-
1
-
-
59249084491
-
The proteasome: overview of structure and functions
-
Tanaka K. 2009. The proteasome: overview of structure and functions. Proc Jpn Acad Ser B Phys Biol Sci 85:12-36. http://dx.doi.org/10.2183/pjab.85.12.
-
(2009)
Proc Jpn Acad Ser B Phys Biol Sci
, vol.85
, pp. 12-36
-
-
Tanaka, K.1
-
2
-
-
0030897031
-
Structure of 20S proteasome from yeast at 2.4 A resolution
-
Groll M, Ditzel L, Lowe J, Stock D, Bochtler M, Bartunik HD, Huber R. 1997. Structure of 20S proteasome from yeast at 2.4 A resolution. Nature 386:463-471. http://dx.doi.org/10.1038/386463a0.
-
(1997)
Nature
, vol.386
, pp. 463-471
-
-
Groll, M.1
Ditzel, L.2
Lowe, J.3
Stock, D.4
Bochtler, M.5
Bartunik, H.D.6
Huber, R.7
-
3
-
-
19444387760
-
The 1.9 A structure of a proteasome-11S activator complex and implications for proteasome-PAN/PA700 interactions
-
Forster A, Masters EI, Whitby FG, Robinson H, Hill CP. 2005. The 1.9 A structure of a proteasome-11S activator complex and implications for proteasome-PAN/PA700 interactions. Mol Cell 18:589-599. http://dx.doi.org/10.1016/j.molcel.2005.04.016.
-
(2005)
Mol Cell
, vol.18
, pp. 589-599
-
-
Forster, A.1
Masters, E.I.2
Whitby, F.G.3
Robinson, H.4
Hill, C.P.5
-
4
-
-
0029042511
-
Crystal structure of the 20S proteasome from the archaeon
-
Lowe J, Stock D, Jap B, Zwickl P, Baumeister W, Huber R. 1995. Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 A resolution. Science 268:533-539. http://dx.doi.org/10.1126/science.7725097.
-
(1995)
acidophilum at 3.4 A resolution. Science
, vol.268
, pp. 533-539
-
-
Lowe, J.1
Stock, D.2
Jap, B.3
Zwickl, P.4
Baumeister, W.5
Huber, R.6
-
5
-
-
0033766480
-
A gated channel into the proteasome core particle
-
Groll M, Bajorek M, Kohler A, Moroder L, Rubin DM, Huber R, Glickman MH, Finley D. 2000. A gated channel into the proteasome core particle. Nat Struct Biol 7:1062-1067. http://dx.doi.org/10.1038/80992.
-
(2000)
Nat Struct Biol
, vol.7
, pp. 1062-1067
-
-
Groll, M.1
Bajorek, M.2
Kohler, A.3
Moroder, L.4
Rubin, D.M.5
Huber, R.6
Glickman, M.H.7
Finley, D.8
-
6
-
-
73649128544
-
Structural models for interactions between the 20S proteasome and its PAN/19S activators
-
Stadtmueller BM, Ferrell K, Whitby FG, Heroux A, Robinson H, Myszka DG, Hill CP. 2010. Structural models for interactions between the 20S proteasome and its PAN/19S activators. J Biol Chem 285:13-17. http://dx.doi.org/10.1074/jbc. C109.070425.
-
(2010)
J Biol Chem
, vol.285
, pp. 13-17
-
-
Stadtmueller, B.M.1
Ferrell, K.2
Whitby, F.G.3
Heroux, A.4
Robinson, H.5
Myszka, D.G.6
Hill, C.P.7
-
7
-
-
76349089770
-
Interactions of PAN=s C-termini with archaeal 20S proteasome and implications for the eukaryotic proteasome-ATPase interactions
-
Yu Y, Smith DM, Kim HM, Rodriguez V, Goldberg AL, Cheng Y. 2010. Interactions of PAN=s C-termini with archaeal 20S proteasome and implications for the eukaryotic proteasome-ATPase interactions. EMBO J 29:692-702. http://dx.doi.org/10.1038/emboj.2009.382.
-
(2010)
EMBO J
, vol.29
, pp. 692-702
-
-
Yu, Y.1
Smith, D.M.2
Kim, H.M.3
Rodriguez, V.4
Goldberg, A.L.5
Cheng, Y.6
-
8
-
-
77954314106
-
Assembly, structure, and function of the 26S proteasome
-
Bedford L, Paine S, Sheppard PW, Mayer RJ, Roelofs J. 2010. Assembly, structure, and function of the 26S proteasome. Trends Cell Biol. 20:391-401. http://dx.doi.org/10.1016/j.tcb.2010.03.007.
-
(2010)
Trends Cell Biol.
, vol.20
, pp. 391-401
-
-
Bedford, L.1
Paine, S.2
Sheppard, P.W.3
Mayer, R.J.4
Roelofs, J.5
-
9
-
-
54049107641
-
Some assembly required: dedicated chaperones in eukaryotic proteasome biogenesis
-
Kusmierczyk AR, Hochstrasser M. 2008. Some assembly required: dedicated chaperones in eukaryotic proteasome biogenesis. Biol Chem 389: 1143-1151. http://dx.doi.org/10.1515/BC.2008.130.
-
(2008)
Biol Chem
, vol.389
, pp. 1143-1151
-
-
Kusmierczyk, A.R.1
Hochstrasser, M.2
-
10
-
-
50849123778
-
PACemakers of proteasome core particle assembly
-
Ramos PC, Dohmen RJ. 2008. PACemakers of proteasome core particle assembly. Structure 16:1296-1304. http://dx.doi.org/10.1016/j.str.2008.07.001.
-
(2008)
Structure
, vol.16
, pp. 1296-1304
-
-
Ramos, P.C.1
Dohmen, R.J.2
-
11
-
-
53849136910
-
Chaperone-driven proteasome assembly
-
Rosenzweig R, Glickman MH. 2008. Chaperone-driven proteasome assembly. Biochem Soc Trans 36:807-812. http://dx.doi.org/10.1042/BST0360807.
-
(2008)
Biochem Soc Trans
, vol.36
, pp. 807-812
-
-
Rosenzweig, R.1
Glickman, M.H.2
-
12
-
-
58849093135
-
Molecular mechanisms of proteasome assembly
-
Murata S, Yashiroda H, Tanaka K. 2009. Molecular mechanisms of proteasome assembly. Nat Rev Mol Cell Biol 10:104-115. http://dx.doi.org/10.1038/nrm2630.
-
(2009)
Nat Rev Mol Cell Biol
, vol.10
, pp. 104-115
-
-
Murata, S.1
Yashiroda, H.2
Tanaka, K.3
-
13
-
-
76449099938
-
Chaperone-assisted assembly of the proteasome core particle
-
Matias AC, Ramos PC, Dohmen RJ. 2010. Chaperone-assisted assembly of the proteasome core particle. Biochem Soc Trans 38:29-33. http://dx.doi.org/10.1042/BST0380029.
-
(2010)
Biochem Soc Trans
, vol.38
, pp. 29-33
-
-
Matias, A.C.1
Ramos, P.C.2
Dohmen, R.J.3
-
14
-
-
33845681479
-
Cooperation of multiple chaperones required for the assembly of mammalian 20S proteasomes
-
Hirano Y, Hayashi H, Iemura S, Hendil KB, Niwa S, Kishimoto T, Kasahara M, Natsume T, Tanaka K, Murata S. 2006. Cooperation of multiple chaperones required for the assembly of mammalian 20S proteasomes. Mol Cell 24:977-984. http://dx.doi.org/10.1016/j.molcel.2006.11.015.
-
(2006)
Mol Cell
, vol.24
, pp. 977-984
-
-
Hirano, Y.1
Hayashi, H.2
Iemura, S.3
Hendil, K.B.4
Niwa, S.5
Kishimoto, T.6
Kasahara, M.7
Natsume, T.8
Tanaka, K.9
Murata, S.10
-
15
-
-
27644554700
-
A heterodimeric complex that promotes the assembly of mammalian 20S proteasomes
-
Hirano Y, Hendil KB, Yashiroda H, Iemura S, Nagane R, Hioki Y, Natsume T, Tanaka K, Murata S. 2005. A heterodimeric complex that promotes the assembly of mammalian 20S proteasomes. Nature 437: 1381-1385. http://dx.doi.org/10.1038/nature04106.
-
(2005)
Nature
, vol.437
, pp. 1381-1385
-
-
Hirano, Y.1
Hendil, K.B.2
Yashiroda, H.3
Iemura, S.4
Nagane, R.5
Hioki, Y.6
Natsume, T.7
Tanaka, K.8
Murata, S.9
-
16
-
-
40949117574
-
A multimeric assembly factor controls the formation of alternative 20S proteasomes
-
Kusmierczyk AR, Kunjappu MJ, Funakoshi M, Hochstrasser M. 2008. A multimeric assembly factor controls the formation of alternative 20S proteasomes. Nat Struct Mol Biol 15:237-244. http://dx.doi.org/10.1038/nsmb.1389.
-
(2008)
Nat Struct Mol Biol
, vol.15
, pp. 237-244
-
-
Kusmierczyk, A.R.1
Kunjappu, M.J.2
Funakoshi, M.3
Hochstrasser, M.4
-
17
-
-
40949120953
-
Crystal structure of a chaperone complex that contributes to the assembly of yeast 20S proteasomes
-
Yashiroda H, Mizushima T, Okamoto K, Kameyama T, Hayashi H, Kishimoto T, Niwa S, Kasahara M, Kurimoto E, Sakata E, Takagi K, Suzuki A, Hirano Y, Murata S, Kato K, Yamane T, Tanaka K. 2008. Crystal structure of a chaperone complex that contributes to the assembly of yeast 20S proteasomes. Nat Struct Mol Biol 15:228-236. http://dx.doi.org/10.1038/nsmb.1386.
-
(2008)
Nat Struct Mol Biol
, vol.15
, pp. 228-236
-
-
Yashiroda, H.1
Mizushima, T.2
Okamoto, K.3
Kameyama, T.4
Hayashi, H.5
Kishimoto, T.6
Niwa, S.7
Kasahara, M.8
Kurimoto, E.9
Sakata, E.10
Takagi, K.11
Suzuki, A.12
Hirano, Y.13
Murata, S.14
Kato, K.15
Yamane, T.16
Tanaka, K.17
-
18
-
-
41549109801
-
A genetic screen for Saccharomyces cerevisiae mutants affecting proteasome function, using a ubiquitin-independent substrate
-
Hoyt MA, McDonough S, Pimpl SA, Scheel H, Hofmann K, Coffino P. 2008. A genetic screen for Saccharomyces cerevisiae mutants affecting proteasome function, using a ubiquitin-independent substrate. Yeast 25: 199-217. http://dx.doi.org/10.1002/yea.1579.
-
(2008)
Yeast
, vol.25
, pp. 199-217
-
-
Hoyt, M.A.1
McDonough, S.2
Pimpl, S.A.3
Scheel, H.4
Hofmann, K.5
Coffino, P.6
-
19
-
-
34547838178
-
20S proteasome assembly is orchestrated by two distinct pairs of chaperones in yeast and in mammals
-
Le Tallec B, Barrault MB, Courbeyrette R, Guerois R, Marsolier- Kergoat MC, Peyroche A. 2007. 20S proteasome assembly is orchestrated by two distinct pairs of chaperones in yeast and in mammals. Mol Cell 27:660-674. http://dx.doi.org/10.1016/j.molcel.2007.06.025.
-
(2007)
Mol Cell
, vol.27
, pp. 660-674
-
-
Le Tallec, B.1
Barrault, M.B.2
Courbeyrette, R.3
Guerois, R.4
Marsolier-Kergoat, M.C.5
Peyroche, A.6
-
20
-
-
0026506729
-
Purification and characterization of a protein inhibitor of the 20S proteasome (macropain)
-
Chu-Ping M, Slaughter CA, DeMartino GN. 1992. Purification and characterization of a protein inhibitor of the 20S proteasome (macropain). Biochim Biophys Acta 1119:303-311. http://dx.doi.org/10.1016/0167-4838(92)90218-3.
-
(1992)
Biochim Biophys Acta
, vol.1119
, pp. 303-311
-
-
Chu-Ping, M.1
Slaughter, C.A.2
DeMartino, G.N.3
-
21
-
-
0034674655
-
cDNA cloning, expression, and functional characterization of PI31, a proline-rich inhibitor of the proteasome
-
McCutchen-Maloney SL, Matsuda K, Shimbara N, Binns DD, Tanaka K, Slaughter CA, DeMartino GN. 2000. cDNA cloning, expression, and functional characterization of PI31, a proline-rich inhibitor of the proteasome. J Biol Chem 275:18557-18565. http://dx.doi.org/10.1074/jbc. M001697200.
-
(2000)
J Biol Chem
, vol.275
, pp. 18557-18565
-
-
McCutchen-Maloney, S.L.1
Matsuda, K.2
Shimbara, N.3
Binns, D.D.4
Tanaka, K.5
Slaughter, C.A.6
DeMartino, G.N.7
-
22
-
-
0032828077
-
The proteasome inhibitor PI31 competes with PA28 for binding to 20S proteasomes
-
Zaiss DM, Standera S, Holzhutter H, Kloetzel P, Sijts AJ. 1999. The proteasome inhibitor PI31 competes with PA28 for binding to 20S proteasomes. FEBS Lett 457:333-338. http://dx.doi.org/10.1016/S0014-5793(99)01072-8.
-
(1999)
FEBS Lett
, vol.457
, pp. 333-338
-
-
Zaiss, D.M.1
Standera, S.2
Holzhutter, H.3
Kloetzel, P.4
Sijts, A.J.5
-
23
-
-
0037195136
-
PI31 is a modulator of proteasome formation and antigen processing
-
Zaiss DM, Standera S, Kloetzel PM, Sijts AJ. 2002. PI31 is a modulator of proteasome formation and antigen processing. Proc Natl Acad SciUSA 99:14344-14349. http://dx.doi.org/10.1073/pnas.212257299.
-
(2002)
Proc Natl Acad SciUSA
, vol.99
, pp. 14344-14349
-
-
Zaiss, D.M.1
Standera, S.2
Kloetzel, P.M.3
Sijts, A.J.4
-
24
-
-
79955544968
-
A conserved F box regulatory complex controls proteasome activity in Drosophila
-
Bader M, Benjamin S, Wapinski OL, Smith DM, Goldberg AL, Steller H. 2011. A conserved F box regulatory complex controls proteasome activity in Drosophila. Cell 145:371-382. http://dx.doi.org/10.1016/j.cell.2011.03.021.
-
(2011)
Cell
, vol.145
, pp. 371-382
-
-
Bader, M.1
Benjamin, S.2
Wapinski, O.L.3
Smith, D.M.4
Goldberg, A.L.5
Steller, H.6
-
25
-
-
84876935501
-
Proteasome regulation by ADP-ribosylation
-
Cho-Park PF, Steller H. 2013. Proteasome regulation by ADP-ribosylation. Cell 153:614-627. http://dx.doi.org/10.1016/j.cell.2013.03.040.
-
(2013)
Cell
, vol.153
, pp. 614-627
-
-
Cho-Park, P.F.1
Steller, H.2
-
26
-
-
84903475943
-
Molecular and cellular roles of PI31 (PSMF1) protein in regulation of proteasome function
-
Li X, Thompson D, Kumar B, DeMartino GN. 2014. Molecular and cellular roles of PI31 (PSMF1) protein in regulation of proteasome function. J Biol Chem 289:17392-17405. http://dx.doi.org/10.1074/jbc. M114.561183.
-
(2014)
J Biol Chem
, vol.289
, pp. 17392-17405
-
-
Li, X.1
Thompson, D.2
Kumar, B.3
DeMartino, G.N.4
-
27
-
-
84863234354
-
Fub1p, a novel protein isolated by boundary screening, binds the proteasome complex
-
Hatanaka A, Chen B, Sun J Q, Mano Y, Funakoshi M, Kobayashi H, Ju Y, Mizutani T, Shinmyozu K, Nakayama J, Miyamoto K, Uchida H, Oki M. 2011. Fub1p, a novel protein isolated by boundary screening, binds the proteasome complex. Genes Genet Syst 86:305-314. http://dx.doi.org/10.1266/ggs.86.305.
-
(2011)
Genes Genet Syst
, vol.86
, pp. 305-314
-
-
Hatanaka, A.1
Chen, B.2
Sun, J.Q.3
Mano, Y.4
Funakoshi, M.5
Kobayashi, H.6
Ju, Y.7
Mizutani, T.8
Shinmyozu, K.9
Nakayama, J.10
Miyamoto, K.11
Uchida, H.12
Oki, M.13
-
28
-
-
0003666097
-
-
Academic Press, Amsterdam, Netherlands.
-
Guthrie C, Fink GR (ed). 2002. Methods in enzymology, vol 350, part B. Guide to yeast genetics and molecular and cell biology. Academic Press, Amsterdam, Netherlands.
-
(2002)
Methods in enzymology, vol 350, part B. Guide to yeast genetics and molecular and cell biology
-
-
Guthrie, C.1
Fink, G.R.2
-
30
-
-
28844484999
-
Preparation of ubiquitinated substrates by the PY motif-insertion method for monitoring 26S proteasome activity
-
Saeki Y, Isono E, Toh EA. 2005. Preparation of ubiquitinated substrates by the PY motif-insertion method for monitoring 26S proteasome activity. Methods Enzymol 399:215-227. http://dx.doi.org/10.1016/S0076-6879(05)99014-9.
-
(2005)
Methods Enzymol
, vol.399
, pp. 215-227
-
-
Saeki, Y.1
Isono, E.2
Toh, E.A.3
-
31
-
-
77956838037
-
Upregulation of the PRB1 gene in the Saccharomyces cerevisiae rim101Delta mutant produces proteolytic artefacts that differentially affect some proteins
-
Perez J, Gomez A, Roncero C. 2010. Upregulation of the PRB1 gene in the Saccharomyces cerevisiae rim101Delta mutant produces proteolytic artefacts that differentially affect some proteins. Yeast 27:575-581. http://dx.doi.org/10.1002/yea.1776.
-
(2010)
Yeast
, vol.27
, pp. 575-581
-
-
Perez, J.1
Gomez, A.2
Roncero, C.3
-
32
-
-
27644576445
-
Characterization of the proteasome using native gel electrophoresis
-
Elsasser S, Schmidt M, Finley D. 2005. Characterization of the proteasome using native gel electrophoresis. Methods Enzymol 398:353-363. http://dx.doi.org/10.1016/S0076-6879(05)98029-4.
-
(2005)
Methods Enzymol
, vol.398
, pp. 353-363
-
-
Elsasser, S.1
Schmidt, M.2
Finley, D.3
-
33
-
-
0034761941
-
Initial process of polyglutamine aggregate formation in vivo
-
Kimura Y, Koitabashi S, Kakizuka A, Fujita T. 2001. Initial process of polyglutamine aggregate formation in vivo. Genes Cells 6:887-897. http://dx.doi.org/10.1046/j.1365-2443.2001.00472.x.
-
(2001)
Genes Cells
, vol.6
, pp. 887-897
-
-
Kimura, Y.1
Koitabashi, S.2
Kakizuka, A.3
Fujita, T.4
-
34
-
-
0031059866
-
Processing of X-ray diffraction data collected in oscillation mode
-
Otwinowski Z, Minor W. 1997. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 276:307-326. http://dx.doi.org/10.1016/S0076-6879(97)76066-X.
-
(1997)
Methods Enzymol
, vol.276
, pp. 307-326
-
-
Otwinowski, Z.1
Minor, W.2
-
36
-
-
13244281317
-
Coot: model-building tools for molecular graphics
-
Emsley P, Cowtan K. 2004. Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60:2126-2132. http://dx.doi.org/10.1107/S0907444904019158.
-
(2004)
Acta Crystallogr D Biol Crystallogr
, vol.60
, pp. 2126-2132
-
-
Emsley, P.1
Cowtan, K.2
-
37
-
-
0030924992
-
Refinement of macromolecular structures by the maximum-likelihood method
-
Murshudov GN, Vagin AA, Dodson EJ. 1997. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 53:240-255. http://dx.doi.org/10.1107/S0907444996012255.
-
(1997)
Acta Crystallogr D Biol Crystallogr
, vol.53
, pp. 240-255
-
-
Murshudov, G.N.1
Vagin, A.A.2
Dodson, E.J.3
-
39
-
-
84874947727
-
The BioGRID interaction database: 2013 update
-
Chatr-Aryamontri A, Breitkreutz BJ, Heinicke S, Boucher L, Winter A, Stark C, Nixon J, Ramage L, Kolas N, O'Donnell L, Reguly T, Breitkreutz A, Sellam A, Chen D, Chang C, Rust J, Livstone M, Oughtred R, Dolinski K, Tyers M. 2013. The BioGRID interaction database: 2013 update. Nucleic Acids Res 41:D816-D823. http://dx.doi.org/10.1093/nar/gks1158.
-
(2013)
Nucleic Acids Res
, vol.41
, pp. D816-D823
-
-
Chatr-Aryamontri, A.1
Breitkreutz, B.J.2
Heinicke, S.3
Boucher, L.4
Winter, A.5
Stark, C.6
Nixon, J.7
Ramage, L.8
Kolas, N.9
O'Donnell, L.10
Reguly, T.11
Breitkreutz, A.12
Sellam, A.13
Chen, D.14
Chang, C.15
Rust, J.16
Livstone, M.17
Oughtred, R.18
Dolinski, K.19
Tyers, M.20
more..
-
40
-
-
52049116958
-
Structure of a conserved dimerization domain within the F-box protein Fbxo7 and the PI31 proteasome inhibitor
-
Kirk R, Laman H, Knowles PP, Murray-Rust J, Lomonosov M, Meziane EK, McDonald NQ. 2008. Structure of a conserved dimerization domain within the F-box protein Fbxo7 and the PI31 proteasome inhibitor. J Biol Chem 283:22325-22335. http://dx.doi.org/10.1074/jbc. M709900200.
-
(2008)
J Biol Chem
, vol.283
, pp. 22325-22335
-
-
Kirk, R.1
Laman, H.2
Knowles, P.P.3
Murray-Rust, J.4
Lomonosov, M.5
Meziane, E.K.6
McDonald, N.Q.7
-
41
-
-
1442264792
-
Plasticity in eucaryotic 20S proteasome ring assembly revealed by a subunit deletion in yeast
-
Velichutina I, Connerly PL, Arendt CS, Li X, Hochstrasser M. 2004. Plasticity in eucaryotic 20S proteasome ring assembly revealed by a subunit deletion in yeast. EMBO J 23:500-510. http://dx.doi.org/10.1038/sj.emboj.7600059.
-
(2004)
EMBO J
, vol.23
, pp. 500-510
-
-
Velichutina, I.1
Connerly, P.L.2
Arendt, C.S.3
Li, X.4
Hochstrasser, M.5
-
42
-
-
0038686574
-
Proteasome disassembly and downregulation is correlated with viability during stationary phase
-
Bajorek M, Finley D, Glickman MH. 2003. Proteasome disassembly and downregulation is correlated with viability during stationary phase. Curr Biol 13:1140-1144. http://dx.doi.org/10.1016/S0960-9822(03)00417-2.
-
(2003)
Curr Biol
, vol.13
, pp. 1140-1144
-
-
Bajorek, M.1
Finley, D.2
Glickman, M.H.3
-
43
-
-
0037449572
-
Endoproteolytic activity of the proteasome
-
Liu CW, Corboy MJ, DeMartino GN, Thomas PJ. 2003. Endoproteolytic activity of the proteasome. Science 299:408-411. http://dx.doi.org/10.1126/science.1079293.
-
(2003)
Science
, vol.299
, pp. 408-411
-
-
Liu, C.W.1
Corboy, M.J.2
DeMartino, G.N.3
Thomas, P.J.4
-
44
-
-
79959888485
-
Exposed hydrophobicity is a key determinant of nuclear quality control degradation
-
Fredrickson EK, Rosenbaum JC, Locke MN, Milac TI, Gardner RG. 2011. Exposed hydrophobicity is a key determinant of nuclear quality control degradation. Mol Biol Cell 22:2384-2395. http://dx.doi.org/10.1091/mbc. E11-03-0256.
-
(2011)
Mol Biol Cell
, vol.22
, pp. 2384-2395
-
-
Fredrickson, E.K.1
Rosenbaum, J.C.2
Locke, M.N.3
Milac, T.I.4
Gardner, R.G.5
-
45
-
-
0024669291
-
A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae
-
Sikorski RS, Hieter P. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19-27.
-
(1989)
Genetics
, vol.122
, pp. 19-27
-
-
Sikorski, R.S.1
Hieter, P.2
-
46
-
-
10244223979
-
Hub1 is an essential ubiquitin-like protein without functioning as a typical modifier in fission yeast
-
Yashiroda H, Tanaka K. 2004. Hub1 is an essential ubiquitin-like protein without functioning as a typical modifier in fission yeast. Genes Cells 9:1189-1197. http://dx.doi.org/10.1111/j.1365-2443.2004.00807.x.
-
(2004)
Genes Cells
, vol.9
, pp. 1189-1197
-
-
Yashiroda, H.1
Tanaka, K.2
-
47
-
-
0026687986
-
RHO gene products, putative small GTP-binding proteins, are important for activation of the CAL1/CDC43 gene product, a protein geranylgeranyltransferase in Saccharomyces cerevisiae
-
Qadota H, Ishii I, Fujiyama A, Ohya Y, Anraku Y. 1992. RHO gene products, putative small GTP-binding proteins, are important for activation of the CAL1/CDC43 gene product, a protein geranylgeranyltransferase in Saccharomyces cerevisiae. Yeast 8:735-741. http://dx.doi.org/10.1002/yea.320080906.
-
(1992)
Yeast
, vol.8
, pp. 735-741
-
-
Qadota, H.1
Ishii, I.2
Fujiyama, A.3
Ohya, Y.4
Anraku, Y.5
|