메뉴 건너뛰기




Volumn 79, Issue 1, 2014, Pages 236-244

Interface thermal conductance and rectification in hybrid graphene/silicene monolayer

Author keywords

[No Author keywords available]

Indexed keywords

HEAT FLUX; MOLECULAR DYNAMICS; TENSILE STRAIN; THERMAL CONDUCTIVITY;

EID: 84920585888     PISSN: 00086223     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.carbon.2014.07.064     Document Type: Article
Times cited : (137)

References (68)
  • 7
    • 84894162116 scopus 로고    scopus 로고
    • Thermal gradients on graphene to drive nanoflake motion
    • Becton M, Wang XQ. Thermal gradients on graphene to drive nanoflake motion. J. Chem. Theory Comput 2014;10:722-30.
    • (2014) J. Chem. Theory Comput , vol.10 , pp. 722-730
    • Becton, M.1    Wang, X.Q.2
  • 9
    • 47749150628 scopus 로고    scopus 로고
    • Measurement of the elastic properties and intrinsic strength of monolayer graphene
    • Lee C, Wei X, Kysar JW, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008;321:385-8.
    • (2008) Science , vol.321 , pp. 385-388
    • Lee, C.1    Wei, X.2    Kysar, J.W.3    Hone, J.4
  • 10
    • 78149398761 scopus 로고    scopus 로고
    • Anomalous strength characteristics of tilt grain boundaries in graphene
    • Grantab R, Shenoy VB, Ruoff RS. Anomalous strength characteristics of tilt grain boundaries in graphene. Science 2010;330:946-8.
    • (2010) Science , vol.330 , pp. 946-948
    • Grantab, R.1    Shenoy, V.B.2    Ruoff, R.S.3
  • 11
    • 84884816313 scopus 로고    scopus 로고
    • Effects of surface dopants on graphene folding by molecular dynamics
    • Becton M, Zhang LY, Wang XQ. Effects of surface dopants on graphene folding by molecular dynamics. Chem Phys Lett 2013;584:135-41.
    • (2013) Chem Phys Lett , vol.584 , pp. 135-141
    • Becton, M.1    Zhang, L.Y.2    Wang, X.Q.3
  • 12
    • 84889579746 scopus 로고    scopus 로고
    • Programmable hydrogenation of graphene for novel nanocages
    • Zhang LY, Zeng XW, Wang XQ. Programmable hydrogenation of graphene for novel nanocages. Sci Rep 2013;3:3162.
    • (2013) Sci Rep , vol.3 , pp. 3162
    • Zhang, L.Y.1    Zeng, X.W.2    Wang, X.Q.3
  • 13
    • 84897895007 scopus 로고    scopus 로고
    • An atomistic methodology of energy release rate for graphene at nanoscale
    • Zhang Z, Wang XQ, Lee JD. An atomistic methodology of energy release rate for graphene at nanoscale. J Appl. Phys 2014;115:114314.
    • (2014) J Appl. Phys , vol.115 , pp. 114314
    • Zhang, Z.1    Wang, X.Q.2    Lee, J.D.3
  • 16
    • 77952830220 scopus 로고    scopus 로고
    • Graphene-like silicon nanoribbons on Ag(110): A possible formation of silicene
    • Aufray B, Kara A, Vizzini S, Oughaddou H, Leandri C, Ealet B, et al. Graphene-like silicon nanoribbons on Ag(110): a possible formation of silicene. Appl Phys Lett 2010;96:183102.
    • (2010) Appl Phys Lett , vol.96 , pp. 183102
    • Aufray, B.1    Kara, A.2    Vizzini, S.3    Oughaddou, H.4    Leandri, C.5    Ealet, B.6
  • 19
    • 84863821551 scopus 로고    scopus 로고
    • Evidence of silicene in honeycomb structures of silicon on Ag(111)
    • Feng B, Ding Z, Meng S, Yao Y, He X, Cheng P, et al. Evidence of silicene in honeycomb structures of silicon on Ag(111). Nano Lett 2012;12:3507-11.
    • (2012) Nano Lett , vol.12 , pp. 3507-3511
    • Feng, B.1    Ding, Z.2    Meng, S.3    Yao, Y.4    He, X.5    Cheng, P.6
  • 24
  • 25
    • 80051498457 scopus 로고    scopus 로고
    • Quantum spin hall effect in silicene and two-dimensional germanium
    • Liu C-C, Feng W, Yao Y. Quantum spin hall effect in silicene and two-dimensional germanium. Phys Rev Lett 2011;107:076802.
    • (2011) Phys Rev Lett , vol.107 , pp. 076802
    • Liu, C.-C.1    Feng, W.2    Yao, Y.3
  • 26
    • 84864475146 scopus 로고    scopus 로고
    • Valley-polarized metals and quantum anomalous hall effect in silicene
    • Ezawa M. Valley-polarized metals and quantum anomalous hall effect in silicene. Phys Rev Lett 2012;109:055502.
    • (2012) Phys Rev Lett , vol.109 , pp. 055502
    • Ezawa, M.1
  • 28
  • 29
    • 84890711676 scopus 로고    scopus 로고
    • Stability and electronic properties of two-dimensional silicene and germanene on graphene
    • Cai Y, Chuu C-P, Wei CM, Chou MY. Stability and electronic properties of two-dimensional silicene and germanene on graphene. Phys Rev B 2013;88:245408.
    • (2013) Phys Rev B , vol.88 , pp. 245408
    • Cai, Y.1    Chuu, C.-P.2    Wei, C.M.3    Chou, M.Y.4
  • 30
    • 84903362505 scopus 로고    scopus 로고
    • Structural, electronic, and optical properties of hybrid silicene and graphene nanocomposite
    • Hu W, Li Z, Yang J. Structural, electronic, and optical properties of hybrid silicene and graphene nanocomposite. J Chem Phys 2013;139:154704.
    • (2013) J Chem Phys , vol.139 , pp. 154704
    • Hu, W.1    Li, Z.2    Yang, J.3
  • 31
    • 79953013428 scopus 로고    scopus 로고
    • Interfacial properties and morphologies of graphene-graphane composite sheets
    • Reddy CD, Cheng QH, Shenoy VB, Zhang YW. Interfacial properties and morphologies of graphene-graphane composite sheets. J Appl Phys 2011;5:054314.
    • (2011) J Appl Phys , vol.5 , pp. 054314
    • Reddy, C.D.1    Cheng, Q.H.2    Shenoy, V.B.3    Zhang, Y.W.4
  • 32
    • 84892780236 scopus 로고    scopus 로고
    • Structure manipulation of graphene by hydrogenation
    • Reddy CD, Zhang YW. Structure manipulation of graphene by hydrogenation. Carbon 2014;69:86-91.
    • (2014) Carbon , vol.69 , pp. 86-91
    • Reddy, C.D.1    Zhang, Y.W.2
  • 33
    • 84869059166 scopus 로고    scopus 로고
    • Ab initio investigation of graphene-based one-dimensional superlattices and their interfaces
    • Matthes L, Hannewald K, Bechstedt F. Ab initio investigation of graphene-based one-dimensional superlattices and their interfaces. Phys Rev B 2012;86:205409.
    • (2012) Phys Rev B , vol.86 , pp. 205409
    • Matthes, L.1    Hannewald, K.2    Bechstedt, F.3
  • 34
    • 79955048025 scopus 로고    scopus 로고
    • In situ synthesis of MoS2/graphene nanosheet composites with extraordinarily high electrochemical performance for lithium ion batteries
    • Chang K, Chen W. In situ synthesis of MoS2/graphene nanosheet composites with extraordinarily high electrochemical performance for lithium ion batteries. Chem Commun 2011;47:4252-4.
    • (2011) Chem Commun , vol.47 , pp. 4252-4254
    • Chang, K.1    Chen, W.2
  • 36
    • 80052595719 scopus 로고    scopus 로고
    • Graphene adhesion on MoS2 monolayer: An ab initio study
    • Ma Y, Dai Y, Guo M, Niu C, Huang B. Graphene adhesion on MoS2 monolayer: an ab initio study. Nanoscale 2011;3: 3883-7.
    • (2011) Nanoscale , vol.3 , pp. 3883-3887
    • Ma, Y.1    Dai, Y.2    Guo, M.3    Niu, C.4    Huang, B.5
  • 37
    • 34548260307 scopus 로고    scopus 로고
    • Substrate-induced band gap in graphene on hexagonal boron nitride: Ab initio density functional calculations
    • Giovannetti G, Khomyakov PA, Brocks G, Kelly PJ, van den Brink J. Substrate-induced band gap in graphene on hexagonal boron nitride: ab initio density functional calculations. Phys Rev B 2007;76:073103.
    • (2007) Phys Rev B , vol.76 , pp. 073103
    • Giovannetti, G.1    Khomyakov, P.A.2    Brocks, G.3    Kelly, P.J.4    Van Den Brink, J.5
  • 39
    • 84873672603 scopus 로고    scopus 로고
    • Electronic and optical properties of graphene and graphitic ZnO nanocomposite structures
    • Hu W, Li Z, Yang J. Electronic and optical properties of graphene and graphitic ZnO nanocomposite structures. J Chem Phys 2013;138:124706.
    • (2013) J Chem Phys , vol.138 , pp. 124706
    • Hu, W.1    Li, Z.2    Yang, J.3
  • 42
    • 80052800597 scopus 로고    scopus 로고
    • Thermal transport across twin grain boundaries in polycrystalline graphene from nonequilibrium molecular dynamics simulations
    • Bagri A, Kim SP, Ruoff RS, Shenoy VB. Thermal transport across twin grain boundaries in polycrystalline graphene from nonequilibrium molecular dynamics simulations. Nano Lett 2011;11:3917-21.
    • (2011) Nano Lett , vol.11 , pp. 3917-3921
    • Bagri, A.1    Kim, S.P.2    Ruoff, R.S.3    Shenoy, V.B.4
  • 43
    • 36148932627 scopus 로고    scopus 로고
    • Phonon thermal conductivity in nanolaminated composite metals via molecular dynamics
    • Zhou Y, Anglin B, Strachan A. Phonon thermal conductivity in nanolaminated composite metals via molecular dynamics. J Chem Phys 2007;127:184702.
    • (2007) J Chem Phys , vol.127 , pp. 184702
    • Zhou, Y.1    Anglin, B.2    Strachan, A.3
  • 44
    • 0002467378 scopus 로고
    • Fast parallel algorithms for short-range molecular-dynamics
    • Plimpton S. Fast parallel algorithms for short-range molecular-dynamics. J Comput Phys 1995;117:1-19.
    • (1995) J Comput Phys , vol.117 , pp. 1-19
    • Plimpton, S.1
  • 45
    • 33644817086 scopus 로고
    • Empirical potential for hydrocarbons for use in simulating the chemical vapor-deposition of diamond films
    • Brenner DW. Empirical potential for hydrocarbons for use in simulating the chemical vapor-deposition of diamond films. Phys Rev B 1990;42:9458-71.
    • (1990) Phys Rev B , vol.42 , pp. 9458-9471
    • Brenner, D.W.1
  • 46
    • 77955748985 scopus 로고    scopus 로고
    • Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene
    • Lindsay L, Broido DA. Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene. Phys Rev B 2010;81:205441.
    • (2010) Phys Rev B , vol.81 , pp. 205441
    • Lindsay, L.1    Broido, D.A.2
  • 47
    • 4243754961 scopus 로고
    • Computer-simulation of local order in condensed phases of silicon
    • Stillinger FH, Weber TA. Computer-simulation of local order in condensed phases of silicon. Phys Rev B 1985;31:5262-71.
    • (1985) Phys Rev B , vol.31 , pp. 5262-5271
    • Stillinger, F.H.1    Weber, T.A.2
  • 49
    • 42949160518 scopus 로고    scopus 로고
    • Molecular dynamics simulations of carbon nanotube/silicon interfacial thermal conductance
    • Diao J, Srivastava D, Menon M. Molecular dynamics simulations of carbon nanotube/silicon interfacial thermal conductance. J Chem Phys 2008;128:164708.
    • (2008) J Chem Phys , vol.128 , pp. 164708
    • Diao, J.1    Srivastava, D.2    Menon, M.3
  • 50
    • 84867067581 scopus 로고    scopus 로고
    • Thermal contact resistance across nanoscale silicon dioxide and silicon interface
    • Chen J, Zhang G, Li B. Thermal contact resistance across nanoscale silicon dioxide and silicon interface. J Appl Phys 2012;112:064319.
    • (2012) J Appl Phys , vol.112 , pp. 064319
    • Chen, J.1    Zhang, G.2    Li, B.3
  • 51
    • 70349094540 scopus 로고    scopus 로고
    • The role of interface thermal boundary resistance in the overall thermal conductivity of Si-Ge multilayered structures
    • Samvedi V, Tomar V. The role of interface thermal boundary resistance in the overall thermal conductivity of Si-Ge multilayered structures. Nanotechnology 2009;20:365701.
    • (2009) Nanotechnology , vol.20 , pp. 365701
    • Samvedi, V.1    Tomar, V.2
  • 52
    • 84862027768 scopus 로고    scopus 로고
    • Enhancement of thermal energy transport across graphene/graphite and polymer interfaces: A molecular dynamics study
    • Luo T, Lloyd JR. Enhancement of thermal energy transport across graphene/graphite and polymer interfaces: a molecular dynamics study. Adv Funct Mater 2012;22:2495-502.
    • (2012) Adv Funct Mater , vol.22 , pp. 2495-2502
    • Luo, T.1    Lloyd, J.R.2
  • 53
    • 84868313335 scopus 로고    scopus 로고
    • Heat dissipation at a graphene-substrate interface
    • Xu Z, Buehler MJ. Heat dissipation at a graphene-substrate interface. J Phys Condens Matter 2012;24:475305.
    • (2012) J Phys Condens Matter , vol.24 , pp. 475305
    • Xu, Z.1    Buehler, M.J.2
  • 54
    • 79953785787 scopus 로고    scopus 로고
    • In-plane lattice thermal conductivities of multilayer graphene films
    • Wei ZY, Ni ZH, Bi KD, Chen MH, Chen YF. In-plane lattice thermal conductivities of multilayer graphene films. Carbon 2011;49:2653-8.
    • (2011) Carbon , vol.49 , pp. 2653-2658
    • Wei, Z.Y.1    Zh, N.2    Bi, K.D.3    Chen, M.H.4    Chen, Y.F.5
  • 55
    • 84897723121 scopus 로고    scopus 로고
    • Thermal conductivity of silicene calculated using an optimized Stillinger-Weber potential
    • Zhang X, Xie H, Hu M, Bao H, Yue S, Qin G, et al. Thermal conductivity of silicene calculated using an optimized Stillinger-Weber potential. Phys Rev B 2014;89:054310.
    • (2014) Phys Rev B , vol.89 , pp. 054310
    • Zhang, X.1    Xie, H.2    Hu, M.3    Bao, H.4    Yue, S.5    Qin, G.6
  • 56
    • 77955140229 scopus 로고    scopus 로고
    • Thermal rectification in nanosized model systems: A molecular dynamics approach
    • Alaghemandi M, Leroy F, Muller-Plathe F, Bohm MC. Thermal rectification in nanosized model systems: a molecular dynamics approach. Phys Rev B 2010;81:125410.
    • (2010) Phys Rev B , vol.81 , pp. 125410
    • Alaghemandi, M.1    Leroy, F.2    Muller-Plathe, F.3    Bohm, M.C.4
  • 57
    • 80051601559 scopus 로고    scopus 로고
    • Interface thermal resistance and thermal rectification in hybrid graphene-graphane nanoribbons: A nonequilibrium molecular dynamics study
    • Rajabpour A, Allaei SMV, Kowsary F. Interface thermal resistance and thermal rectification in hybrid graphene-graphane nanoribbons: a nonequilibrium molecular dynamics study. Appl Phys Lett 2011;99:051917.
    • (2011) Appl Phys Lett , vol.99 , pp. 051917
    • Rajabpour, A.1    Allaei, S.M.V.2    Kowsary, F.3
  • 58
    • 84863385468 scopus 로고    scopus 로고
    • Carbon isotope doping induced interfacial thermal resistance and thermal rectification in graphene
    • Pei Q-X, Zhang Y-W, Sha Z-D, Shenoy VB. Carbon isotope doping induced interfacial thermal resistance and thermal rectification in graphene. Appl Phys Lett 2012;100:101901.
    • (2012) Appl Phys Lett , vol.100 , pp. 101901
    • Pei, Q.-X.1    Zhang, Y.-W.2    Sha, Z.-D.3    Shenoy, V.B.4
  • 59
    • 81155144592 scopus 로고    scopus 로고
    • Thermal rectification in thickness-asymmetric graphene nanoribbons
    • Zhong WR, Huang WH, Deng XR, Ai BQ. Thermal rectification in thickness-asymmetric graphene nanoribbons. Appl Phys Lett 2011;99:193104.
    • (2011) Appl Phys Lett , vol.99 , pp. 193104
    • Zhong, W.R.1    Huang, W.H.2    Deng, X.R.3    Ai, B.Q.4
  • 60
    • 79960348237 scopus 로고    scopus 로고
    • Computational study of thermal rectification from nanostructured interfaces
    • Roberts NA, Walker DG. Computational study of thermal rectification from nanostructured interfaces. J Heat Transf Trans ASME 2011;133:092401.
    • (2011) J Heat Transf Trans ASME , vol.133 , pp. 092401
    • Roberts, N.A.1    Walker, D.G.2
  • 61
    • 67651253330 scopus 로고    scopus 로고
    • Thermal rectification in asymmetric graphene ribbons
    • Yang N, Zhang G, Li BW. Thermal rectification in asymmetric graphene ribbons. Appl Phys Lett 2009;95:033107.
    • (2009) Appl Phys Lett , vol.95 , pp. 033107
    • Yang, N.1    Zhang, G.2    Li, B.W.3
  • 62
    • 34548042315 scopus 로고    scopus 로고
    • Thermal rectification in carbon nanotube intramolecular junctions: Molecular dynamics calculations
    • Wu G, Li BW. Thermal rectification in carbon nanotube intramolecular junctions: molecular dynamics calculations. Phys Rev B 2007;76:085424.
    • (2007) Phys Rev B , vol.76 , pp. 085424
    • Wu, G.1    Li, B.W.2
  • 63
    • 77956321691 scopus 로고    scopus 로고
    • Strain effects on the thermal conductivity of nanostructures
    • Li XB, Maute K, Dunn ML, Yang RG. Strain effects on the thermal conductivity of nanostructures. Phys Rev B 2010;81:245318.
    • (2010) Phys Rev B , vol.81 , pp. 245318
    • Li, X.B.1    Maute, K.2    Dunn, M.L.3    Yang, R.G.4
  • 64
    • 79751473393 scopus 로고    scopus 로고
    • Strain engineering of thermal conductivity in graphene sheets and nanoribbons: A demonstration of magic flexibility
    • Wei N, Xu LQ, Wang HQ, Zheng JC. Strain engineering of thermal conductivity in graphene sheets and nanoribbons: a demonstration of magic flexibility. Nanotechnology 2011;22:105705.
    • (2011) Nanotechnology , vol.22 , pp. 105705
    • Wei, N.1    Xu, L.Q.2    Wang, H.Q.3    Zheng, J.C.4
  • 65
    • 84878102018 scopus 로고    scopus 로고
    • Anomalous thermal response of silicene to uniaxial stretching
    • Hu M, Zhang XL, Poulikakos D. Anomalous thermal response of silicene to uniaxial stretching. Phys Rev B 2013;87:195417.
    • (2013) Phys Rev B , vol.87 , pp. 195417
    • Hu, M.1    Zhang, X.L.2    Poulikakos, D.3
  • 66
    • 84863826911 scopus 로고    scopus 로고
    • A low-frequency wave motion mechanism enables efficient energy transport in carbon nanotubes at high heat fluxes
    • Zhang X, Hu M, Poulikakos D. A low-frequency wave motion mechanism enables efficient energy transport in carbon nanotubes at high heat fluxes. Nano Lett 2012;12:3410-6.
    • (2012) Nano Lett , vol.12 , pp. 3410-3416
    • Zhang, X.1    Hu, M.2    Poulikakos, D.3
  • 67
    • 84896497904 scopus 로고    scopus 로고
    • An anomalous wave-like kinetic energy transport in graphene nanoribbons at high heat flux
    • Zheng K, Wang L, Bai S, Yu J, Tang Z, Huang Z. An anomalous wave-like kinetic energy transport in graphene nanoribbons at high heat flux. Phys B 2014;434:64-8.
    • (2014) Phys B , vol.434 , pp. 64-68
    • Zheng, K.1    Wang, L.2    Bai, S.3    Yu, J.4    Tang, Z.5    Huang, Z.6
  • 68
    • 84890264357 scopus 로고    scopus 로고
    • Molecular dynamics study of temperature behavior in a graphene nanoribbon
    • Wang XQ. Molecular dynamics study of temperature behavior in a graphene nanoribbon. Chem Phys Lett 2014;591:248-52.
    • (2014) Chem Phys Lett , vol.591 , pp. 248-252
    • Wang, X.Q.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.