메뉴 건너뛰기




Volumn 18, Issue 12, 2015, Pages 1293-1304

Automated generation of tissue-specific three-dimensional finite element meshes containing ellipsoidal cellular inclusions

Author keywords

cartilage; cell; finite element; mesh; tetrahedral; tissue

Indexed keywords

CARTILAGE; CELLS; CYTOLOGY; MESH GENERATION; TISSUE;

EID: 84919842218     PISSN: 10255842     EISSN: 14768259     Source Type: Journal    
DOI: 10.1080/10255842.2014.900545     Document Type: Article
Times cited : (8)

References (37)
  • 1
    • 0344334039 scopus 로고    scopus 로고
    • Efficient cell segmentation tool for confocal microscopy tissue image and quantitative evaluation of FISH signals
    • AdigaPS, ChaudhuriBB. 1999. Efficient cell segmentation tool for confocal microscopy tissue image and quantitative evaluation of FISH signals. Microsc Res Tech. 44:49–68.
    • (1999) Microsc Res Tech , vol.44 , pp. 49-68
    • Adiga, P.S.1    Chaudhuri, B.B.2
  • 2
    • 27244448926 scopus 로고    scopus 로고
    • The biomechanical role of the chondrocyte pericellular matrix in articular cartilage
    • AlexopoulosLG, SettonLA, GuilakF. 2005. The biomechanical role of the chondrocyte pericellular matrix in articular cartilage. Acta Mater. 1(3):317–325.
    • (2005) Acta Mater , vol.1 , Issue.3 , pp. 317-325
    • Alexopoulos, L.G.1    Setton, L.A.2    Guilak, F.3
  • 3
    • 0026940998 scopus 로고
    • On locking and robustness in the finite element method
    • BabuškaI, SuriM. 1992. On locking and robustness in the finite element method. SIAM J Numer Anal. 29(5):1261–1293.
    • (1992) SIAM J Numer Anal , vol.29 , Issue.5 , pp. 1261-1293
    • Babuška, I.1    Suri, M.2
  • 4
    • 0037291340 scopus 로고    scopus 로고
    • The micromechanical environment of intervertebral disc cells determined by a finite deformation, anisotropic, and biphasic finite element model
    • BaerAE, LaursenTA, GuilakF, SettonLA. 2003. The micromechanical environment of intervertebral disc cells determined by a finite deformation, anisotropic, and biphasic finite element model. J Biomech Eng. 125(1):1–11.
    • (2003) J Biomech Eng , vol.125 , Issue.1 , pp. 1-11
    • Baer, A.E.1    Laursen, T.A.2    Guilak, F.3    Setton, L.A.4
  • 8
    • 70349556460 scopus 로고    scopus 로고
    • Pericellular matrix mechanics in the anulus fibrosus predicted by a three-dimensional finite element model and in situ morphology
    • CaoL, GuilakF, SettonLA. 2009. Pericellular matrix mechanics in the anulus fibrosus predicted by a three-dimensional finite element model and in situ morphology. Cell Mol Bioeng. 2(3):306–319.
    • (2009) Cell Mol Bioeng , vol.2 , Issue.3 , pp. 306-319
    • Cao, L.1    Guilak, F.2    Setton, L.A.3
  • 9
    • 79551533744 scopus 로고    scopus 로고
    • Three-dimensional finite element modeling of pericellular matrix and cell mechanics in the nucleus pulposus of the intervertebral disk based on in situ morphology
    • CaoL, GuilakF, SettonLA. 2011. Three-dimensional finite element modeling of pericellular matrix and cell mechanics in the nucleus pulposus of the intervertebral disk based on in situ morphology. Biomech Model Mechanobiol. 10(1):1–10.
    • (2011) Biomech Model Mechanobiol , vol.10 , Issue.1 , pp. 1-10
    • Cao, L.1    Guilak, F.2    Setton, L.A.3
  • 12
    • 0033811124 scopus 로고    scopus 로고
    • The mechanical environment of the chondrocyte: a biphasic finite element model of cell–matrix interactions in articular cartilage
    • GuilakF, MowVC. 2000. The mechanical environment of the chondrocyte: a biphasic finite element model of cell–matrix interactions in articular cartilage. J Biomech. 33(12):1663–1673.
    • (2000) J Biomech , vol.33 , Issue.12 , pp. 1663-1673
    • Guilak, F.1    Mow, V.C.2
  • 13
    • 84868368410 scopus 로고    scopus 로고
    • Multiscale mechanics of articular cartilage: potentials and challenges of coupling musculoskeletal, joint, and microscale computational models
    • HalloranJP, SiboleS, van DonkelaarCC, van TurnhoutMC, OomensCWJ, WeissJA, GuilakF, ErdemirA. 2012. Multiscale mechanics of articular cartilage: potentials and challenges of coupling musculoskeletal, joint, and microscale computational models. Ann Biomed Eng. 40(11):2456–2474.
    • (2012) Ann Biomed Eng , vol.40 , Issue.11 , pp. 2456-2474
    • Halloran, J.P.1    Sibole, S.2    van Donkelaar, C.C.3    van Turnhout, M.C.4    Oomens, C.W.J.5    Weiss, J.A.6    Guilak, F.7    Erdemir, A.8
  • 14
    • 0031658981 scopus 로고    scopus 로고
    • Linkage of chondrocyte apoptosis and cartilage degradation in human osteoarthritis
    • HashimotoS, OchsRL, KomiyaS, LotzM. 1998. Linkage of chondrocyte apoptosis and cartilage degradation in human osteoarthritis. Arthritis Rheum. 41(9):1632–1638.
    • (1998) Arthritis Rheum , vol.41 , Issue.9 , pp. 1632-1638
    • Hashimoto, S.1    Ochs, R.L.2    Komiya, S.3    Lotz, M.4
  • 15
    • 84857655163 scopus 로고    scopus 로고
    • Critical role of cardiac t-tubule system for the maintenance of contractile function revealed by a 3D integrated model of cardiomyocytes
    • HatanoA, OkadaJ, HisadaT, SuguiraS. 2012. Critical role of cardiac t-tubule system for the maintenance of contractile function revealed by a 3D integrated model of cardiomyocytes. J Biomech. 45(5):815–823.
    • (2012) J Biomech , vol.45 , Issue.5 , pp. 815-823
    • Hatano, A.1    Okada, J.2    Hisada, T.3    Suguira, S.4
  • 17
    • 0036638042 scopus 로고    scopus 로고
    • Quantitative structural organization of normal adult human articular cartil
    • HunzikerEB, QuinnTM, HäuselmannHJ. 2002. Quantitative structural organization of normal adult human articular cartil. Osteoarthr and Cartil. 10(7):564–572.
    • (2002) Osteoarthr and Cartil , vol.10 , Issue.7 , pp. 564-572
    • Hunziker, E.B.1    Quinn, T.M.2    Häuselmann, H.J.3
  • 18
    • 58149202349 scopus 로고    scopus 로고
    • The dynamic mechanical environment of the chondrocyte: a biphasic finite element model of cell–matrix interactions under cyclic compressive loading
    • KimE, GuilakF, HaiderMA. 2008. The dynamic mechanical environment of the chondrocyte: a biphasic finite element model of cell–matrix interactions under cyclic compressive loading. J Biomed Eng. 130(6):061009-1–061009-10.
    • (2008) J Biomed Eng , vol.130 , Issue.6 , pp. 1-10
    • Kim, E.1    Guilak, F.2    Haider, M.A.3
  • 19
    • 77953565425 scopus 로고    scopus 로고
    • An axisymmetric boundary element model for determination of articular cartilage pericellular matrix properties in situ via inverse analysis of chondron deformation
    • KimE, GuilakF, HaiderMA. 2010. An axisymmetric boundary element model for determination of articular cartilage pericellular matrix properties in situ via inverse analysis of chondron deformation. J Biomech Eng. 132:031011-1–031011-13.
    • (2010) J Biomech Eng , vol.132 , pp. 1-13
    • Kim, E.1    Guilak, F.2    Haider, M.A.3
  • 20
    • 79952198537 scopus 로고    scopus 로고
    • Mechanotransduction: a major regulator of homeostasis and development
    • KolahiKS, MofradMRK. 2010. Mechanotransduction: a major regulator of homeostasis and development. Wiley Interdiscip Rev Syst Biol Med. 2(6):625–639.
    • (2010) Wiley Interdiscip Rev Syst Biol Med , vol.2 , Issue.6 , pp. 625-639
    • Kolahi, K.S.1    Mofrad, M.R.K.2
  • 21
    • 47149103447 scopus 로고    scopus 로고
    • Importance of collagen orientation and depth-dependent fixed charge desnities of cartilage on mechanical behavior of chondrocytes
    • KorhonenRK, JulkunenP, WilsonW, HerzogW. 2008. Importance of collagen orientation and depth-dependent fixed charge desnities of cartilage on mechanical behavior of chondrocytes. J Biomech Eng. 130(2):021003-1–021003-11.
    • (2008) J Biomech Eng , vol.130 , Issue.2 , pp. 1-11
    • Korhonen, R.K.1    Julkunen, P.2    Wilson, W.3    Herzog, W.4
  • 22
    • 2942752083 scopus 로고    scopus 로고
    • Effects of pore morphology and bone ingrowth on mechanical properties of microporous titanium as an orthopaedic implant material
    • LiH, OppenheimerSM, StuppSI, DunandDC, BrinsonLC. 2004. Effects of pore morphology and bone ingrowth on mechanical properties of microporous titanium as an orthopaedic implant material. Mater Trans. 45(4):1124–1131.
    • (2004) Mater Trans , vol.45 , Issue.4 , pp. 1124-1131
    • Li, H.1    Oppenheimer, S.M.2    Stupp, S.I.3    Dunand, D.C.4    Brinson, L.C.5
  • 23
    • 84867555374 scopus 로고    scopus 로고
    • Compressive properties of closed-cell polyvinyl chloride foams at low and high strain rates: experimental investigation and critical review of state of the art
    • LuongDD, PinisettyD, GuptaN. 2013. Compressive properties of closed-cell polyvinyl chloride foams at low and high strain rates: experimental investigation and critical review of state of the art. Compos B Eng. 44(1):403–416.
    • (2013) Compos B Eng , vol.44 , Issue.1 , pp. 403-416
    • Luong, D.D.1    Pinisetty, D.2    Gupta, N.3
  • 25
    • 33947675353 scopus 로고    scopus 로고
    • A numerical study to determine pericellular matrix modulus and evaluate its effects on the micromechanical environment of chondrocytes
    • MichalekAJ, IatridisJC. 2007. A numerical study to determine pericellular matrix modulus and evaluate its effects on the micromechanical environment of chondrocytes. J Biomech. 40:1405–1409.
    • (2007) J Biomech , vol.40 , pp. 1405-1409
    • Michalek, A.J.1    Iatridis, J.C.2
  • 26
    • 80755148669 scopus 로고    scopus 로고
    • Multiscale failure modeling of concrete: micromechanical modeling, discontinuous homogenization and parallel computations
    • NguyenVP, StroevenM, SluysLJ. 2012. Multiscale failure modeling of concrete: micromechanical modeling, discontinuous homogenization and parallel computations. Comput Methods Appl Mech Eng. 201-204:139–156.
    • (2012) Comput Methods Appl Mech Eng , vol.201-204 , pp. 139-156
    • Nguyen, V.P.1    Stroeven, M.2    Sluys, L.J.3
  • 27
    • 84877308884 scopus 로고    scopus 로고
    • A hyperelastic biphasic fibre-reinforced model of articular cartilage considering distributed collagen fibre orientations: continuum basis, computational aspects and applications
    • PierceDM, RickenR, HolzapfelGA. 2013. A hyperelastic biphasic fibre-reinforced model of articular cartilage considering distributed collagen fibre orientations: continuum basis, computational aspects and applications. Comput Methods Biomech Biomed Eng. 16(12):1344–1361.
    • (2013) Comput Methods Biomech Biomed Eng , vol.16 , Issue.12 , pp. 1344-1361
    • Pierce, D.M.1    Ricken, R.2    Holzapfel, G.A.3
  • 30
    • 56749102639 scopus 로고    scopus 로고
    • Role of cartilage collagen fibrils networks in knee joint biomechanics under compression
    • ShiraziR, Shirazi-AdlA, HurtigM. 2008. Role of cartilage collagen fibrils networks in knee joint biomechanics under compression. J Biomech. 41:3340–3348.
    • (2008) J Biomech , vol.41 , pp. 3340-3348
    • Shirazi, R.1    Shirazi-Adl, A.2    Hurtig, M.3
  • 31
    • 84861375865 scopus 로고    scopus 로고
    • Chondrocyte deformations as a function of tibiofemoral joint loading predicted by a generalized high-throughput pipeline of multi-scale simulations
    • SiboleS, ErdemirA. 2012. Chondrocyte deformations as a function of tibiofemoral joint loading predicted by a generalized high-throughput pipeline of multi-scale simulations. PLoS ONE. 7(5):e37538.
    • (2012) PLoS ONE , vol.7 , Issue.5 , pp. e37538
    • Sibole, S.1    Erdemir, A.2
  • 32
    • 84886413409 scopus 로고    scopus 로고
    • Evaluation of a post-processing approach for muliscale analysis of biphasic mechanics of chondrocytes
    • SiboleS, MaasS, HalloranJP, WeissJA, ErdemirA. 2013. Evaluation of a post-processing approach for muliscale analysis of biphasic mechanics of chondrocytes. Comp Methods Biomech Biomed Eng. 16(10):1112–1126.
    • (2013) Comp Methods Biomech Biomed Eng , vol.16 , Issue.10 , pp. 1112-1126
    • Sibole, S.1    Maas, S.2    Halloran, J.P.3    Weiss, J.A.4    Erdemir, A.5
  • 33
    • 79960717454 scopus 로고    scopus 로고
    • Comparison of hexahedral and tetrahedral elements in finite element analysis of the foot and footwear
    • TadepalliSC, ErdemirA, CavanaghPR. 2011. Comparison of hexahedral and tetrahedral elements in finite element analysis of the foot and footwear. J Biomech. 44(12):2337–2343.
    • (2011) J Biomech , vol.44 , Issue.12 , pp. 2337-2343
    • Tadepalli, S.C.1    Erdemir, A.2    Cavanagh, P.R.3
  • 34
    • 33646861417 scopus 로고    scopus 로고
    • Finite element modeling predictions of region-specific cell-matrix mechanics in the meniscus
    • UptonML, GuilakF, LaursenTA, SettonLA. 2006. Finite element modeling predictions of region-specific cell-matrix mechanics in the meniscus. Biomech Model Mechan. 5:140–149.
    • (2006) Biomech Model Mechan , vol.5 , pp. 140-149
    • Upton, M.L.1    Guilak, F.2    Laursen, T.A.3    Setton, L.A.4
  • 35
    • 32944482205 scopus 로고    scopus 로고
    • An introductory review of cell mechanobiology
    • WangJH, ThampattyBP. 2006. An introductory review of cell mechanobiology. Biomech Model Mechan. 5(1):1–16.
    • (2006) Biomech Model Mechan , vol.5 , Issue.1 , pp. 1-16
    • Wang, J.H.1    Thampatty, B.P.2
  • 36
    • 84876195211 scopus 로고    scopus 로고
    • A computational approach to understand phenotypic structure and constitutive mechanics relationships of single cells
    • WoodST, DeanBC, DeanD. 2013. A computational approach to understand phenotypic structure and constitutive mechanics relationships of single cells. Ann Biomed Eng. 41(3):630–644.
    • (2013) Ann Biomed Eng , vol.41 , Issue.3 , pp. 630-644
    • Wood, S.T.1    Dean, B.C.2    Dean, D.3
  • 37
    • 79955141040 scopus 로고    scopus 로고
    • Chondrocyte apoptosis: a cause or consequence of osteoarthritis?
    • ZamliZ, SharifM. 2011. Chondrocyte apoptosis: a cause or consequence of osteoarthritis?Int J Rheum Dis. 14:159–166.
    • (2011) Int J Rheum Dis , vol.14 , pp. 159-166
    • Zamli, Z.1    Sharif, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.