메뉴 건너뛰기




Volumn 30, Issue 3, 2015, Pages 292-325

Structural learning of Bayesian networks via constrained Hill Climbing algorithms: Adjusting trade-off between efficiency and accuracy

Author keywords

[No Author keywords available]

Indexed keywords

BAYESIAN NETWORKS; COMPUTATIONAL COMPLEXITY; ECONOMIC AND SOCIAL EFFECTS; EFFICIENCY;

EID: 84921028207     PISSN: 08848173     EISSN: 1098111X     Source Type: Journal    
DOI: 10.1002/int.21701     Document Type: Review
Times cited : (17)

References (31)
  • 3
    • 34249761849 scopus 로고
    • Learning Bayesian networks: The combination of knowledge and statistical data
    • Heckerman D, Geiger D, Chickering DM. Learning Bayesian networks: the combination of knowledge and statistical data. Mach Learn 1995;20(3):197-243.
    • (1995) Mach Learn , vol.20 , Issue.3 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chickering, D.M.3
  • 5
    • 0001019707 scopus 로고    scopus 로고
    • Learning Bayesian networks is NP-complete
    • Springer
    • Chickering DM. Learning Bayesian networks is NP-complete. Learning from data. Springer; 1996. pp 121-130.
    • (1996) Learning from Data , pp. 121-130
    • Chickering, D.M.1
  • 6
    • 33746035971 scopus 로고    scopus 로고
    • The max-min hill-climbing Bayesian network structure learning algorithm
    • Tsamardinos I, Brown LE, Aliferis CF. The max-min hill-climbing Bayesian network structure learning algorithm. Mach Learn 2006;65(1):31-78.
    • (2006) Mach Learn , vol.65 , Issue.1 , pp. 31-78
    • Tsamardinos, I.1    Brown, L.E.2    Aliferis, C.F.3
  • 7
    • 78651369196 scopus 로고    scopus 로고
    • Learning Bayesian networks by hill climbing: Efficient methods based on progressive restriction of the neighborhood
    • Gámez JA, Mateo JL, Puerta JM. Learning Bayesian networks by hill climbing: efficient methods based on progressive restriction of the neighborhood. Data Min Knowl Discov 2011;22(1-2):106-148.
    • (2011) Data Min Knowl Discov , vol.22 , Issue.1-2 , pp. 106-148
    • Gámez, J.A.1    Mateo, J.L.2    Puerta, J.M.3
  • 8
    • 84962258235 scopus 로고    scopus 로고
    • One iteration CHC algorithm for learning Bayesian networks: An effective and efficient algorithm for high dimensional problems
    • Gámez JA, Mateo JL, Puerta JM. One iteration CHC algorithm for learning Bayesian networks: an effective and efficient algorithm for high dimensional problems. Prog. Artif Intell 2012;1(4):329-346.
    • (2012) Prog. Artif Intell , vol.1 , Issue.4 , pp. 329-346
    • Gámez, J.A.1    Mateo, J.L.2    Puerta, J.M.3
  • 9
    • 0042967741 scopus 로고    scopus 로고
    • Optimal structure identification with greedy search
    • Chickering DM. Optimal structure identification with greedy search. J Mach Learn Res 2002;3:507-554.
    • (2002) J Mach Learn Res , vol.3 , pp. 507-554
    • Chickering, D.M.1
  • 10
    • 0000411214 scopus 로고
    • Tabu search: Part I
    • Glover F. Tabu search: part I. ORSA J Comput 1989;1(3):190-206.
    • (1989) ORSA J Comput , vol.1 , Issue.3 , pp. 190-206
    • Glover, F.1
  • 12
    • 84875222063 scopus 로고    scopus 로고
    • Scaling up the greedy equivalence search algorithm by constraining the search space of equivalence classes
    • Alonso-Barba JI, delaOssa L, Gámez JA, Puerta JM. Scaling up the greedy equivalence search algorithm by constraining the search space of equivalence classes. Int J Approx Reason 2012;54:429-451.
    • (2012) Int J Approx Reason , vol.54 , pp. 429-451
    • Alonso-Barba, J.I.1    DelaOssa, L.2    Gámez, J.A.3    Puerta, J.M.4
  • 13
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Demšar J. Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 2006;7:1-30.
    • (2006) J Mach Learn Res , vol.7 , pp. 1-30
    • Demšar, J.1
  • 14
    • 58149287952 scopus 로고    scopus 로고
    • An extension on statistical comparisons of classifiers over multiple data sets for all pairwise comparisons
    • Garcia S, Herrera F. An extension on statistical comparisons of classifiers over multiple data sets for all pairwise comparisons. J Mach Learn Res 2008;9:2677-2694.
    • (2008) J Mach Learn Res , vol.9 , pp. 2677-2694
    • Garcia, S.1    Herrera, F.2
  • 15
    • 0001837148 scopus 로고
    • A comparison of alternative tests of significance for the problem of m rankings
    • Friedman M. A comparison of alternative tests of significance for the problem of m rankings. Ann Math Statist 1940;11(1):86-92.
    • (1940) Ann Math Statist , vol.11 , Issue.1 , pp. 86-92
    • Friedman, M.1
  • 16
    • 0002294347 scopus 로고
    • A simple sequentially rejective multiple test procedure
    • Holm S. A simple sequentially rejective multiple test procedure. Scand J Statist 1979;65-70.
    • (1979) Scand J Statist , pp. 65-70
    • Holm, S.1
  • 19
    • 0036250059 scopus 로고    scopus 로고
    • The use of a Bayesian network in the design of a decision support system for growing malting barley without use of pesticides
    • Kristensen K, Rasmussen IA. The use of a Bayesian network in the design of a decision support system for growing malting barley without use of pesticides. Comput Electron Agric 2002;33(3):197-217.
    • (2002) Comput Electron Agric , vol.33 , Issue.3 , pp. 197-217
    • Kristensen, K.1    Rasmussen, I.A.2
  • 24
    • 0031273462 scopus 로고    scopus 로고
    • Adaptive probabilistic networks with hidden variables
    • Binder J, Koller D, Russell S, Kanazawa K. Adaptive probabilistic networks with hidden variables. Mach Learn 1997;29(2-3):213-244.
    • (1997) Mach Learn , vol.29 , Issue.2-3 , pp. 213-244
    • Binder, J.1    Koller, D.2    Russell, S.3    Kanazawa, K.4
  • 27
    • 0026636089 scopus 로고
    • Toward normative expert systems: Part I. The pathfinder project
    • Heckerman DE, Nathwani BN. Toward normative expert systems: part I. The pathfinder project. Methods Inf Med 1992;31(2):90-105.
    • (1992) Methods Inf Med , vol.31 , Issue.2 , pp. 90-105
    • Heckerman, D.E.1    Nathwani, B.N.2
  • 29
    • 0033358743 scopus 로고    scopus 로고
    • Blocking gibbs sampling for linkage analysis in large pedigrees with many loops
    • Jensen CS, Kong A. Blocking gibbs sampling for linkage analysis in large pedigrees with many loops. Am J Hum Genet 1999;65(3):885-901.
    • (1999) Am J Hum Genet , vol.65 , Issue.3 , pp. 885-901
    • Jensen, C.S.1    Kong, A.2
  • 31
    • 84885057502 scopus 로고    scopus 로고
    • Learning more accurate Bayesian networks in the CHC approach by adjusting the trade-off between efficiency and accuracy
    • Bielza et al., editors. Springer
    • Arias J, Gámez JA, Puerta JM. Learning more accurate Bayesian networks in the CHC approach by adjusting the trade-off between efficiency and accuracy. In: Bielza et al., editors. Advances in artificial intelligence. Springer; 2013. pp 310-320.
    • (2013) Advances in Artificial Intelligence , pp. 310-320
    • Arias, J.1    Gámez, J.A.2    Puerta, J.M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.