-
1
-
-
3042597440
-
Learning multi-label scene classification
-
M. Boutell, J. Luo, X. Shen, and C. Brown Learning multi-label scene classification Pattern Recognit. 37 9 2004 1757 1771
-
(2004)
Pattern Recognit.
, vol.37
, Issue.9
, pp. 1757-1771
-
-
Boutell, M.1
Luo, J.2
Shen, X.3
Brown, C.4
-
2
-
-
49749095082
-
Document transformation for multi-label feature selection in text categorization
-
Omaha, USA
-
W. Chen, J. Yan, B. Zhang, Z. Chen, Q. Yang, Document transformation for multi-label feature selection in text categorization, in: Proc. 7th IEEE Int. Conf. Data Mining, Omaha, USA, 2007, pp. 451-456.
-
(2007)
Proc. 7th IEEE Int. Conf. Data Mining
, pp. 451-456
-
-
Chen, W.1
Yan, J.2
Zhang, B.3
Chen, Z.4
Yang, Q.5
-
4
-
-
78049326859
-
Regret analysis for performance metrics in multi-label classification: The case of hamming and subset zero-one loss
-
K. Dembczyński, W. Waegeman, W. Cheng, and E. Hüllermeier Regret analysis for performance metrics in multi-label classification: the case of hamming and subset zero-one loss Lect. Note Comput. Sci. 6321 2010 280 295
-
(2010)
Lect. Note Comput. Sci.
, vol.6321
, pp. 280-295
-
-
Dembczyński, K.1
Waegeman, W.2
Cheng, W.3
Hüllermeier, E.4
-
5
-
-
84865223006
-
On label dependence and loss minimization in multi-label classification
-
K. Dembczyński, W. Waegeman, W. Cheng, and E. Hüllermeier On label dependence and loss minimization in multi-label classification Mach. Learn. 88 1-2 2012 5 45
-
(2012)
Mach. Learn.
, vol.88
, Issue.12
, pp. 5-45
-
-
Dembczyński, K.1
Waegeman, W.2
Cheng, W.3
Hüllermeier, E.4
-
6
-
-
79960535211
-
A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
-
J. Derrac, S. García, D. Molina, and F. Herrera A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms Swarm Evol. Comput. 1 2011 3 18
-
(2011)
Swarm Evol. Comput.
, vol.1
, pp. 3-18
-
-
Derrac, J.1
García, S.2
Molina, D.3
Herrera, F.4
-
8
-
-
79957967497
-
Feature selection for multi-label classification problems
-
G. Doquire, and M. Verleysen Feature selection for multi-label classification problems Lect. Note Comput. Sci. 6691 2011 9 16
-
(2011)
Lect. Note Comput. Sci.
, vol.6691
, pp. 9-16
-
-
Doquire, G.1
Verleysen, M.2
-
9
-
-
84884203069
-
Mutual information-based feature selection for multilabel classification
-
G. Doquire, and M. Verleysen Mutual information-based feature selection for multilabel classification Neurocomputing 122 2013 148 155
-
(2013)
Neurocomputing
, vol.122
, pp. 148-155
-
-
Doquire, G.1
Verleysen, M.2
-
10
-
-
85139983802
-
Supervised and unsupervised discretization of continuous features
-
Tahoe City, USA
-
J. Dougherty, R. Kohavi, M. Sahami, Supervised and unsupervised discretization of continuous features, in: Proc. 12th Int. Conf. Machine Learning, Tahoe City, USA, 1995, pp. 194-202.
-
(1995)
Proc. 12th Int. Conf. Machine Learning
, pp. 194-202
-
-
Dougherty, J.1
Kohavi, R.2
Sahami, M.3
-
12
-
-
83055191234
-
Correlated multi-label feature selection
-
Glasgow, UK
-
Q. Gu, Z. Li, J. Han, Correlated multi-label feature selection, in: Proc. 20th ACM Int. Conf. Information and Knowledge Management, Glasgow, UK, 2011, pp. 1087-1096.
-
(2011)
Proc. 20th ACM Int. Conf. Information and Knowledge Management
, pp. 1087-1096
-
-
Gu, Q.1
Li, Z.2
Han, J.3
-
13
-
-
77953179079
-
Linear dimensionality reduction for multi-label classification
-
Pasadena, USA
-
S. Ji, J. Ye, Linear dimensionality reduction for multi-label classification, in: Proc. 21th Int. Joint Conf. Artificial Intelligence, Pasadena, USA, 2009, pp. 1077-1082.
-
(2009)
Proc. 21th Int. Joint Conf. Artificial Intelligence
, pp. 1077-1082
-
-
Ji, S.1
Ye, J.2
-
14
-
-
22944464423
-
The enron corpus: A new dataset for email classification research
-
B. Klimt, and Y. Yang The enron corpus: a new dataset for email classification research Lect. Notes Comput. Sci. 3201 2004 217 226
-
(2004)
Lect. Notes Comput. Sci.
, vol.3201
, pp. 217-226
-
-
Klimt, B.1
Yang, Y.2
-
15
-
-
84859904592
-
GMLC: A multi-label feature selection framework for graph classification
-
X. Kong, and P. Yu gMLC: a multi-label feature selection framework for graph classification Knowl. Inf. Syst. 31 2 2012 281 305
-
(2012)
Knowl. Inf. Syst.
, vol.31
, Issue.2
, pp. 281-305
-
-
Kong, X.1
Yu, P.2
-
16
-
-
84870668654
-
Feature selection for multi-label classification using multivariate mutual information
-
J. Lee, and D.W. Kim Feature selection for multi-label classification using multivariate mutual information Pattern Recogn. Lett. 34 3 2013 349 357
-
(2013)
Pattern Recogn. Lett.
, vol.34
, Issue.3
, pp. 349-357
-
-
Lee, J.1
Kim, D.W.2
-
17
-
-
84866881522
-
Approximating mutual information for multi-label feature selection
-
J. Lee, H. Lim, and D.W. Kim Approximating mutual information for multi-label feature selection Electron. Lett. 48 15 2012 929 930
-
(2012)
Electron. Lett.
, vol.48
, Issue.15
, pp. 929-930
-
-
Lee, J.1
Lim, H.2
Kim, D.W.3
-
18
-
-
84861617363
-
An extensive experimental comparison of methods for multi-label learning
-
G. Madjarov, D. Kocev, D. Gjorgjevikj, and S. Džeroski An extensive experimental comparison of methods for multi-label learning Pattern Recogn. 45 9 2012 3084 3104
-
(2012)
Pattern Recogn.
, vol.45
, Issue.9
, pp. 3084-3104
-
-
Madjarov, G.1
Kocev, D.2
Gjorgjevikj, D.3
Džeroski, S.4
-
22
-
-
77958554908
-
Semi-supervised dimension reduction for multi-label classification
-
Atlanta, USA
-
B. Qian, I. Davidson, Semi-supervised dimension reduction for multi-label classification, in: Proc. 24th AAAI Conf. Artificial Intelligence, Atlanta, USA, 2010, pp. 569-574.
-
(2010)
Proc. 24th AAAI Conf. Artificial Intelligence
, pp. 569-574
-
-
Qian, B.1
Davidson, I.2
-
23
-
-
84880106608
-
A pruned problem transformation method for multi-label classification
-
Christchurch, New Zealand
-
J. Read, A pruned problem transformation method for multi-label classification, in: Proc. New Zealand Computer Science Research Student Conf., Christchurch, New Zealand, 2008, pp. 143-150.
-
(2008)
Proc. New Zealand Computer Science Research Student Conf.
, pp. 143-150
-
-
Read, J.1
-
24
-
-
0141990695
-
Theoretical and empirical analysis of ReliefF and RReliefF
-
M. Robnik-Šikonja, and I. Kononenko Theoretical and empirical analysis of ReliefF and RReliefF Mach. Learn. 53 1-2 2003 23 69
-
(2003)
Mach. Learn.
, vol.53
, Issue.12
, pp. 23-69
-
-
Robnik-Šikonja, M.1
Kononenko, I.2
-
25
-
-
2942594395
-
Fast feature selection using a simple estimation of distribution algorithm: A case study on splice site prediction
-
Y. Saeys, S. Degroeve, D. Aeyels, Y. Van de Peer, and P. Rouzé Fast feature selection using a simple estimation of distribution algorithm: a case study on splice site prediction Bioinformatics 19 2003 ii179 ii188
-
(2003)
Bioinformatics
, vol.19
, pp. ii179-ii188
-
-
Saeys, Y.1
Degroeve, S.2
Aeyels, D.3
Van De Peer, Y.4
Rouzé, P.5
-
26
-
-
84875172457
-
A comparison of multi-label feature selection methods using the problem transformation approach
-
N. Spolaôr, E.A. Cherman, M.C. Monard, and H.D. Lee A comparison of multi-label feature selection methods using the problem transformation approach Electron. Notes Theor. Comput. Sci. 292 2013 135 151
-
(2013)
Electron. Notes Theor. Comput. Sci.
, vol.292
, pp. 135-151
-
-
Spolaôr, N.1
Cherman, E.A.2
Monard, M.C.3
Lee, H.D.4
-
28
-
-
80054927779
-
Multi-label classification by analyzing labels dependencies
-
Bled, Slovenia
-
L. Tenenboim, L. Rokach, B. Shapira, Multi-label classification by analyzing labels dependencies, in: Proc. 1st Int. Workshop Learning from Multi-label Data, Bled, Slovenia, 2009, pp. 117-132.
-
(2009)
Proc. 1st Int. Workshop Learning from Multi-label Data
, pp. 117-132
-
-
Tenenboim, L.1
Rokach, L.2
Shapira, B.3
-
29
-
-
84873447495
-
Multi-label classification of music into emotions
-
Philadelphia, USA
-
K. Trohidis, G. Tsoumakas, G. Kalliris, I. Vlahavas, Multi-label classification of music into emotions, in: Proc. 9th Int. Society Music Information Retrieval, Philadelphia, USA, 2008, pp. 325-330.
-
(2008)
Proc. 9th Int. Society Music Information Retrieval
, pp. 325-330
-
-
Trohidis, K.1
Tsoumakas, G.2
Kalliris, G.3
Vlahavas, I.4
-
31
-
-
77956611003
-
Mr2PSO: A maximum relevance minimum redundancy feature selection method based on swarm intelligence for support vector machine classification
-
A. Unler, A. Murat, and R.B. Chinnam mr2PSO: a maximum relevance minimum redundancy feature selection method based on swarm intelligence for support vector machine classification Inf. Sci. 181 2011 4625 4641
-
(2011)
Inf. Sci.
, vol.181
, pp. 4625-4641
-
-
Unler, A.1
Murat, A.2
Chinnam, R.B.3
-
32
-
-
0003389370
-
The GENITOR algorithm and selection pressure: Why rank-based allocation of reproductive trials is best
-
D. Whitley, The GENITOR algorithm and selection pressure: why rank-based allocation of reproductive trials is best, in: Proc. 3rd Int. Conf. Genetic Algorithms, pp. 116-121.
-
Proc. 3rd Int. Conf. Genetic Algorithms
, pp. 116-121
-
-
Whitley, D.1
-
33
-
-
0003141935
-
A comparative study on feature selection in text categorization
-
Nashville, USA
-
Y. Yang, J. Pedersen, A comparative study on feature selection in text categorization, in: Proc. 14th Int. Conf. Machine Learning, Nashville, USA, 1997, pp. 412-420.
-
(1997)
Proc. 14th Int. Conf. Machine Learning
, pp. 412-420
-
-
Yang, Y.1
Pedersen, J.2
-
34
-
-
67650995440
-
Feature selection for multi-label naive Bayes classification
-
M. Zhang, J. Peña, and V. Robles Feature selection for multi-label naive Bayes classification Inf. Sci. 179 19 2009 3218 3229
-
(2009)
Inf. Sci.
, vol.179
, Issue.19
, pp. 3218-3229
-
-
Zhang, M.1
Peña, J.2
Robles, V.3
-
35
-
-
77956201769
-
Multi-label learning by exploiting label dependency
-
Washington, USA
-
M. Zhang, K. Zhang, Multi-label learning by exploiting label dependency, in: Proc. 16th ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, Washington, USA, 2010, pp. 999-1008.
-
(2010)
Proc. 16th ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining
, pp. 999-1008
-
-
Zhang, M.1
Zhang, K.2
-
36
-
-
33947681316
-
ML-KNN: A lazy learning approach to multi-label learning
-
M. Zhang, and Z. Zhou ML-KNN: a lazy learning approach to multi-label learning Pattern Recognit. 40 7 2007 2038 2048
-
(2007)
Pattern Recognit.
, vol.40
, Issue.7
, pp. 2038-2048
-
-
Zhang, M.1
Zhou, Z.2
-
37
-
-
84897109377
-
A review on multi-label learning algorithm
-
M. Zhang, and Z. Zhou A review on multi-label learning algorithm IEEE Trans. Knowl. Data Eng. 99 2013 10.1109/TKDE.2013.39
-
(2013)
IEEE Trans. Knowl. Data Eng.
, vol.99
-
-
Zhang, M.1
Zhou, Z.2
-
38
-
-
77951263213
-
Towards a memetic feature selection paradigm
-
Z. Zhu, S. Jia, and Z. Ji Towards a memetic feature selection paradigm IEEE Comput. Intell. Mag. 5 2 2010 41 53
-
(2010)
IEEE Comput. Intell. Mag.
, vol.5
, Issue.2
, pp. 41-53
-
-
Zhu, Z.1
Jia, S.2
Ji, Z.3
-
39
-
-
33847646332
-
Wrapper-filter feature selection algorithm using a memetic framework
-
Z. Zhu, Y. Ong, and M. Dash Wrapper-filter feature selection algorithm using a memetic framework IEEE Trans. Syst. Man Cybern. Part B: Cybern. 37 1 2007 70 76
-
(2007)
IEEE Trans. Syst. Man Cybern. Part B: Cybern.
, vol.37
, Issue.1
, pp. 70-76
-
-
Zhu, Z.1
Ong, Y.2
Dash, M.3
|