research
    • B. Klimt, and Y. Yang The enron corpus: a new dataset for email classification research Lect. Notes Comput. Sci. 3201 2004 217 226
    • (2004) Lect. Notes Comput. Sci. , vol.3201 , pp. 217-226
    • Klimt, B.1    Yang, Y.2
  • 15
    • 84859904592 scopus 로고    scopus 로고
    • GMLC: A multi-label feature selection framework for graph classification
    • X. Kong, and P. Yu gMLC: a multi-label feature selection framework for graph classification Knowl. Inf. Syst. 31 2 2012 281 305
    • (2012) Knowl. Inf. Syst. , vol.31 , Issue.2 , pp. 281-305
    • Kong, X.1    Yu, P.2
  • 16
    • 84870668654 scopus 로고    scopus 로고
    • Feature selection for multi-label classification using multivariate mutual information
    • J. Lee, and D.W. Kim Feature selection for multi-label classification using multivariate mutual information Pattern Recogn. Lett. 34 3 2013 349 357
    • (2013) Pattern Recogn. Lett. , vol.34 , Issue.3 , pp. 349-357
    • Lee, J.1    Kim, D.W.2
  • 17
    • 84866881522 scopus 로고    scopus 로고
    • Approximating mutual information for multi-label feature selection
    • J. Lee, H. Lim, and D.W. Kim Approximating mutual information for multi-label feature selection Electron. Lett. 48 15 2012 929 930
    • (2012) Electron. Lett. , vol.48 , Issue.15 , pp. 929-930
    • Lee, J.1    Lim, H.2    Kim, D.W.3
  • 18
    • 84861617363 scopus 로고    scopus 로고
    • An extensive experimental comparison of methods for multi-label learning
    • G. Madjarov, D. Kocev, D. Gjorgjevikj, and S. Džeroski An extensive experimental comparison of methods for multi-label learning Pattern Recogn. 45 9 2012 3084 3104
    • (2012) Pattern Recogn. , vol.45 , Issue.9 , pp. 3084-3104
    • Madjarov, G.1    Kocev, D.2    Gjorgjevikj, D.3    Džeroski, S.4
  • 21
  • 22
    • 77958554908 scopus 로고    scopus 로고
    • Semi-supervised dimension reduction for multi-label classification
    • Atlanta, USA
    • B. Qian, I. Davidson, Semi-supervised dimension reduction for multi-label classification, in: Proc. 24th AAAI Conf. Artificial Intelligence, Atlanta, USA, 2010, pp. 569-574.
    • (2010) Proc. 24th AAAI Conf. Artificial Intelligence , pp. 569-574
    • Qian, B.1    Davidson, I.2
  • 23
    • 84880106608 scopus 로고    scopus 로고
    • A pruned problem transformation method for multi-label classification
    • Christchurch, New Zealand
    • J. Read, A pruned problem transformation method for multi-label classification, in: Proc. New Zealand Computer Science Research Student Conf., Christchurch, New Zealand, 2008, pp. 143-150.
    • (2008) Proc. New Zealand Computer Science Research Student Conf. , pp. 143-150
    • Read, J.1
  • 24
    • 0141990695 scopus 로고    scopus 로고
    • Theoretical and empirical analysis of ReliefF and RReliefF
    • M. Robnik-Šikonja, and I. Kononenko Theoretical and empirical analysis of ReliefF and RReliefF Mach. Learn. 53 1-2 2003 23 69
    • (2003) Mach. Learn. , vol.53 , Issue.12 , pp. 23-69
    • Robnik-Šikonja, M.1    Kononenko, I.2
  • 25
    • 2942594395 scopus 로고    scopus 로고
    • Fast feature selection using a simple estimation of distribution algorithm: A case study on splice site prediction
    • Y. Saeys, S. Degroeve, D. Aeyels, Y. Van de Peer, and P. Rouzé Fast feature selection using a simple estimation of distribution algorithm: a case study on splice site prediction Bioinformatics 19 2003 ii179 ii188
    • (2003) Bioinformatics , vol.19 , pp. ii179-ii188
    • Saeys, Y.1    Degroeve, S.2    Aeyels, D.3    Van De Peer, Y.4    Rouzé, P.5
  • 26
    • 84875172457 scopus 로고    scopus 로고
    • A comparison of multi-label feature selection methods using the problem transformation approach
    • N. Spolaôr, E.A. Cherman, M.C. Monard, and H.D. Lee A comparison of multi-label feature selection methods using the problem transformation approach Electron. Notes Theor. Comput. Sci. 292 2013 135 151
    • (2013) Electron. Notes Theor. Comput. Sci. , vol.292 , pp. 135-151
    • Spolaôr, N.1    Cherman, E.A.2    Monard, M.C.3    Lee, H.D.4
  • 31
    • 77956611003 scopus 로고    scopus 로고
    • Mr2PSO: A maximum relevance minimum redundancy feature selection method based on swarm intelligence for support vector machine classification
    • A. Unler, A. Murat, and R.B. Chinnam mr2PSO: a maximum relevance minimum redundancy feature selection method based on swarm intelligence for support vector machine classification Inf. Sci. 181 2011 4625 4641
    • (2011) Inf. Sci. , vol.181 , pp. 4625-4641
    • Unler, A.1    Murat, A.2    Chinnam, R.B.3
  • 32
    • 0003389370 scopus 로고    scopus 로고
    • The GENITOR algorithm and selection pressure: Why rank-based allocation of reproductive trials is best
    • D. Whitley, The GENITOR algorithm and selection pressure: why rank-based allocation of reproductive trials is best, in: Proc. 3rd Int. Conf. Genetic Algorithms, pp. 116-121.
    • Proc. 3rd Int. Conf. Genetic Algorithms , pp. 116-121
    • Whitley, D.1
  • 33
    • 0003141935 scopus 로고    scopus 로고
    • A comparative study on feature selection in text categorization
    • Nashville, USA
    • Y. Yang, J. Pedersen, A comparative study on feature selection in text categorization, in: Proc. 14th Int. Conf. Machine Learning, Nashville, USA, 1997, pp. 412-420.
    • (1997) Proc. 14th Int. Conf. Machine Learning , pp. 412-420
    • Yang, Y.1    Pedersen, J.2
  • 34
    • 67650995440 scopus 로고    scopus 로고
    • Feature selection for multi-label naive Bayes classification
    • M. Zhang, J. Peña, and V. Robles Feature selection for multi-label naive Bayes classification Inf. Sci. 179 19 2009 3218 3229
    • (2009) Inf. Sci. , vol.179 , Issue.19 , pp. 3218-3229
    • Zhang, M.1    Peña, J.2    Robles, V.3
  • 36
    • 33947681316 scopus 로고    scopus 로고
    • ML-KNN: A lazy learning approach to multi-label learning
    • M. Zhang, and Z. Zhou ML-KNN: a lazy learning approach to multi-label learning Pattern Recognit. 40 7 2007 2038 2048
    • (2007) Pattern Recognit. , vol.40 , Issue.7 , pp. 2038-2048
    • Zhang, M.1    Zhou, Z.2
  • 37
    • 84897109377 scopus 로고    scopus 로고
    • A review on multi-label learning algorithm
    • M. Zhang, and Z. Zhou A review on multi-label learning algorithm IEEE Trans. Knowl. Data Eng. 99 2013 10.1109/TKDE.2013.39
    • (2013) IEEE Trans. Knowl. Data Eng. , vol.99
    • Zhang, M.1    Zhou, Z.2
  • 38
    • 77951263213 scopus 로고    scopus 로고
    • Towards a memetic feature selection paradigm
    • Z. Zhu, S. Jia, and Z. Ji Towards a memetic feature selection paradigm IEEE Comput. Intell. Mag. 5 2 2010 41 53
    • (2010) IEEE Comput. Intell. Mag. , vol.5 , Issue.2 , pp. 41-53
    • Zhu, Z.1    Jia, S.2    Ji, Z.3
  • 39
    • 33847646332 scopus 로고    scopus 로고
    • Wrapper-filter feature selection algorithm using a memetic framework
    • Z. Zhu, Y. Ong, and M. Dash Wrapper-filter feature selection algorithm using a memetic framework IEEE Trans. Syst. Man Cybern. Part B: Cybern. 37 1 2007 70 76
    • (2007) IEEE Trans. Syst. Man Cybern. Part B: Cybern. , vol.37 , Issue.1 , pp. 70-76
    • Zhu, Z.1    Ong, Y.2    Dash, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.