메뉴 건너뛰기




Volumn 54, Issue 4, 2013, Pages 429-451

Scaling up the Greedy Equivalence Search algorithm by constraining the search space of equivalence classes

Author keywords

Bayesian networks; Constrained search; Greedy Equivalence Search

Indexed keywords

CONSTRAINED SEARCH; GREEDY EQUIVALENCE SEARCH; HIGH DIMENSIONALITY; ITS EFFICIENCIES; LEARNING BAYESIAN NETWORKS; MODIFIED ALGORITHMS; SEARCH ALGORITHMS; STATE-OF-THE-ART ALGORITHMS;

EID: 84875222063     PISSN: 0888613X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ijar.2012.09.004     Document Type: Conference Paper
Times cited : (42)

References (35)
  • 5
    • 34249761849 scopus 로고
    • Learning Bayesian networks: The combination of knowledge and statistical data
    • D. Heckerman, D. Geiger, and D.M. Chickering Learning Bayesian networks: the combination of knowledge and statistical data Machine Learning 20 3 1995 197 243
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chickering, D.M.3
  • 6
  • 9
    • 33746035971 scopus 로고    scopus 로고
    • The max-min hill-climbing Bayesian network structure learning algorithm
    • I. Tsamardinos, L.E. Brown, and C.F. Aliferis The max-min hill-climbing Bayesian network structure learning algorithm Machine Learning 65 1 2006 31 78
    • (2006) Machine Learning , vol.65 , Issue.1 , pp. 31-78
    • Tsamardinos, I.1    Brown, L.E.2    Aliferis, C.F.3
  • 11
    • 21244484641 scopus 로고    scopus 로고
    • Searching for Bayesian network structures in the space of restricted acyclic partially directed graphs
    • S. Acid, and L.M. de Campos Searching for Bayesian network structures in the space of restricted acyclic partially directed graphs Journal of Artificial Intelligence Research 18 2003 445 490
    • (2003) Journal of Artificial Intelligence Research , vol.18 , pp. 445-490
    • Acid, S.1    De Campos, L.M.2
  • 13
    • 0037322292 scopus 로고    scopus 로고
    • Learning Bayesian networks in the space of structures by estimation of distribution algorithms
    • R. Blanco, I. Inza, and P. Larrañaga Learning Bayesian networks in the space of structures by estimation of distribution algorithms International Journal of Intelligent Systems 18 2 2003 205 220
    • (2003) International Journal of Intelligent Systems , vol.18 , Issue.2 , pp. 205-220
    • Blanco, R.1    Inza, I.2    Larrañaga, P.3
  • 14
    • 0028482006 scopus 로고
    • Learning bayesian belief networks: An approach based on MDL principle
    • W. Lam, and F. Bacchus Learning bayesian belief networks: an approach based on MDL principle Computational Intelligence 10 1994 269 293
    • (1994) Computational Intelligence , vol.10 , pp. 269-293
    • Lam, W.1    Bacchus, F.2
  • 15
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • G. Schwartz Estimating the dimension of a model Annals of Statistics 6 1978 461 464
    • (1978) Annals of Statistics , vol.6 , pp. 461-464
    • Schwartz, G.1
  • 16
    • 33750071718 scopus 로고    scopus 로고
    • A scoring function for learning Bayesian networks based on mutual information and conditional independence tests
    • L.M. de Campos A scoring function for learning Bayesian networks based on mutual information and conditional independence tests Journal of Machine Learning Research 7 2006 2149 2187
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 2149-2187
    • De Campos, L.M.1
  • 21
    • 78651369196 scopus 로고    scopus 로고
    • Learning Bayesian networks by hill climbing: Efficient methods based on progressive restriction of the neighborhood
    • J.A. Gámez, J.L. Mateo, and J.M. Puerta Learning Bayesian networks by hill climbing: efficient methods based on progressive restriction of the neighborhood Data Mining and Knowledge Discovery 22 1-2 2011 106 148
    • (2011) Data Mining and Knowledge Discovery , vol.22 , Issue.12 , pp. 106-148
    • Gámez, J.A.1    Mateo, J.L.2    Puerta, J.M.3
  • 26
    • 84869095652 scopus 로고    scopus 로고
    • Characteristic imsets for learning Bayesian network structure
    • R. Hemmecke, S. Lindner, M. Studený, Characteristic imsets for learning Bayesian network structure, International Journal of Approximate Reasoning 53(9) (2012) 1336-1349.
    • (2012) International Journal of Approximate Reasoning , vol.53 , Issue.9 , pp. 1336-1349
    • R. Hemmecke1
  • 27
    • 79954425576 scopus 로고    scopus 로고
    • On open questions in the geometric approach to structural learning Bayesian nets
    • M. Studený, and Jirí Vomlel On open questions in the geometric approach to structural learning Bayesian nets International Journal of Approximate Reasoning 52 5 2011 627 640
    • (2011) International Journal of Approximate Reasoning , vol.52 , Issue.5 , pp. 627-640
    • Studený, M.1    Vomlel, J.2
  • 29
    • 0036250059 scopus 로고    scopus 로고
    • The use of a Bayesian network in the design of a decision support system for growing malting barley without use of pesticides
    • K. Kristensen, and I.A. Rasmussen The use of a Bayesian network in the design of a decision support system for growing malting barley without use of pesticides Computers and Electronics in Agriculture 33 2002 197 217
    • (2002) Computers and Electronics in Agriculture , vol.33 , pp. 197-217
    • Kristensen, K.1    Rasmussen, I.A.2
  • 31
    • 0031273462 scopus 로고    scopus 로고
    • Adaptive probabilistic networks with hidden variables
    • J. Binder, D. Koller, S.J. Russell, and K. Kanazawa Adaptive probabilistic networks with hidden variables Machine Learning 29 2-3 1997 213 244
    • (1997) Machine Learning , vol.29 , Issue.23 , pp. 213-244
    • Binder, J.1    Koller, D.2    Russell, S.J.3    Kanazawa, K.4
  • 35
    • 0001884644 scopus 로고
    • Individual comparisons by ranking methods
    • F. Wilcoxon Individual comparisons by ranking methods Biometrics 1 1945 80 83
    • (1945) Biometrics , vol.1 , pp. 80-83
    • Wilcoxon, F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.