메뉴 건너뛰기




Volumn 53, Issue , 2015, Pages 100-107

Feature selection for unsupervised learning through local learning

Author keywords

Clustering; Feature selection; Manifold learning; Unsupervised learning

Indexed keywords

DATA STRUCTURES; FEATURE EXTRACTION; GENE EXPRESSION; ITERATIVE METHODS; UNSUPERVISED LEARNING;

EID: 84920071031     PISSN: 01678655     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patrec.2014.11.006     Document Type: Article
Times cited : (35)

References (26)
  • 1
    • 18544375333 scopus 로고    scopus 로고
    • MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia
    • S.A. Armstrong, J.E. Staunton, L.B. Silverman, et al., MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia, Nat. Genet. 30 (2001) 41-47.
    • (2001) Nat. Genet. , vol.30 , pp. 41-47
    • Armstrong, S.A.1    Staunton, J.E.2    Silverman, L.B.3
  • 4
    • 34249709906 scopus 로고    scopus 로고
    • Gene expression profiles of prostate cancer reveal involvement of multiple molecular pathways in the metastatic process
    • U. Chandran, C. Ma, R. Dhir, et al., Gene expression profiles of prostate cancer reveal involvement of multiple molecular pathways in the metastatic process, BMC Cancer 7 (2007) 64.
    • (2007) BMC Cancer , vol.7 , pp. 64
    • Chandran, U.1    Ma, C.2    Dhir, R.3
  • 7
    • 26444454606 scopus 로고    scopus 로고
    • Feature selection for unsupervised learning
    • J.G. Dy, C.E. Brodley, Feature selection for unsupervised learning, J. Mach. Learn. Res. 5 (2004) 845-889.
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 845-889
    • Dy, J.G.1    Brodley, C.E.2
  • 8
    • 8644255832 scopus 로고    scopus 로고
    • Clustering objects on subsets of attributes (with discussion)
    • J.H. Friedman, J.J. Meulman, Clustering objects on subsets of attributes (with discussion), J. R. Stat. Soc. 66 (2004) 815-849.
    • (2004) J. R. Stat. Soc. , vol.66 , pp. 815-849
    • Friedman, J.H.1    Meulman, J.J.2
  • 9
    • 36348960733 scopus 로고    scopus 로고
    • Biconvex sets and optimization with biconvex functions: A survey and extensions
    • J. Gorski, F. Pfeuffer, K. Klamroth, Biconvex sets and optimization with biconvex functions: a survey and extensions, Math. Methods Oper. Res. 66 (2007) 373-407.
    • (2007) Math. Methods Oper. Res. , vol.66 , pp. 373-407
    • Gorski, J.1    Pfeuffer, F.2    Klamroth, K.3
  • 12
    • 84959493567 scopus 로고    scopus 로고
    • Clustering-guided sparse structural learning for unsupervised feature selection
    • Z. Li, Y. Yang, J. Liu, et al., Clustering-guided sparse structural learning for unsupervised feature selection, IEEE Trans. Knowl. Data Eng. 26 (2013) 2138-2150.
    • (2013) IEEE Trans. Knowl. Data Eng. , vol.26 , pp. 2138-2150
    • Li, Z.1    Yang, Y.2    Liu, J.3
  • 16
    • 0037381008 scopus 로고    scopus 로고
    • Gene expression-based classification of malignant gliomas correlates better with survival than histological classification
    • C.L. Nutt, D. Mani, R.A. Betensky, et al., Gene expression-based classification of malignant gliomas correlates better with survival than histological classification, Cancer Res. 63 (2003) 1602-1607.
    • (2003) Cancer Res. , vol.63 , pp. 1602-1607
    • Nutt, C.L.1    Mani, D.2    Betensky, R.A.3
  • 19
    • 33645772227 scopus 로고    scopus 로고
    • Neuronal and glioma-derived stem cell factor induces angiogenesis within the brain
    • L. Sun, A.M. Hui, Q. Su, et al., Neuronal and glioma-derived stem cell factor induces angiogenesis within the brain, Cancer Cell 9 (2006) 287-300.
    • (2006) Cancer Cell , vol.9 , pp. 287-300
    • Sun, L.1    Hui, A.M.2    Su, Q.3
  • 20
    • 77955397866 scopus 로고    scopus 로고
    • Local-learning-based feature selection for high-dimensional data analysis
    • Y. Sun, S. Todorovic, S. Goodison, Local-learning-based feature selection for high-dimensional data analysis, IEEE Trans. Pattern Anal. Mach. Intell. 32 (2010) 1610-1626.
    • (2010) IEEE Trans. Pattern Anal. Mach. Intell. , vol.32 , pp. 1610-1626
    • Sun, Y.1    Todorovic, S.2    Goodison, S.3
  • 21
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • R. Tibshirani, Regression shrinkage and selection via the lasso, J. R. Stat. Soc. 58 (1996) 267-288.
    • (1996) J. R. Stat. Soc. , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 22
    • 0035532141 scopus 로고    scopus 로고
    • Estimating the number of clusters in a data set via the gap statistic
    • R. Tibshirani, G. Walther, T. Hastie, Estimating the number of clusters in a data set via the gap statistic, J. R. Stat. Soc. 63 (2001) 411-423.
    • (2001) J. R. Stat. Soc. , vol.63 , pp. 411-423
    • Tibshirani, R.1    Walther, G.2    Hastie, T.3
  • 23
    • 77954603019 scopus 로고    scopus 로고
    • A framework for feature selection in clustering
    • D.M. Witten, R. Tibshirani, A framework for feature selection in clustering, J. Am. Stat. Assoc. 105 (2010) 713-726.
    • (2010) J. Am. Stat. Assoc. , vol.105 , pp. 713-726
    • Witten, D.M.1    Tibshirani, R.2
  • 25
    • 19044399684 scopus 로고    scopus 로고
    • Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling
    • E.J. Yeoh, M.E. Ross, S.A. Shurtleff, et al., Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling, Cancer Cell 1 (2002) 133-143.
    • (2002) Cancer Cell , vol.1 , pp. 133-143
    • Yeoh, E.J.1    Ross, M.E.2    Shurtleff, S.A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.