-
1
-
-
85045893940
-
Moderately hard, memory-bound functions
-
Abadi M, Burrows M, Manasse M, Wobber T (2003) Moderately hard, memory-bound functions. In: Proceedings of the 10th annual network and distributed system security symposium, California, USA, pp 25-39
-
(2003)
Proceedings of the 10th Annual Network and Distributed System Security Symposium, California, USA
, pp. 25-39
-
-
Abadi, M.1
Burrows, M.2
Manasse, M.3
Wobber, T.4
-
2
-
-
0001195789
-
Classification into two multivariate normal distributions with different covariance matrices
-
0113.13702 10.1214/aoms/1177704568 141198
-
T Anderson R Bahadur 1962 Classification into two multivariate normal distributions with different covariance matrices Ann Math Stat 33 2 420 431 0113.13702 10.1214/aoms/1177704568 141198
-
(1962)
Ann Math Stat
, vol.33
, Issue.2
, pp. 420-431
-
-
Anderson, T.1
Bahadur, R.2
-
3
-
-
3843075559
-
An evaluation of naive bayesian anti-spam filtering
-
Androutsopoulos I, Koutsias J, Chandrinos K, Paliouras G, Spyropoulos C (2000a) An evaluation of naive bayesian anti-spam filtering. In: Proceedings of the 11th European conference on machine learning, Barcelona, Spain, pp 9-17
-
(2000)
Proceedings of the 11th European Conference on Machine Learning, Barcelona, Spain
, pp. 9-17
-
-
Androutsopoulos, I.1
Koutsias, J.2
Chandrinos, K.3
Paliouras, G.4
Spyropoulos, C.5
-
4
-
-
0043157171
-
Learning to filter spam e-mail: A comparison of a naive bayesian and a memory-based approach
-
Androutsopoulos I, Paliouras G, Karkaletsis V, Sakkis G, Spyropoulos C, Stamatopoulos P (2000b) Learning to filter spam e-mail: A comparison of a naive bayesian and a memory-based approach. In: Proceedings of the workshop on machine learning and textual information access, 4th european conference on principles and practice of knowledge discovery in databases, Lyon, France, pp 1-13
-
(2000)
Proceedings of the Workshop on Machine Learning and Textual Information Access, 4th European Conference on Principles and Practice of Knowledge Discovery in Databases, Lyon, France
, pp. 1-13
-
-
Androutsopoulos, I.1
Paliouras, G.2
Karkaletsis, V.3
Sakkis, G.4
Spyropoulos, C.5
Stamatopoulos, P.6
-
7
-
-
68549094221
-
A survey of learning-based techniques of email spam filtering
-
10.1007/s10462-009-9109-6
-
E Blanzieri A Bryl 2006 A survey of learning-based techniques of email spam filtering Artif Intell Rev 29 1 63 92 10.1007/s10462-009-9109-6
-
(2006)
Artif Intell Rev
, vol.29
, Issue.1
, pp. 63-92
-
-
Blanzieri, E.1
Bryl, A.2
-
9
-
-
0242647875
-
-
Caropreso MF, Matwin S, Sebastiani F (2001) Text databases and document management: theory and practice, IGI Publishing, chap A learner-independent evaluation of the usefulness of statistical phrases for automated text categorization, pp 78-102
-
(2001)
Text Databases and Document Management: Theory and Practice, IGI Publishing, Chap A Learner-independent Evaluation of the Usefulness of Statistical Phrases for Automated Text Categorization
, pp. 78-102
-
-
Caropreso, M.F.1
Matwin, S.2
Sebastiani, F.3
-
13
-
-
0028424239
-
Improving generalization with active learning
-
D Cohn L Atlas R Ladner 1994 Improving generalization with active learning Mach Learn 15 2 201 221
-
(1994)
Mach Learn
, vol.15
, Issue.2
, pp. 201-221
-
-
Cohn, D.1
Atlas, L.2
Ladner, R.3
-
16
-
-
34249753618
-
Support-vector networks
-
0831.68098
-
C Cortes V Vapnik 1995 Support-vector networks Mach Learn 20 1 273 329 0831.68098
-
(1995)
Mach Learn
, vol.20
, Issue.1
, pp. 273-329
-
-
Cortes, C.1
Vapnik, V.2
-
22
-
-
0032594950
-
Support vector machines for spam categorization
-
10.1109/72.788645
-
H Drucker V Vapnik D Wu 1999 Support vector machines for spam categorization IEEE Trans Neural Netw 10 5 1048 1054 10.1109/72.788645
-
(1999)
IEEE Trans Neural Netw
, vol.10
, Issue.5
, pp. 1048-1054
-
-
Drucker, H.1
Vapnik, V.2
Wu, D.3
-
29
-
-
84957069814
-
Text categorization with support vector machines: Learning with many relevant features
-
Nédellec C, Rouveirol C (eds)
-
Joachims T (1998) Text categorization with support vector machines: learning with many relevant features. In: Nédellec C, Rouveirol C (eds) Proceedings of of ECML-98, 10th European conference on machine learning, Springer, Chemnitz, DE, 1398, pp 137-142
-
(1998)
Proceedings of of ECML-98, 10th European Conference on Machine Learning, Springer, Chemnitz, de
, vol.1398
, pp. 137-142
-
-
Joachims, T.1
-
30
-
-
0037735753
-
Advances in kernel methods: Support vector machines learning, MIT Press, Cambridge, MA, USA
-
Joachims T (1999a) Advances in kernel methods: support vector machines learning, MIT Press, Cambridge, MA, USA, chap Making large-scale support vector machine learning practical, pp 169-184
-
(1999)
Chap Making Large-scale Support Vector Machine Learning Practical
, pp. 169-184
-
-
Joachims, T.1
-
32
-
-
26444589396
-
Transductive support vector machines and applications in bioinformatics for promoter recognition
-
N Kasabov S Pang 2004 Transductive support vector machines and applications in bioinformatics for promoter recognition Neural Inf Process 3 2 31 38
-
(2004)
Neural Inf Process
, vol.3
, Issue.2
, pp. 31-38
-
-
Kasabov, N.1
Pang, S.2
-
33
-
-
3543110224
-
Online learning with kernels
-
10.1109/TSP.2004.830991 2085578
-
J Kivinen A Smola R Williamson 2004 Online learning with kernels IEEE Transac Signal Process 52 8 2165 2176 10.1109/TSP.2004.830991 2085578
-
(2004)
IEEE Transac Signal Process
, vol.52
, Issue.8
, pp. 2165-2176
-
-
Kivinen, J.1
Smola, A.2
Williamson, R.3
-
35
-
-
0037991523
-
Online training of support vector classifier
-
DOI 10.1016/S0031-3203(03)00038-4
-
KW Lau QH Wu 2003 Online training of support vector machine Pattern Recognit 36 8 1913 1920 1054.68123 10.1016/S0031-3203(03)00038-4 (Pubitemid 36551678)
-
(2003)
Pattern Recognition
, vol.36
, Issue.8
, pp. 1913-1920
-
-
Lau, K.W.1
Wu, Q.H.2
-
36
-
-
0036161242
-
Text categorization with support vector machines. How to represent texts in input space?
-
DOI 10.1023/A:1012491419635
-
E Leopold J Kindermann 2002 Text categorization with support vector machines. How to represent texts in input space? Machine Learning 46 13 423 444 0998.68112 10.1023/A:1012491419635 (Pubitemid 34129978)
-
(2002)
Machine Learning
, vol.46
, Issue.1-3
, pp. 423-444
-
-
Leopold, E.1
Kindermann, J.2
-
37
-
-
84883575579
-
Fast string kernels using inexact matching for protein sequences
-
2248023
-
C Leslie R Kuang 2004 Fast string kernels using inexact matching for protein sequences J Mach Learn Res 5 1435 1455 2248023
-
(2004)
J Mach Learn Res
, vol.5
, pp. 1435-1455
-
-
Leslie, C.1
Kuang, R.2
-
38
-
-
0036358995
-
The spectrum kernel: A string kernel for svm protein classification
-
Leslie C, Eskin E, Noble WS (2002) The spectrum kernel: a string kernel for svm protein classification. In: Proceedings of the pacific symposium on biocomputing, Hawaii, USA, pp 564-575
-
(2002)
Proceedings of the Pacific Symposium on Biocomputing, Hawaii, USA
, pp. 564-575
-
-
Leslie, C.1
Eskin, E.2
Noble, W.S.3
-
42
-
-
37349000905
-
Multi layer approach to defend ddos attacks caused by spam
-
Nagamalai C, Dhinakaran D, Lee JK (2007) Multi layer approach to defend ddos attacks caused by spam. In: Proceedings of the international conference on multimedia and ubiquitous engineering, Washington, DC, USA, pp 97-102
-
(2007)
Proceedings of the International Conference on Multimedia and Ubiquitous Engineering, Washington, DC, USA
, pp. 97-102
-
-
Nagamalai, C.1
Dhinakaran, D.2
Lee, J.K.3
-
43
-
-
84948481845
-
An algorithm for suffix stripping
-
M Porter 1980 An algorithm for suffix stripping Program 14 3 130 137
-
(1980)
Program
, vol.14
, Issue.3
, pp. 130-137
-
-
Porter, M.1
-
47
-
-
29144512262
-
RASE: Recognition of alternatively spliced exons in C.elegans
-
DOI 10.1093/bioinformatics/bti1053
-
G Rätsch S Sonnenburg B Schölkopf 2005 Rase: recognition of alternatively spliced exons in c. elegans Bioinformatics 21 1 i369 i377 10.1093/bioinformatics/bti1053 (Pubitemid 41794510)
-
(2005)
Bioinformatics
, vol.21
, Issue.SUPPL. 1
-
-
Ratsch, G.1
Sonnenburg, S.2
Scholkopf, B.3
-
49
-
-
0018446498
-
Mathematics and information retrival
-
10.1108/eb026671
-
G Salton 1979 Mathematics and information retrival J Doc 35 1 1 29 10.1108/eb026671
-
(1979)
J Doc
, vol.35
, Issue.1
, pp. 1-29
-
-
Salton, G.1
-
50
-
-
84968492782
-
Metric spaces and positive definite functions
-
0019.41502 10.2307/1989894 1501980
-
IJ Schoenberg 1938 Metric spaces and positive definite functions Trans Am Math Soc 44 3 522 536 0019.41502 10.2307/1989894 1501980
-
(1938)
Trans Am Math Soc
, vol.44
, Issue.3
, pp. 522-536
-
-
Schoenberg, I.J.1
-
53
-
-
0003408420
-
-
MIT Press Cambridge, MA
-
Scholkopf B, Smola A (2001) Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT Press, Cambridge, MA
-
(2001)
Learning with Kernels: Support Vector Machines, Regularization, Optimization, and beyond
-
-
Scholkopf, B.1
Smola, A.2
-
56
-
-
0002442796
-
Machine learning in automated text categorization
-
10.1145/505282.505283
-
F Sebastiani 2002 Machine learning in automated text categorization ACM Comput Surv 34 1 1 47 10.1145/505282.505283
-
(2002)
ACM Comput Surv
, vol.34
, Issue.1
, pp. 1-47
-
-
Sebastiani, F.1
-
57
-
-
77953612434
-
-
SpamAssassin (2008) http://spamassassin.apache.org/tests
-
(2008)
-
-
-
61
-
-
35548968410
-
Large margin semi-supervised learning
-
2353822
-
J Wang X Shen 2006 Large margin semi-supervised learning J Mach Learn Res 8 1 1867 1891 2353822
-
(2006)
J Mach Learn Res
, vol.8
, Issue.1
, pp. 1867-1891
-
-
Wang, J.1
Shen, X.2
-
63
-
-
52249109321
-
Transductive support vector machine for personal inboxes spam categorization
-
Xu C, Zhou Y (2007) Transductive support vector machine for personal inboxes spam categorization. In: Proceedings of the international conference on computational intelligence and security workshops, Washington, DC, USA, pp 459-463
-
(2007)
Proceedings of the International Conference on Computational Intelligence and Security Workshops, Washington, DC, USA
, pp. 459-463
-
-
Xu, C.1
Zhou, Y.2
-
65
-
-
1942484430
-
Semi-supervised learning using gaussian fields and harmonic functions
-
Zhu X, Ghahramani Z, Lafferty J (2003) Semi-supervised learning using gaussian fields and harmonic functions. In: Proceedings of the twentieth international conference on machine learning (ICML), Washington, DC, USA, pp 912-919
-
(2003)
Proceedings of the Twentieth International Conference on Machine Learning (ICML), Washington, DC, USA
, pp. 912-919
-
-
Zhu, X.1
Ghahramani, Z.2
Lafferty, J.3
|