메뉴 건너뛰기




Volumn , Issue , 2012, Pages 489-497

Large-scale distributed non-negative sparse coding and sparse dictionary learning

Author keywords

dictionary learning; mapreduce; nmf; sparse coding

Indexed keywords

COMMODITY CLUSTERS; DICTIONARY LEARNING; HIGH-DIMENSIONAL; MAP-REDUCE; NMF; NON-NEGATIVE FACTORIZATION; NON-NEGATIVE SPARSE CODING; OPTIMIZATION PROBLEMS; PARALLEL OPTIMIZATION; RISK MINIMIZATION; SPARSE CODING; SPARSE MATRICES; SPARSITY CONSTRAINTS; STATISTICAL PERFORMANCE; TEXT ANALYSIS;

EID: 84866006615     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2339530.2339610     Document Type: Conference Paper
Times cited : (21)

References (19)
  • 1
    • 84862609231 scopus 로고    scopus 로고
    • Computing a nonnegative matrix factorization - Provably
    • S. Arora, R. Ge, R. Kannan, and A. Moitra. Computing a nonnegative matrix factorization - provably. In STOC, 2012.
    • (2012) STOC
    • Arora, S.1    Ge, R.2    Kannan, R.3    Moitra, A.4
  • 2
    • 78650786262 scopus 로고    scopus 로고
    • Gradient-based algorithms with applications to signal recovery problems
    • Camb. Univ. Press
    • A. Beck and M. Teboulle. Gradient-based algorithms with applications to signal recovery problems. Convex Opt. in Sig. Proc. Comm., Camb. Univ. Press, 2010.
    • (2010) Convex Opt. in Sig. Proc. Comm.
    • Beck, A.1    Teboulle, M.2
  • 4
    • 0141607824 scopus 로고    scopus 로고
    • Latent dirichlet allocation
    • David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet allocation. JMLR, 3:993-1022, 2003.
    • (2003) JMLR , vol.3 , pp. 993-1022
    • Blei, D.M.1    Ng, A.Y.2    Jordan, M.I.3
  • 7
    • 85030321143 scopus 로고    scopus 로고
    • Mapreduce: Simplified data processing on large clusters
    • J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters. In OSDI, 2004.
    • (2004) OSDI
    • Dean, J.1    Ghemawat, S.2
  • 8
    • 56449092085 scopus 로고    scopus 로고
    • Efficient projections onto the l1-ball for learning in high dimensions
    • J. Duchi, S. S. Schwartz, Y. Singer, and T. Chandra. Efficient projections onto the l1-ball for learning in high dimensions. In ICML, 2008.
    • (2008) ICML
    • Duchi, J.1    Schwartz, S.S.2    Singer, Y.3    Chandra, T.4
  • 10
    • 80052651384 scopus 로고    scopus 로고
    • Nimble: A toolkit for the implementation of parallel data mining and machine learning algorithms on mapreduce
    • A. Ghoting, P. Kambadur, E. Pednault, and R. Kannan. Nimble: a toolkit for the implementation of parallel data mining and machine learning algorithms on mapreduce. In KDD, 2011.
    • (2011) KDD
    • Ghoting, A.1    Kambadur, P.2    Pednault, E.3    Kannan, R.4
  • 12
    • 84900510076 scopus 로고    scopus 로고
    • Non-negative matrix factorization with sparseness constraints
    • P. Hoyer. Non-negative matrix factorization with sparseness constraints. JMLR, 5:1457-1469, 2004.
    • (2004) JMLR , vol.5 , pp. 1457-1469
    • Hoyer, P.1
  • 13
    • 77956506018 scopus 로고    scopus 로고
    • Proximal methods for sparse hierarchical dictionary learning
    • R. Jenatton, J. Mairal, G. Obozinski, and F. Bach. Proximal methods for sparse hierarchical dictionary learning. In ICML, 2010.
    • (2010) ICML
    • Jenatton, R.1    Mairal, J.2    Obozinski, G.3    Bach, F.4
  • 14
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative matrix factorization. Nature, 1999.
    • (1999) Nature
    • Lee, D.D.1    Seung, H.S.2
  • 15
    • 77954604765 scopus 로고    scopus 로고
    • Distributed nonnegative matrix factorization for web-scale dyadic data analysis on mapreduce
    • C. Liu, H. Yang, J. Fan, L. He, and Y. Wang. Distributed nonnegative matrix factorization for web-scale dyadic data analysis on mapreduce. In WWW, 2010.
    • (2010) WWW
    • Liu, C.1    Yang, H.2    Fan, J.3    He, L.4    Wang, Y.5
  • 16
    • 76749107542 scopus 로고    scopus 로고
    • Online learning for matrix factorization and sparse coding
    • J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online learning for matrix factorization and sparse coding. JMLR, 11:19-60, 2010.
    • (2010) JMLR , vol.11 , pp. 19-60
    • Mairal, J.1    Bach, F.2    Ponce, J.3    Sapiro, G.4
  • 18
    • 80052119994 scopus 로고    scopus 로고
    • An architecture for parallel topic models
    • A. Smola and S. Narayanamurthy. An architecture for parallel topic models. In VLDB, 2010.
    • (2010) IVLDB
    • Smola, A.1    Narayanamurthy, S.2
  • 19
    • 85162409960 scopus 로고    scopus 로고
    • Learning sparse representations of high-dimensional data on large-scale dictionaries
    • Z. J. Xiang, H. Xu, and P. J. Ramadge. Learning sparse representations of high-dimensional data on large-scale dictionaries. In NIPS, 2011.
    • (2011) NIPS
    • Xiang, Z.J.1    Xu, H.2    Ramadge, P.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.