-
1
-
-
77957951602
-
Genomes in conflict: maintaining genome integrity during virus infection
-
Weitzman MD, Lilley CE, Chaurushiya MS. 2010. Genomes in conflict: maintaining genome integrity during virus infection. Annu Rev Microbiol 64:61-81. http://dx.doi.org/10.1146/annurev.micro.112408.134016.
-
(2010)
Annu Rev Microbiol
, vol.64
, pp. 61-81
-
-
Weitzman, M.D.1
Lilley, C.E.2
Chaurushiya, M.S.3
-
2
-
-
27944462290
-
Inactivating intracellular antiviral responses during adenovirus infection
-
Weitzman MD, Ornelles DA. 2005. Inactivating intracellular antiviral responses during adenovirus infection. Oncogene 24:7686-7696. http://dx.doi.org/10.1038/sj.onc.1209063.
-
(2005)
Oncogene
, vol.24
, pp. 7686-7696
-
-
Weitzman, M.D.1
Ornelles, D.A.2
-
3
-
-
79955446411
-
Adenovirus core protein VII protects the viral genome from a DNA damage response at early times after infection
-
Karen KA, Hearing P. 2011. Adenovirus core protein VII protects the viral genome from a DNA damage response at early times after infection. J Virol 85:4135-4142. http://dx.doi.org/10.1128/JVI.02540-10.
-
(2011)
J Virol
, vol.85
, pp. 4135-4142
-
-
Karen, K.A.1
Hearing, P.2
-
4
-
-
0036720983
-
Analysis of the adenovirus E1B-55K-anchored proteome reveals its link to ubiquitination machinery
-
Harada JN, Shevchenko A, Pallas DC, Berk AJ. 2002. Analysis of the adenovirus E1B-55K-anchored proteome reveals its link to ubiquitination machinery. J Virol 76:9194-9206. http://dx.doi.org/10.1128/JVI.76.18.9194-9206.2002.
-
(2002)
J Virol
, vol.76
, pp. 9194-9206
-
-
Harada, J.N.1
Shevchenko, A.2
Pallas, D.C.3
Berk, A.J.4
-
5
-
-
0035577765
-
Degradation of p53 by adenovirus E4orf6 and E1B55K proteins occurs via a novel mechanism involving a Cullin-containing complex
-
Querido E, Blanchette P, Yan Q, Kamura T, Morrison M, Boivin D, Kaelin WG, Conaway RC, Conaway JW, Branton PE. 2001. Degradation of p53 by adenovirus E4orf6 and E1B55K proteins occurs via a novel mechanism involving a Cullin-containing complex. Genes Dev 15:3104-3117. http://dx.doi.org/10.1101/gad.926401.
-
(2001)
Genes Dev
, vol.15
, pp. 3104-3117
-
-
Querido, E.1
Blanchette, P.2
Yan, Q.3
Kamura, T.4
Morrison, M.5
Boivin, D.6
Kaelin, W.G.7
Conaway, R.C.8
Conaway, J.W.9
Branton, P.E.10
-
6
-
-
0037130170
-
Adenovirus oncoproteins inactivate the Mre11-Rad50-NBS1 DNA repair complex
-
Stracker TH, Carson CT, Weitzman MD. 2002. Adenovirus oncoproteins inactivate the Mre11-Rad50-NBS1 DNA repair complex. Nature 418:348-352. http://dx.doi.org/10.1038/nature00863.
-
(2002)
Nature
, vol.418
, pp. 348-352
-
-
Stracker, T.H.1
Carson, C.T.2
Weitzman, M.D.3
-
7
-
-
0030052130
-
Adenovirus replication is coupled with the dynamic properties of the PML nuclear structure
-
Doucas V, Ishov AM, Romo A, Juguilon H, Weitzman MD, Evans RM, Maul GG. 1996. Adenovirus replication is coupled with the dynamic properties of the PML nuclear structure. Genes Dev 10:196-207. http://dx.doi.org/10.1101/gad.10.2.196.
-
(1996)
Genes Dev
, vol.10
, pp. 196-207
-
-
Doucas, V.1
Ishov, A.M.2
Romo, A.3
Juguilon, H.4
Weitzman, M.D.5
Evans, R.M.6
Maul, G.G.7
-
8
-
-
18144401244
-
Relocalization of the Mre11-Rad50-Nbs1 complex by the adenovirus E4 ORF3 protein is required for viral replication
-
Evans JD, Hearing P. 2005. Relocalization of the Mre11-Rad50-Nbs1 complex by the adenovirus E4 ORF3 protein is required for viral replication. J Virol 79:6207-6215. http://dx.doi.org/10.1128/JVI.79.10.6207-6215.2005.
-
(2005)
J Virol
, vol.79
, pp. 6207-6215
-
-
Evans, J.D.1
Hearing, P.2
-
9
-
-
47749134575
-
Cellular proteins PML and Daxx mediate an innate antiviral defense antagonized by the adenovirus E4 ORF3 protein
-
Ullman AJ, Hearing P. 2008. Cellular proteins PML and Daxx mediate an innate antiviral defense antagonized by the adenovirus E4 ORF3 protein. J Virol 82:7325-7335. http://dx.doi.org/10.1128/JVI.00723-08.
-
(2008)
J Virol
, vol.82
, pp. 7325-7335
-
-
Ullman, A.J.1
Hearing, P.2
-
10
-
-
34247562651
-
Adenovirus E4 ORF3 protein inhibits the interferon-mediated antiviral response
-
Ullman AJ, Reich NC, Hearing P. 2007. Adenovirus E4 ORF3 protein inhibits the interferon-mediated antiviral response. J Virol 81:4744-4752. http://dx.doi.org/10.1128/JVI.02385-06.
-
(2007)
J Virol
, vol.81
, pp. 4744-4752
-
-
Ullman, A.J.1
Reich, N.C.2
Hearing, P.3
-
11
-
-
84866166535
-
Adenovirus regulates sumoylation of Mre11-Rad50-Nbs1 components through a paralog-specific mechanism
-
Sohn SY, Hearing P. 2012. Adenovirus regulates sumoylation of Mre11-Rad50-Nbs1 components through a paralog-specific mechanism. J Virol 86:9656-9665. http://dx.doi.org/10.1128/JVI.01273-12.
-
(2012)
J Virol
, vol.86
, pp. 9656-9665
-
-
Sohn, S.Y.1
Hearing, P.2
-
12
-
-
84884333239
-
Sumo paralogs: redundancy and divergencies
-
Citro S, Chiocca S. 2013. Sumo paralogs: redundancy and divergencies. Front Biosci 5:544-553. https://www.bioscience.org/2013/v5s/af/388/fulltext.htm.
-
(2013)
Front Biosci
, vol.5
, pp. 544-553
-
-
Citro, S.1
Chiocca, S.2
-
13
-
-
84875383876
-
Decoding the SUMO signal
-
Hay RT. 2013. Decoding the SUMO signal. Biochem Soc Trans 41:463-473. http://dx.doi.org/10.1042/BST20130015.
-
(2013)
Biochem Soc Trans
, vol.41
, pp. 463-473
-
-
Hay, R.T.1
-
14
-
-
84876164814
-
Detecting endogenous SUMO targets in mammalian cells and tissues
-
Becker J, Barysch SV, Karaca S, Dittner C, Hsiao HH, Berriel Diaz M, Herzig S, Urlaub H, Melchior F. 2013. Detecting endogenous SUMO targets in mammalian cells and tissues. Nat Struct Mol Biol 20:525-531. http://dx.doi.org/10.1038/nsmb.2526.
-
(2013)
Nat Struct Mol Biol
, vol.20
, pp. 525-531
-
-
Becker, J.1
Barysch, S.V.2
Karaca, S.3
Dittner, C.4
Hsiao, H.H.5
Berriel Diaz, M.6
Herzig, S.7
Urlaub, H.8
Melchior, F.9
-
15
-
-
67650559111
-
Novel proteomics strategy brings insight into the prevalence of SUMO-2 target sites
-
Blomster HA, Hietakangas V, Wu J, Kouvonen P, Hautaniemi S, Sistonen L. 2009. Novel proteomics strategy brings insight into the prevalence of SUMO-2 target sites. Mol Cell Proteomics 8:1382-1390. http://dx.doi.org/10.1074/mcp.M800551-MCP200.
-
(2009)
Mol Cell Proteomics
, vol.8
, pp. 1382-1390
-
-
Blomster, H.A.1
Hietakangas, V.2
Wu, J.3
Kouvonen, P.4
Hautaniemi, S.5
Sistonen, L.6
-
16
-
-
77953484491
-
In vivo identification of sumoylation sites by a signature tag and cysteine-targeted affinity purification
-
Blomster HA, Imanishi SY, Siimes J, Kastu J, Morrice NA, Eriksson JE, Sistonen L. 2010. In vivo identification of sumoylation sites by a signature tag and cysteine-targeted affinity purification. J Biol Chem 285:19324-19329. http://dx.doi.org/10.1074/jbc.M110.106955.
-
(2010)
J Biol Chem
, vol.285
, pp. 19324-19329
-
-
Blomster, H.A.1
Imanishi, S.Y.2
Siimes, J.3
Kastu, J.4
Morrice, N.A.5
Eriksson, J.E.6
Sistonen, L.7
-
17
-
-
79551604903
-
Purification and identification of endogenous polySUMO conjugates
-
Bruderer R, Tatham MH, Plechanovova A, Matic I, Garg AK, Hay RT. 2011. Purification and identification of endogenous polySUMO conjugates. EMBO Rep 12:142-148. http://dx.doi.org/10.1038/embor.2010.206.
-
(2011)
EMBO Rep
, vol.12
, pp. 142-148
-
-
Bruderer, R.1
Tatham, M.H.2
Plechanovova, A.3
Matic, I.4
Garg, A.K.5
Hay, R.T.6
-
18
-
-
84877733488
-
Analysis of SUMOylated proteins using SUMO-traps
-
Da Silva-Ferrada E, Xolalpa W, Lang V, Aillet F, Martin-Ruiz I, de la Cruz-Herrera CF, Lopitz-Otsoa F, Carracedo A, Goldenberg SJ, Rivas C, England P, Rodriguez MS. 2013. Analysis of SUMOylated proteins using SUMO-traps. Sci Rep 3:1690. http://dx.doi.org/10.1038/srep01690.
-
(2013)
Sci Rep
, vol.3
, pp. 1690
-
-
Da Silva-Ferrada, E.1
Xolalpa, W.2
Lang, V.3
Aillet, F.4
Martin-Ruiz, I.5
de la Cruz-Herrera, C.F.6
Lopitz-Otsoa, F.7
Carracedo, A.8
Goldenberg, S.J.9
Rivas, C.10
England, P.11
Rodriguez, M.S.12
-
19
-
-
79953187281
-
A novel proteomics approach to identify SUMOylated proteins and their modification sites in human cells
-
M110.004796
-
Galisson F, Mahrouche L, Courcelles M, Bonneil E, Meloche S, Chelbi-Alix MK, Thibault P. 2011. A novel proteomics approach to identify SUMOylated proteins and their modification sites in human cells. Mol Cell Proteomics 10:M110.004796. http://dx.doi.org/10.1074/mcp.M110.004796.
-
(2011)
Mol Cell Proteomics
, vol.10
-
-
Galisson, F.1
Mahrouche, L.2
Courcelles, M.3
Bonneil, E.4
Meloche, S.5
Chelbi-Alix, M.K.6
Thibault, P.7
-
21
-
-
27644434674
-
A method of mapping protein sumoylation sites by mass spectrometry using a modified small ubiquitin-like modifier 1 (SUMO-1) and a computational program
-
Knuesel M, Cheung HT, Hamady M, Barthel KK, Liu X. 2005. A method of mapping protein sumoylation sites by mass spectrometry using a modified small ubiquitin-like modifier 1 (SUMO-1) and a computational program. Mol Cell Proteomics 4:1626-1636. http://dx.doi.org/10.1074/mcp.T500011-MCP200.
-
(2005)
Mol Cell Proteomics
, vol.4
, pp. 1626-1636
-
-
Knuesel, M.1
Cheung, H.T.2
Hamady, M.3
Barthel, K.K.4
Liu, X.5
-
22
-
-
82355164206
-
Ubiquitin ligase substrate identification through quantitative proteomics at both the protein and peptide levels
-
Lee KA, Hammerle LP, Andrews PS, Stokes MP, Mustelin T, Silva JC, Black RA, Doedens JR. 2011. Ubiquitin ligase substrate identification through quantitative proteomics at both the protein and peptide levels. J Biol Chem 286:41530-41538. http://dx.doi.org/10.1074/jbc.M111.248856.
-
(2011)
J Biol Chem
, vol.286
, pp. 41530-41538
-
-
Lee, K.A.1
Hammerle, L.P.2
Andrews, P.S.3
Stokes, M.P.4
Mustelin, T.5
Silva, J.C.6
Black, R.A.7
Doedens, J.R.8
-
23
-
-
0344334079
-
Transforming potential of the adenovirus type 5 E4orf3 protein
-
Nevels M, Täuber B, Kremmer E, Spruss T, Wolf H, Dobner T. 1999. Transforming potential of the adenovirus type 5 E4orf3 protein. J Virol 73:1591-1600.
-
(1999)
J Virol
, vol.73
, pp. 1591-1600
-
-
Nevels, M.1
Täuber, B.2
Kremmer, E.3
Spruss, T.4
Wolf, H.5
Dobner, T.6
-
24
-
-
84855197555
-
Adenovirus E4-ORF3-dependent relocalization of TIF1α and TIF1γ relies on access to the coiled-coil motif
-
Vink EI, Yondola MA, Wu K, Hearing P. 2012. Adenovirus E4-ORF3-dependent relocalization of TIF1α and TIF1γ relies on access to the coiled-coil motif. Virology 422:317-325. http://dx.doi.org/10.1016/j.virol.2011.10.033.
-
(2012)
Virology
, vol.422
, pp. 317-325
-
-
Vink, E.I.1
Yondola, M.A.2
Wu, K.3
Hearing, P.4
-
25
-
-
29244448703
-
Parts per million mass accuracy on an Orbitrap mass spectrometer via lock mass injection into a C-trap
-
Olsen JV, de Godoy LM, Li G, Macek B, Mortensen P, Pesch R, Makarov A, Lange O, Horning S, Mann M. 2005. Parts per million mass accuracy on an Orbitrap mass spectrometer via lock mass injection into a C-trap. Mol Cell Proteomics 4:2010-2021. http://dx.doi.org/10.1074/mcp.T500030-MCP200.
-
(2005)
Mol Cell Proteomics
, vol.4
, pp. 2010-2021
-
-
Olsen, J.V.1
de Godoy, L.M.2
Li, G.3
Macek, B.4
Mortensen, P.5
Pesch, R.6
Makarov, A.7
Lange, O.8
Horning, S.9
Mann, M.10
-
27
-
-
84891801106
-
Immunoaffinity enrichment and mass spectrometry analysis of protein methylation
-
Guo A, Gu H, Zhou J, Mulhern D, Wang Y, Lee KA, Yang V, Aguiar M, Kornhauser J, Jia X, Ren J, Beausoleil SA, Silva JC, Vemulapalli V, Bedford MT, Comb MJ. 2014. Immunoaffinity enrichment and mass spectrometry analysis of protein methylation. Mol Cell Proteomics 13:372-387. http://dx.doi.org/10.1074/mcp.O113.027870.
-
(2014)
Mol Cell Proteomics
, vol.13
, pp. 372-387
-
-
Guo, A.1
Gu, H.2
Zhou, J.3
Mulhern, D.4
Wang, Y.5
Lee, K.A.6
Yang, V.7
Aguiar, M.8
Kornhauser, J.9
Jia, X.10
Ren, J.11
Beausoleil, S.A.12
Silva, J.C.13
Vemulapalli, V.14
Bedford, M.T.15
Comb, M.J.16
-
28
-
-
84861161220
-
PTMScan direct: identification and quantification of peptides from critical signaling proteins by immunoaffinity enrichment coupled with LC-MS/MS
-
Stokes MP, Farnsworth CL, Moritz A, Silva JC, Jia X, Lee KA, Guo A, Polakiewicz RD, Comb MJ. 2012. PTMScan direct: identification and quantification of peptides from critical signaling proteins by immunoaffinity enrichment coupled with LC-MS/MS. Mol Cell Proteomics 11:187-201. http://dx.doi.org/10.1074/mcp.M111.015883.
-
(2012)
Mol Cell Proteomics
, vol.11
, pp. 187-201
-
-
Stokes, M.P.1
Farnsworth, C.L.2
Moritz, A.3
Silva, J.C.4
Jia, X.5
Lee, K.A.6
Guo, A.7
Polakiewicz, R.D.8
Comb, M.J.9
-
29
-
-
84871048843
-
Adenovirus signalling in entry
-
Wolfrum N, Greber UF. 2013. Adenovirus signalling in entry. Cell Microbiol 15:53-62. http://dx.doi.org/10.1111/cmi.12053.
-
(2013)
Cell Microbiol
, vol.15
, pp. 53-62
-
-
Wolfrum, N.1
Greber, U.F.2
-
30
-
-
59349088768
-
Manipulation of the ubiquitinproteasome pathway by small DNA tumor viruses
-
Blanchette P, Branton PE. 2009. Manipulation of the ubiquitinproteasome pathway by small DNA tumor viruses. Virology 384:317-323. http://dx.doi.org/10.1016/j.virol.2008.10.005.
-
(2009)
Virology
, vol.384
, pp. 317-323
-
-
Blanchette, P.1
Branton, P.E.2
-
31
-
-
84875906959
-
Cross-talk between phosphorylation and SUMOylation regulates transforming activities of an adenoviral oncoprotein
-
Wimmer P, Blanchette P, Schreiner S, Ching W, Groitl P, Berscheminski J, Branton PE, Will H, Dobner T. 2013. Cross-talk between phosphorylation and SUMOylation regulates transforming activities of an adenoviral oncoprotein. Oncogene 32:1626-1637. http://dx.doi.org/10.1038/onc.2012.187.
-
(2013)
Oncogene
, vol.32
, pp. 1626-1637
-
-
Wimmer, P.1
Blanchette, P.2
Schreiner, S.3
Ching, W.4
Groitl, P.5
Berscheminski, J.6
Branton, P.E.7
Will, H.8
Dobner, T.9
-
32
-
-
84875854073
-
Interferon-induced ISG15 pathway: an ongoing virus-host battle
-
Zhao C, Collins MN, Hsiang TY, Krug RM. 2013. Interferon-induced ISG15 pathway: an ongoing virus-host battle. Trends Microbiol 21:181-186. http://dx.doi.org/10.1016/j.tim.2013.01.005.
-
(2013)
Trends Microbiol
, vol.21
, pp. 181-186
-
-
Zhao, C.1
Collins, M.N.2
Hsiang, T.Y.3
Krug, R.M.4
-
33
-
-
34250894884
-
Adenovirus E4 34k and E1b 55k oncoproteins target host DNA ligase IV for proteasomal degradation
-
Baker A, Rohleder KJ, Hanakahi LA, Ketner G. 2007. Adenovirus E4 34k and E1b 55k oncoproteins target host DNA ligase IV for proteasomal degradation. J Virol 81:7034-7040. http://dx.doi.org/10.1128/JVI.00029-07.
-
(2007)
J Virol
, vol.81
, pp. 7034-7040
-
-
Baker, A.1
Rohleder, K.J.2
Hanakahi, L.A.3
Ketner, G.4
-
34
-
-
77955448692
-
Adenovirus 12 E4orf6 inhibits ATR activation by promoting TOPBP1 degradation
-
Blackford AN, Patel RN, Forrester NA, Theil K, Groitl P, Stewart GS, Taylor AM, Morgan IM, Dobner T, Grand RJ, Turnell AS. 2010. Adenovirus 12 E4orf6 inhibits ATR activation by promoting TOPBP1 degradation. Proc Natl Acad Sci USA 107:12251-12256. http://dx.doi.org/10.1073/pnas.0914605107.
-
(2010)
Proc Natl Acad Sci USA
, vol.107
, pp. 12251-12256
-
-
Blackford, A.N.1
Patel, R.N.2
Forrester, N.A.3
Theil, K.4
Groitl, P.5
Stewart, G.S.6
Taylor, A.M.7
Morgan, I.M.8
Dobner, T.9
Grand, R.J.10
Turnell, A.S.11
-
35
-
-
66149114464
-
Identification of integrin α3 as a new substrate of the adenovirus E4orf6/E1B 55-kilodalton E3 ubiquitin ligase complex
-
Dallaire F, Blanchette P, Groitl P, Dobner T, Branton PE. 2009. Identification of integrin α3 as a new substrate of the adenovirus E4orf6/E1B 55-kilodalton E3 ubiquitin ligase complex. J Virol 83:5329-5338. http://dx.doi.org/10.1128/JVI.00089-09.
-
(2009)
J Virol
, vol.83
, pp. 5329-5338
-
-
Dallaire, F.1
Blanchette, P.2
Groitl, P.3
Dobner, T.4
Branton, P.E.5
-
36
-
-
84886089696
-
Tip60 degradation by adenovirus relieves transcriptional repression of viral transcriptional activator EIA
-
Gupta A, Jha S, Engel DA, Ornelles DA, Dutta A. 2013. Tip60 degradation by adenovirus relieves transcriptional repression of viral transcriptional activator EIA. Oncogene 32:5017-5025. http://dx.doi.org/10.1038/onc.2012.534.
-
(2013)
Oncogene
, vol.32
, pp. 5017-5025
-
-
Gupta, A.1
Jha, S.2
Engel, D.A.3
Ornelles, D.A.4
Dutta, A.5
-
37
-
-
78951470860
-
The adenovirus E1b55K/E4orf6 complex induces degradation of the Bloom helicase during infection
-
Orazio NI, Naeger CM, Karlseder J, Weitzman MD. 2011. The adenovirus E1b55K/E4orf6 complex induces degradation of the Bloom helicase during infection. J Virol 85:1887-1892. http://dx.doi.org/10.1128/JVI.02134-10.
-
(2011)
J Virol
, vol.85
, pp. 1887-1892
-
-
Orazio, N.I.1
Naeger, C.M.2
Karlseder, J.3
Weitzman, M.D.4
-
38
-
-
77953736164
-
Proteasome-dependent degradation of Daxx by the viral E1B-55K protein in human adenovirus-infected cells
-
Schreiner S, Wimmer P, Sirma H, Everett RD, Blanchette P, Groitl P, Dobner T. 2010. Proteasome-dependent degradation of Daxx by the viral E1B-55K protein in human adenovirus-infected cells. J Virol 84:7029-7038. http://dx.doi.org/10.1128/JVI.00074-10.
-
(2010)
J Virol
, vol.84
, pp. 7029-7038
-
-
Schreiner, S.1
Wimmer, P.2
Sirma, H.3
Everett, R.D.4
Blanchette, P.5
Groitl, P.6
Dobner, T.7
-
39
-
-
84899759007
-
Proteome-wide identification of SUMO2 modification sites
-
Tammsalu T, Matic I, Jaffray EG, Ibrahim AF, Tatham MH, Hay RT. 2014. Proteome-wide identification of SUMO2 modification sites. Sci Signal 7:rs2. http://dx.doi.org/10.1126/scisignal.2005146.
-
(2014)
Sci Signal
, vol.7
-
-
Tammsalu, T.1
Matic, I.2
Jaffray, E.G.3
Ibrahim, A.F.4
Tatham, M.H.5
Hay, R.T.6
-
40
-
-
84862783021
-
Extensive DNA damage-induced sumoylation contributes to replication and repair and acts in addition to the mec1 checkpoint
-
Cremona CA, Sarangi P, Yang Y, Hang LE, Rahman S, Zhao X. 2012. Extensive DNA damage-induced sumoylation contributes to replication and repair and acts in addition to the mec1 checkpoint. Mol Cell 45:422-432. http://dx.doi.org/10.1016/j.molcel.2011.11.028.
-
(2012)
Mol Cell
, vol.45
, pp. 422-432
-
-
Cremona, C.A.1
Sarangi, P.2
Yang, Y.3
Hang, L.E.4
Rahman, S.5
Zhao, X.6
-
41
-
-
84906695084
-
Mapping of SUMO sites and analysis of SUMOylation changes induced by external stimuli
-
Impens F, Radoshevich L, Cossart P, Ribet D. 2014. Mapping of SUMO sites and analysis of SUMOylation changes induced by external stimuli. Proc Natl Acad Sci U S A 111:12432-12437. http://dx.doi.org/10.1073/pnas.1413825111.
-
(2014)
Proc Natl Acad Sci U S A
, vol.111
, pp. 12432-12437
-
-
Impens, F.1
Radoshevich, L.2
Cossart, P.3
Ribet, D.4
-
42
-
-
84876886904
-
Regulation of DNA damage responses by ubiquitin and SUMO
-
Jackson SP, Durocher D. 2013. Regulation of DNA damage responses by ubiquitin and SUMO. Mol Cell 49:795-807. http://dx.doi.org/10.1016/j.molcel.2013.01.017.
-
(2013)
Mol Cell
, vol.49
, pp. 795-807
-
-
Jackson, S.P.1
Durocher, D.2
-
43
-
-
80052694448
-
Dynamic regulation of PCNA ubiquitylation/deubiquitylation
-
Fox JT, Lee KY, Myung K. 2011. Dynamic regulation of PCNA ubiquitylation/deubiquitylation. FEBS Lett 585:2780-2785. http://dx.doi.org/10.1016/j.febslet.2011.05.053.
-
(2011)
FEBS Lett
, vol.585
, pp. 2780-2785
-
-
Fox, J.T.1
Lee, K.Y.2
Myung, K.3
-
44
-
-
72449175818
-
MammalianSUMOE3-ligases PIAS1 and PIAS4 promote responses to DNA double-strand breaks
-
Galanty Y, Belotserkovskaya R, Coates J, Polo S, Miller KM, Jackson SP. 2009. MammalianSUMOE3-ligases PIAS1 and PIAS4 promote responses to DNA double-strand breaks. Nature 462:935-939. http://dx.doi.org/10.1038/nature08657.
-
(2009)
Nature
, vol.462
, pp. 935-939
-
-
Galanty, Y.1
Belotserkovskaya, R.2
Coates, J.3
Polo, S.4
Miller, K.M.5
Jackson, S.P.6
-
45
-
-
72449163470
-
The SUMO modification pathway is involved in the BRCA1 response to genotoxic stress
-
Morris JR, Boutell C, Keppler M, Densham R, Weekes D, Alamshah A, Butler L, Galanty Y, Pangon L, Kiuchi T, Ng T, Solomon E. 2009. The SUMO modification pathway is involved in the BRCA1 response to genotoxic stress. Nature 462:886-890. http://dx.doi.org/10.1038/nature08593.
-
(2009)
Nature
, vol.462
, pp. 886-890
-
-
Morris, J.R.1
Boutell, C.2
Keppler, M.3
Densham, R.4
Weekes, D.5
Alamshah, A.6
Butler, L.7
Galanty, Y.8
Pangon, L.9
Kiuchi, T.10
Ng, T.11
Solomon, E.12
-
46
-
-
33644768122
-
Interaction of the adenovirus type 5 E4 Orf3 protein with promyelocytic leukemia protein isoform II is required for ND10 disruption
-
Hoppe A, Beech SJ, Dimmock J, Leppard KN. 2006. Interaction of the adenovirus type 5 E4 Orf3 protein with promyelocytic leukemia protein isoform II is required for ND10 disruption. J Virol 80:3042-3049. http://dx.doi.org/10.1128/JVI.80.6.3042-3049.2006.
-
(2006)
J Virol
, vol.80
, pp. 3042-3049
-
-
Hoppe, A.1
Beech, S.J.2
Dimmock, J.3
Leppard, K.N.4
-
47
-
-
34247147729
-
The adenovirus E4 ORF3 protein binds and reorganizes the TRIM family member transcriptional intermediary factor 1 alpha
-
Yondola MA, Hearing P. 2007. The adenovirus E4 ORF3 protein binds and reorganizes the TRIM family member transcriptional intermediary factor 1 alpha. J Virol 81:4264-4271. http://dx.doi.org/10.1128/JVI.02629-06.
-
(2007)
J Virol
, vol.81
, pp. 4264-4271
-
-
Yondola, M.A.1
Hearing, P.2
-
48
-
-
84894515095
-
TRIMmunity: the roles of the TRIM E3-ubiquitin ligase family in innate antiviral immunity
-
Rajsbaum R, Garcia-Sastre A, Versteeg GA. 2014. TRIMmunity: the roles of the TRIM E3-ubiquitin ligase family in innate antiviral immunity. J Mol Biol 426:1265-1284. http://dx.doi.org/10.1016/j.jmb.2013.12.005.
-
(2014)
J Mol Biol
, vol.426
, pp. 1265-1284
-
-
Rajsbaum, R.1
Garcia-Sastre, A.2
Versteeg, G.A.3
-
49
-
-
84873816597
-
Components of promyelocytic leukemia nuclear bodies (ND10) act cooperatively to repress herpesvirus infection
-
Glass M, Everett RD. 2013. Components of promyelocytic leukemia nuclear bodies (ND10) act cooperatively to repress herpesvirus infection. J Virol 87:2174-2185. http://dx.doi.org/10.1128/JVI.02950-12.
-
(2013)
J Virol
, vol.87
, pp. 2174-2185
-
-
Glass, M.1
Everett, R.D.2
-
50
-
-
33750447586
-
The mechanisms of PML-nuclear body formation
-
Shen TH, Lin HK, Scaglioni PP, Yung TM, Pandolfi PP. 2006. The mechanisms of PML-nuclear body formation. Mol Cell 24:331-339. http://dx.doi.org/10.1016/j.molcel.2006.09.013.
-
(2006)
Mol Cell
, vol.24
, pp. 331-339
-
-
Shen, T.H.1
Lin, H.K.2
Scaglioni, P.P.3
Yung, T.M.4
Pandolfi, P.P.5
-
51
-
-
0033925534
-
Review: properties and assembly mechanisms of ND10, PML bodies, or PODs
-
Maul GG, Negorev D, Bell P, Ishov AM. 2000. Review: properties and assembly mechanisms of ND10, PML bodies, or PODs. J Struct Biol 129:278-287. http://dx.doi.org/10.1006/jsbi.2000.4239.
-
(2000)
J Struct Biol
, vol.129
, pp. 278-287
-
-
Maul, G.G.1
Negorev, D.2
Bell, P.3
Ishov, A.M.4
-
52
-
-
0036311183
-
Hetero-oligomerization among the TIF family of RBCC/TRIM domain-containing nuclear cofactors: a potential mechanism for regulating the switch between coactivation and corepression
-
Peng H, Feldman I, Rauscher FJ, III. 2002. Hetero-oligomerization among the TIF family of RBCC/TRIM domain-containing nuclear cofactors: a potential mechanism for regulating the switch between coactivation and corepression. J Mol Biol 320:629-644. http://dx.doi.org/10.1016/S0022-2836(02)00477-1.
-
(2002)
J Mol Biol
, vol.320
, pp. 629-644
-
-
Peng, H.1
Feldman, I.2
Rauscher, F.J.3
-
53
-
-
82455179484
-
Systematic and quantitative assessment of the ubiquitin-modified proteome
-
Kim W, Bennett EJ, Huttlin EL, Guo A, Li J, Possemato A, Sowa ME, Rad R, Rush J, Comb MJ, Harper JW, Gygi SP. 2011. Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol Cell 44:325-340. http://dx.doi.org/10.1016/j.molcel.2011.08.025.
-
(2011)
Mol Cell
, vol.44
, pp. 325-340
-
-
Kim, W.1
Bennett, E.J.2
Huttlin, E.L.3
Guo, A.4
Li, J.5
Possemato, A.6
Sowa, M.E.7
Rad, R.8
Rush, J.9
Comb, M.J.10
Harper, J.W.11
Gygi, S.P.12
-
54
-
-
80054033461
-
A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles
-
M111.013284
-
Wagner SA, Beli P, Weinert BT, Nielsen ML, Cox J, Mann M, Choudhary C. 2011. A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles. Mol Cell Proteomics 10: M111.013284. http://dx.doi.org/10.1074/mcp.M111.013284.
-
(2011)
Mol Cell Proteomics
, vol.10
-
-
Wagner, S.A.1
Beli, P.2
Weinert, B.T.3
Nielsen, M.L.4
Cox, J.5
Mann, M.6
Choudhary, C.7
-
55
-
-
84155186464
-
Biochemistry and biology of the inducible multifunctional transcription factor TFII-I: 10 years later
-
Roy AL. 2012. Biochemistry and biology of the inducible multifunctional transcription factor TFII-I: 10 years later. Gene 492:32-41. http://dx.doi.org/10.1016/j.gene.2011.10.030.
-
(2012)
Gene
, vol.492
, pp. 32-41
-
-
Roy, A.L.1
-
56
-
-
0036789944
-
Physical and functional interactions of histone deacetylase 3 with TFII-I family proteins and PIASxbeta
-
Tussie-Luna M, Bayarsaihan D, Seto E, Ruddle FH, Roy AL. 2002. Physical and functional interactions of histone deacetylase 3 with TFII-I family proteins and PIASxbeta. Proc Natl Acad Sci USA 99:12807-12812. http://dx.doi.org/10.1073/pnas.192464499.
-
(2002)
Proc Natl Acad Sci USA
, vol.99
, pp. 12807-12812
-
-
Tussie-Luna, M.1
Bayarsaihan, D.2
Seto, E.3
Ruddle, F.H.4
Roy, A.L.5
-
57
-
-
0037044730
-
The SUMO ubiquitin-protein isopeptide ligase family member Miz1/PIASxbeta/Siz2 is a transcriptional cofactor for TFII-I
-
Tussie-Luna MI, Michel B, Hakre S, Roy AL. 2002. The SUMO ubiquitin-protein isopeptide ligase family member Miz1/PIASxbeta/Siz2 is a transcriptional cofactor for TFII-I. J Biol Chem 277:43185-43193. http://dx.doi.org/10.1074/jbc.M207635200.
-
(2002)
J Biol Chem
, vol.277
, pp. 43185-43193
-
-
Tussie-Luna, M.I.1
Michel, B.2
Hakre, S.3
Roy, A.L.4
-
58
-
-
79952281303
-
SUMO E3 ligase activity of TRIM proteins
-
Chu Y, Yang X. 2011. SUMO E3 ligase activity of TRIM proteins. Oncogene 30:1108-1116. http://dx.doi.org/10.1038/onc.2010.462.
-
(2011)
Oncogene
, vol.30
, pp. 1108-1116
-
-
Chu, Y.1
Yang, X.2
-
59
-
-
84906971771
-
TIF1gamma protein regulates epithelial-mesenchymal transition by operating as a small ubiquitin-like modifier (SUMO) E3 ligase for the transcriptional regulator SnoN1
-
Ikeuchi Y, Dadakhujaev S, Chandhoke AS, Huynh MA, Oldenborg A, Ikeuchi M, Deng L, Bennett EJ, Harper J W, Bonni A, Bonni S. 2014. TIF1gamma protein regulates epithelial-mesenchymal transition by operating as a small ubiquitin-like modifier (SUMO) E3 ligase for the transcriptional regulator SnoN1. J Biol Chem 289:25067-25078. http://dx.doi.org/10.1074/jbc.M114.575878.
-
(2014)
J Biol Chem
, vol.289
, pp. 25067-25078
-
-
Ikeuchi, Y.1
Dadakhujaev, S.2
Chandhoke, A.S.3
Huynh, M.A.4
Oldenborg, A.5
Ikeuchi, M.6
Deng, L.7
Bennett, E.J.8
Harper, J.W.9
Bonni, A.10
Bonni, S.11
-
60
-
-
36749009119
-
PHD domain-mediated E3 ligase activity directs intramolecular sumoylation of an adjacent bromodomain required for gene silencing
-
Ivanov AV, Peng H, Yurchenko V, Yap KL, Negorev DG, Schultz DC, Psulkowski E, Fredericks WJ, White DE, Maul GG, Sadofsky MJ, Zhou MM, Rauscher FJ, III. 2007. PHD domain-mediated E3 ligase activity directs intramolecular sumoylation of an adjacent bromodomain required for gene silencing. Mol Cell 28:823-837. http://dx.doi.org/10.1016/j.molcel.2007.11.012.
-
(2007)
Mol Cell
, vol.28
, pp. 823-837
-
-
Ivanov, A.V.1
Peng, H.2
Yurchenko, V.3
Yap, K.L.4
Negorev, D.G.5
Schultz, D.C.6
Psulkowski, E.7
Fredericks, W.J.8
White, D.E.9
Maul, G.G.10
Sadofsky, M.J.11
Zhou, M.M.12
Rauscher, F.J.13
-
61
-
-
80555133291
-
Tripartite motif-containing protein 28 is a small ubiquitin-related modifier E3 ligase and negative regulator of IFN regulatory factor 7
-
Liang Q, Deng H, Li X, Wu X, Tang Q, Chang TH, Peng H, Rauscher FJ, III, Ozato K, Zhu F. 2011. Tripartite motif-containing protein 28 is a small ubiquitin-related modifier E3 ligase and negative regulator of IFN regulatory factor 7. J Immunol 187:4754-4763. http://dx.doi.org/10.4049/jimmunol.1101704.
-
(2011)
J Immunol
, vol.187
, pp. 4754-4763
-
-
Liang, Q.1
Deng, H.2
Li, X.3
Wu, X.4
Tang, Q.5
Chang, T.H.6
Peng, H.7
Rauscher, F.J.8
Ozato, K.9
Zhu, F.10
-
62
-
-
84888872901
-
pLogo: a probabilistic approach to visualizing sequence motifs
-
O'Shea JP, Chou MF, Quader SA, Ryan JK, Church GM, Schwartz D. 2013.pLogo: a probabilistic approach to visualizing sequence motifs. Nat Methods 10:1211-1212. http://dx.doi.org/10.1038/nmeth.2646.
-
(2013)
Nat Methods
, vol.10
, pp. 1211-1212
-
-
O'Shea, J.P.1
Chou, M.F.2
Quader, S.A.3
Ryan, J.K.4
Church, G.M.5
Schwartz, D.6
|