메뉴 건너뛰기




Volumn 43, Issue 2, 2015, Pages 179-192

An overview of kernel alignment and its applications

Author keywords

Kernel alignment; Kernel evaluation measure; Kernel method; Learning kernels; Model selection

Indexed keywords

QUALITY CONTROL;

EID: 84922000504     PISSN: 02692821     EISSN: 15737462     Source Type: Journal    
DOI: 10.1007/s10462-012-9369-4     Document Type: Article
Times cited : (78)

References (47)
  • 1
    • 77953609277 scopus 로고    scopus 로고
    • A study of spam filtering using support vector machines
    • Amayri O, Bouguila N (2010) A study of spam filtering using support vector machines. Artif Intell Revi 34(1): 73–108
    • (2010) Artif Intell Revi , vol.34 , Issue.1 , pp. 73-108
    • Amayri, O.1    Bouguila, N.2
  • 2
    • 18444413258 scopus 로고    scopus 로고
    • Learning by kernel polarization
    • Baram Y (2005) Learning by kernel polarization. Neural Comput 17(6): 1264–1275
    • (2005) Neural Comput , vol.17 , Issue.6 , pp. 1264-1275
    • Baram, Y.1
  • 4
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for support vector machines
    • Chapelle O, Vapnik V, Mukherjee S (2002) Choosing multiple parameters for support vector machines. Mach Learn 46(1): 131–159
    • (2002) Mach Learn , vol.46 , Issue.1 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.2    Mukherjee, S.3
  • 6
    • 35448973729 scopus 로고    scopus 로고
    • A kernel optimization method based on the localized kernel Fisher criterion
    • Chen B, Liu H, Bao Z (2008) A kernel optimization method based on the localized kernel Fisher criterion. Pattern Recognit 41(3): 1098–1109
    • (2008) Pattern Recognit , vol.41 , Issue.3 , pp. 1098-1109
    • Chen, B.1    Liu, H.2    Bao, Z.3
  • 7
    • 84859313690 scopus 로고    scopus 로고
    • Evaluation measures for kernel optimization
    • Chudzian P (2012) Evaluation measures for kernel optimization. Pattern Recognit Lett 33(9): 1108–1116
    • (2012) Pattern Recognit Lett , vol.33 , Issue.9 , pp. 1108-1116
    • Chudzian, P.1
  • 8
    • 0141430928 scopus 로고    scopus 로고
    • Radius margin bounds for support vector machines with the RBF kernel
    • Chung KM, Kao WC, Sun T, Wang LL, Lin CJ (2003) Radius margin bounds for support vector machines with the RBF kernel. Neural Comput 15(11): 2463–2681
    • (2003) Neural Comput , vol.15 , Issue.11 , pp. 2463-2681
    • Chung, K.M.1    Kao, W.C.2    Sun, T.3    Wang, L.L.4    Lin, C.J.5
  • 9
    • 84859463794 scopus 로고    scopus 로고
    • Algorithms for learning kernels based on centered alignment
    • Cortes C, Mohri M, Rostamizadeh A (2012) Algorithms for learning kernels based on centered alignment. J Mach Learn Res 13: 795–828
    • (2012) J Mach Learn Res , vol.13 , pp. 795-828
    • Cortes, C.1    Mohri, M.2    Rostamizadeh, A.3
  • 11
    • 84867071132 scopus 로고    scopus 로고
    • A survey on feature extraction for pattern recognition
    • Ding S, Zhu H, Jia W, Su C (2012) A survey on feature extraction for pattern recognition. Artif Intell Rev 37(3): 169–180
    • (2012) Artif Intell Rev , vol.37 , Issue.3 , pp. 169-180
    • Ding, S.1    Zhu, H.2    Jia, W.3    Su, C.4
  • 12
    • 0037382208 scopus 로고    scopus 로고
    • Evaluation of simple performance measures for tuning SVM hyperparameters
    • Duan KB, Keerthi SS, Poo AN (2003) Evaluation of simple performance measures for tuning SVM hyperparameters. Neurocomputing 51: 41–59
    • (2003) Neurocomputing , vol.51 , pp. 41-59
    • Duan, K.B.1    Keerthi, S.S.2    Poo, A.N.3
  • 14
    • 80052213499 scopus 로고    scopus 로고
    • Multiple kernel learning algorithms
    • Gönen M, Alpayın E (2011) Multiple kernel learning algorithms. J Mach Learn Res 12: 2211–2268
    • (2011) J Mach Learn Res , vol.12 , pp. 2211-2268
    • Gönen, M.1    Alpayın, E.2
  • 17
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multiclass support vector machines
    • Hsu CW, Lin CJ (2002) A comparison of methods for multiclass support vector machines. IEEE Trans Neural Netw 13(2): 415–425
    • (2002) IEEE Trans Neural Netw , vol.13 , Issue.2 , pp. 415-425
    • Hsu, C.W.1    Lin, C.J.2
  • 18
    • 34248374186 scopus 로고    scopus 로고
    • Gradient-based optimization of kernel-target alignment for sequence kernels applied to bacterial gene start detection
    • Igel C, Glasmachers T, Mersch B, Pfeifer N, Meinicke P (2007) Gradient-based optimization of kernel-target alignment for sequence kernels applied to bacterial gene start detection. IEEE/ACM Trans Comput Biol Bioinform 4(2): 216–226
    • (2007) IEEE/ACM Trans Comput Biol Bioinform , vol.4 , Issue.2 , pp. 216-226
    • Igel, C.1    Glasmachers, T.2    Mersch, B.3    Pfeifer, N.4    Meinicke, P.5
  • 20
    • 1942514135 scopus 로고    scopus 로고
    • On the extensions of kernel alignment
    • Department of Computer Science, University of London:
    • Kandola J, Shawe-Taylor J, Cristianini N (2002a) On the extensions of kernel alignment. Technical report 120, Department of Computer Science, University of London
    • (2002) Technical report 120
    • Kandola, J.1    Shawe-Taylor, J.2    Cristianini, N.3
  • 21
    • 1942417983 scopus 로고    scopus 로고
    • Optimizing kernel alignment over combinations of kernels
    • Department of Computer Science, University of London:
    • Kandola J, Shawe-Taylor J, Cristianini N (2002b) Optimizing kernel alignment over combinations of kernels. Technical report 121, Department of Computer Science, University of London
    • (2002) Technical report 121
    • Kandola, J.1    Shawe-Taylor, J.2    Cristianini, N.3
  • 23
    • 0037822222 scopus 로고    scopus 로고
    • Asymptotic behaviors of support vector machines with Gaussian kernel
    • Keerthi SS, Lin CJ (2003) Asymptotic behaviors of support vector machines with Gaussian kernel. Neural Comput 15(7): 1667–1689
    • (2003) Neural Comput , vol.15 , Issue.7 , pp. 1667-1689
    • Keerthi, S.S.1    Lin, C.J.2
  • 25
    • 76749135664 scopus 로고    scopus 로고
    • Representation of Fisher criterion function in a kernel feature space
    • Lee SW, Bien Z (2010) Representation of Fisher criterion function in a kernel feature space. IEEE Trans Neural Netw 21(2): 333–339
    • (2010) IEEE Trans Neural Netw , vol.21 , Issue.2 , pp. 333-339
    • Lee, S.W.1    Bien, Z.2
  • 26
    • 83055179239 scopus 로고    scopus 로고
    • Liu Y, Liao S, Hou Y (2011) Learning kernels with upper bounds of leave-one-out error. In: , Glasgow, UK, pp 2205–2208
    • Liu Y, Liao S, Hou Y (2011) Learning kernels with upper bounds of leave-one-out error. In: Proceedings of the 20th ACM conference on information and knowledge management, Glasgow, UK, pp 2205–2208
    • Proceedings of the 20th ACM conference on information and knowledge management
  • 28
    • 30044438683 scopus 로고    scopus 로고
    • Combined SVM-based feature selection and classification
    • Neumann J, Schnörr C, Steidl G (2005) Combined SVM-based feature selection and classification. Mach Learn 61(1–3): 129–150
    • (2005) Mach Learn , vol.61 , Issue.1-3 , pp. 129-150
    • Neumann, J.1    Schnörr, C.2    Steidl, G.3
  • 29
    • 48149084956 scopus 로고    scopus 로고
    • An efficient kernel matrix evaluation measure
    • Nguyen CH, Ho TB (2008) An efficient kernel matrix evaluation measure. Pattern Recognit 41(11): 3366–3372
    • (2008) Pattern Recognit , vol.41 , Issue.11 , pp. 3366-3372
    • Nguyen, C.H.1    Ho, T.B.2
  • 30
    • 21844468979 scopus 로고    scopus 로고
    • Learning the kernel with hyperkernels
    • Ong CS, Williamson RC (2005) Learning the kernel with hyperkernels. J Mach Learn Res 6: 1043–1071
    • (2005) J Mach Learn Res , vol.6 , pp. 1043-1071
    • Ong, C.S.1    Williamson, R.C.2
  • 31
    • 65249182094 scopus 로고    scopus 로고
    • Richard C (2006) A greedy algorithm for optimizing the kernel alignment and the performance of kernel machines
    • Florence, Italy:
    • Pothin J-B, Richard C (2006) A greedy algorithm for optimizing the kernel alignment and the performance of kernel machines. In: Proceedings of 14th European signal processing conference, Florence, Italy, pp 4–8
    • Proceedings of 14th European signal processing conference , pp. 4-8
    • Pothin, J.-B.1
  • 34
    • 67549113661 scopus 로고    scopus 로고
    • A framework for multiple kernel support vector regression and its applications to siRNA efficacy prediction
    • Qiu S, Lane T (2009) A framework for multiple kernel support vector regression and its applications to siRNA efficacy prediction. IEEE/ACM Trans Comput Biol Bioinf 6(2): 190–199
    • (2009) IEEE/ACM Trans Comput Biol Bioinf , vol.6 , Issue.2 , pp. 190-199
    • Qiu, S.1    Lane, T.2
  • 36
    • 56749117943 scopus 로고    scopus 로고
    • In defense of one-vs-all classification
    • Rifkin R, Klautau A (2004) In defense of one-vs-all classification. J Mach Learn Res 5: 101–141
    • (2004) J Mach Learn Res , vol.5 , pp. 101-141
    • Rifkin, R.1    Klautau, A.2
  • 38
    • 24944537843 scopus 로고    scopus 로고
    • Large margin methods for structured and interdependent output variables
    • Tsochantaridis I, Joachims T, Hofmann T, Altun Y (2005) Large margin methods for structured and interdependent output variables. J Mach Learn Res 6: 1453–1484
    • (2005) J Mach Learn Res , vol.6 , pp. 1453-1484
    • Tsochantaridis, I.1    Joachims, T.2    Hofmann, T.3    Altun, Y.4
  • 41
    • 48049087439 scopus 로고    scopus 로고
    • Feature selection with kernel class separability
    • Wang L (2008) Feature selection with kernel class separability. IEEE Trans Pattern Anal Mach Intell 30(9): 1534–1546
    • (2008) IEEE Trans Pattern Anal Mach Intell , vol.30 , Issue.9 , pp. 1534-1546
    • Wang, L.1
  • 42
    • 57049126274 scopus 로고    scopus 로고
    • Two criteria for model selection in multiclass support vector machines
    • Wang L, Xue P, Chan KL (2008) Two criteria for model selection in multiclass support vector machines. IEEE Trans Syst Man Cybern B Cybern 38(6): 1432–1448
    • (2008) IEEE Trans Syst Man Cybern B Cybern , vol.38 , Issue.6 , pp. 1432-1448
    • Wang, L.1    Xue, P.2    Chan, K.L.3
  • 43
    • 78149327334 scopus 로고    scopus 로고
    • Learning by local kernel polarization
    • Wang T, Tian S, Huang H, Deng D (2009) Learning by local kernel polarization. Neurocomputing 72(13–15): 3077–3084
    • (2009) Neurocomputing , vol.72 , Issue.13-15 , pp. 3077-3084
    • Wang, T.1    Tian, S.2    Huang, H.3    Deng, D.4
  • 44
    • 79960901512 scopus 로고    scopus 로고
    • Using kernel alignment to select features of molecular descriptors in a QSAR study
    • Wong WWL, Burkowski FJ (2009) Using kernel alignment to select features of molecular descriptors in a QSAR study. IEEE/ACM Trans Comput Biol Bioinform 8(5): 1373–1384
    • (2009) IEEE/ACM Trans Comput Biol Bioinform , vol.8 , Issue.5 , pp. 1373-1384
    • Wong, W.W.L.1    Burkowski, F.J.2
  • 46
    • 15344339935 scopus 로고    scopus 로고
    • Optimizing the kernel in the empirical feature space
    • Xiong H, Swamy MNS, Ahmad MO (2005) Optimizing the kernel in the empirical feature space. IEEE Trans Neural Netw 16(2): 460–474
    • (2005) IEEE Trans Neural Netw , vol.16 , Issue.2 , pp. 460-474
    • Xiong, H.1    Swamy, M.N.S.2    Ahmad, M.O.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.