-
2
-
-
84873351478
-
Characterizing the sample complexity of private learners
-
Berkeley, California
-
Beimel, Amos, Nissim, Kobbi, and Stemmer, Uri. Characterizing the sample complexity of private learners. In ACM SIGACT Innovations in Theoretical Computer Science (ITCS), Berkeley, California, pp. 97-110, 2013.
-
(2013)
ACM SIGACT Innovations in Theoretical Computer Science (ITCS)
, pp. 97-110
-
-
Beimel, A.1
Nissim, K.2
Stemmer, U.3
-
3
-
-
84877909042
-
A learning theory approach to noninteractive database privacy
-
Blum, A., Ligett, K., and Roth, A. A learning theory approach to noninteractive database privacy. Journal of the ACM, 60(2): 12, 2013.
-
(2013)
Journal of the ACM
, vol.60
, Issue.2
, pp. 12
-
-
Blum, A.1
Ligett, K.2
Roth, A.3
-
4
-
-
33244468835
-
Practical privacy: The sulq framework
-
Baltimore, Maryland
-
Blum, Avrim, Dwork, Cynthia, McSherry, Frank, and Nissim, Kobbi. Practical privacy: The sulq framework. In ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PODS). Baltimore, Maryland, pp. 128- 138, 2005.
-
(2005)
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PODS)
, pp. 128-138
-
-
Blum, A.1
Dwork, C.2
McSherry, F.3
Nissim, K.4
-
5
-
-
84885588035
-
Sample complexity bounds for differentially private learning
-
Chaudhuri, Kamalika and Hsu, Daniel. Sample complexity bounds for differentially private learning. Journal of Machine Learning Research, 19:155-186, 2011.
-
(2011)
Journal of Machine Learning Research
, vol.19
, pp. 155-186
-
-
Chaudhuri, K.1
Hsu, D.2
-
6
-
-
84858769465
-
Privacy-preserving logistic regression
-
Vancouver, British Colombia
-
Chaudhuri, Kamalika and Monteleoni, Claire. Privacy-preserving logistic regression. In Conference on Neural Information Processing Systems (NIPS), Vancouver, British Colombia, pp. 289-296, 2008.
-
(2008)
Conference on Neural Information Processing Systems (NIPS)
, pp. 289-296
-
-
Chaudhuri, K.1
Monteleoni, C.2
-
8
-
-
79955858775
-
Differentially private empirical risk minimization
-
Chaudhuri, Kamalika, Monteleoni, Claire, and Sarwate, Anand D. Differentially private empirical risk minimization. Journal of Machine Learning Research, 12:1069-1109, 2011.
-
(2011)
Journal of Machine Learning Research
, vol.12
, pp. 1069-1109
-
-
Chaudhuri, K.1
Monteleoni, C.2
Sarwate, A.D.3
-
9
-
-
84877730447
-
Near-optimal differentially private principal components
-
Lake Tahoe, California
-
Chaudhuri, Kamalika, Sarwate, Anand, and Sinha, Kaushik. Near-optimal differentially private principal components. In Conference on Neural Information Processing Systems (NIPS), Lake Tahoe, California, pp. 998-1006, 2012.
-
(2012)
Conference on Neural Information Processing Systems (NIPS)
, pp. 998-1006
-
-
Chaudhuri, K.1
Sarwate, A.2
Sinha, K.3
-
10
-
-
84893480068
-
Local privacy and statistical minimax rates
-
Berkeley, California
-
Duchi, J.C., Jordan, M.I., and Wainwright, M.J. Local privacy and statistical minimax rates. In IEEE Symposium on Foundations of Computer Science (FOCS), Berkeley, California, 2013.
-
(2013)
IEEE Symposium on Foundations of Computer Science (FOCS)
-
-
Duchi, J.C.1
Jordan, M.I.2
Wainwright, M.J.3
-
11
-
-
70350689921
-
On the complexity of differentially private data release: Efficient algorithms and hardness results
-
Bethesda, Maryland
-
Dwork, C., Naor, M., Reingold, O., Rothblum, G.N., and Vadhan, S.P. On the complexity of differentially private data release: efficient algorithms and hardness results. In ACM SIGACT Sym-posium on Theory of Computing (STOC), Bethesda, Maryland, pp. 381-390, 2009.
-
(2009)
ACM SIGACT Symposium on Theory of Computing (STOC)
, pp. 381-390
-
-
Dwork, C.1
Naor, M.2
Reingold, O.3
Rothblum, G.N.4
Vadhan, S.P.5
-
12
-
-
78751522594
-
Boosting and differential privacy
-
Las Vegas, Nevada
-
Dwork, C., Rothblum, G.N., and Vadhan, S. Boosting and differential privacy. In IEEE Symposium on Foundations of Computer Science (FOCS), Las Vegas, Nevada, pp. 51-60, 2010.
-
(2010)
IEEE Symposium on Foundations of Computer Science (FOCS)
, pp. 51-60
-
-
Dwork, C.1
Rothblum, G.N.2
Vadhan, S.3
-
13
-
-
33745556605
-
Calibrating noise to sensitivity in private data analysis
-
New York, New York
-
Dwork, Cynthia, McSherry, Frank, Nissim, Kobbi, and Smith, Adam. Calibrating noise to sensitivity in private data analysis. In IACR Theory of Cryptography Conference (TCC), New York, New York, pp. 265-284, 2006.
-
(2006)
IACR Theory of Cryptography Conference (TCC)
, pp. 265-284
-
-
Dwork, C.1
McSherry, F.2
Nissim, K.3
Smith, A.4
-
14
-
-
84904409235
-
Using convex relaxations for efficiently and privately releasing marginals
-
Kyoto, Japan
-
Dwork, Cynthia, Nikolov, Aleksandar, and Talwar, Kunal. Using convex relaxations for efficiently and privately releasing marginals. In SIGACT - SIGGRAPH Symposium on Computational Geometry (SOCG), Kyoto, Japan, pp. 261, 2014.
-
(2014)
SIGACT - SIGGRAPH Symposium on Computational Geometry (SOCG)
, pp. 261
-
-
Dwork, C.1
Nikolov, A.2
Talwar, K.3
-
15
-
-
0030419058
-
Game theory, on-line prediction and boosting
-
Desenzano sul Garda, Italy
-
Freund, Y. and Schapire, R.E. Game theory, on-line prediction and boosting. In Conference on Computational Learning Theory (CoLT), Desenzano sul Garda, Italy, pp. 325-332, 1996.
-
(1996)
Conference on Computational Learning Theory (CoLT)
, pp. 325-332
-
-
Freund, Y.1
Schapire, R.E.2
-
16
-
-
85032928643
-
-
Technical report
-
Gaboardi, Marco, Gallego Arias, Emilio Jesus, Hsu, Justin, Roth, Aaron, and Wu, Zhiwei Steven. Dual query: Practical private query release for high dimensional data. Technical report, 2014. http://arxiv.org/abs/1402.1526.
-
(2014)
Dual Query: Practical Private Query Release for High Dimensional Data
-
-
Gaboardi, M.1
Gallego Arias, E.J.2
Hsu, J.3
Roth, A.4
Wu, Z.S.5
-
17
-
-
84863421549
-
Iterative constructions and private data release
-
Taormina, Italy
-
Gupta, A., Roth, A., and Ullman, J. Iterative constructions and private data release. In IACR Theory of Cryptography Conference (TCC), Taormina, Italy, pp. 339-356, 2012.
-
(2012)
IACR Theory of Cryptography Conference (TCC)
, pp. 339-356
-
-
Gupta, A.1
Roth, A.2
Ullman, J.3
-
18
-
-
84884919465
-
Privately releasing conjunctions and the statistical query barrier
-
Gupta, Anupam, Hardt, Moritz, Roth, Aaron, and Ullman, Jonathan. Privately releasing conjunctions and the statistical query barrier. SIAM Journal on Computing, 42(4): 1494-1520, 2013.
-
(2013)
SIAM Journal on Computing
, vol.42
, Issue.4
, pp. 1494-1520
-
-
Gupta, A.1
Hardt, M.2
Roth, A.3
Ullman, J.4
-
19
-
-
78751489078
-
A multiplicative weights mechanism for privacy-preserving data analysis
-
Las Vegas, Nevada
-
Hardt, Moritz and Rothblum, Guy N. A multiplicative weights mechanism for privacy-preserving data analysis. In IEEE Symposium on Foundations of Computer Science (FOCS), Las Ve-gas, Nevada, pp. 61-70, 2010.
-
(2010)
IEEE Symposium on Foundations of Computer Science (FOCS)
, pp. 61-70
-
-
Hardt, M.1
Rothblum, G.N.2
-
20
-
-
84877755332
-
A simple and practical algorithm for differentially private data release
-
Lake Tahoe, California
-
Hardt, Moritz, Ligett, Katrina, and McSherry, Frank. A simple and practical algorithm for differentially private data release. In Conference on Neural Information Processing Systems (NIPS), Lake Tahoe, California, pp. 2348-2356, 2012.
-
(2012)
Conference on Neural Information Processing Systems (NIPS)
, pp. 2348-2356
-
-
Hardt, M.1
Ligett, K.2
McSherry, F.3
-
21
-
-
84879816558
-
Differential privacy for the analyst via private equilibrium computation
-
Palo Alto, California
-
Hsu, Justin, Roth, Aaron, and Ullman, Jonathan. Differential privacy for the analyst via private equilibrium computation. In ACM SIGACT Symposium on Theory of Computing (STOC), Palo Alto, California, pp. 341-350, 2013.
-
(2013)
ACM SIGACT Symposium on Theory of Computing (STOC)
, pp. 341-350
-
-
Hsu, J.1
Roth, A.2
Ullman, J.3
-
22
-
-
79960379430
-
What can we learn privately?
-
Kasiviswanathan, Shiva Prasad, Lee, Homin K., Nissim, Kobbi, Raskhodnikova, Sofya, and Smith, Adam. What can we learn privately? SIAM Journal on Computing, 40(3):793-826, 2011.
-
(2011)
SIAM Journal on Computing
, vol.40
, Issue.3
, pp. 793-826
-
-
Kasiviswanathan, S.P.1
Lee, H.K.2
Nissim, K.3
Raskhodnikova, S.4
Smith, A.5
-
23
-
-
0032202014
-
Efficient noise-tolerant learning from statistical queries
-
Kearns, Michael J. Efficient noise-tolerant learning from statistical queries. Journal of the ACM, 45(6):983-1006, 1998.
-
(1998)
Journal of the ACM
, vol.45
, Issue.6
, pp. 983-1006
-
-
Kearns, M.J.1
-
24
-
-
84904192038
-
Private convex empirical risk minimization and high-dimensional regression
-
Kifer, Daniel, Smith, Adam, and Thakurta, Abhradeep. Private convex empirical risk minimization and high-dimensional regression. Journal of Machine Learning Research, 1:41, 2012.
-
(2012)
Journal of Machine Learning Research
, vol.1
, pp. 41
-
-
Kifer, D.1
Smith, A.2
Thakurta, A.3
-
26
-
-
77954715960
-
Optimizing linear counting queries under differential privacy
-
Indianapolis, Indiana
-
Li, Chao, Hay, Michael, Rastogi, Vibhor, Miklau, Gerome, and McGregor, Andrew. Optimizing linear counting queries under differential privacy. In ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PODS), Indianapolis, Indiana, pp. 123-134, 2010.
-
(2010)
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PODS)
, pp. 123-134
-
-
Li, C.1
Hay, M.2
Rastogi, V.3
Miklau, G.4
McGregor, A.5
-
27
-
-
46749128577
-
Mechanism design via differential privacy
-
Providence, Rhode Island
-
McSherry, F. and Talwar, K. Mechanism design via differential privacy. In IEEE Symposium on Foundations of Computer Science (FOCS), Providence, Rhode Island, pp. 94-103, 2007.
-
(2007)
IEEE Symposium on Foundations of Computer Science (FOCS)
, pp. 94-103
-
-
McSherry, F.1
Talwar, K.2
-
28
-
-
50249142450
-
Robust de-anonymization of large sparse datasets
-
Oakland, California
-
Narayanan, A. and Shmatikov, V. Robust de-anonymization of large sparse datasets. In IEEE Symposium on Security and Privacy (S&P), Oakland, California, pp. 111-125, 2008.
-
(2008)
IEEE Symposium on Security and Privacy (S&P)
, pp. 111-125
-
-
Narayanan, A.1
Shmatikov, V.2
-
29
-
-
84919809062
-
-
Netflix. Netflix prize
-
Netflix. Netflix prize.
-
-
-
-
31
-
-
84877781092
-
Learning in a large function space: Privacy- preserving mechanisms for SVM learning
-
Rubinstein, Benjamin I. P., Bartlett, Peter L., Huang, Ling, and Taft, Nina. Learning in a large function space: Privacy- preserving mechanisms for SVM learning. Journal of Privacy and Confidentiality, 4(1):4, 2012.
-
(2012)
Journal of Privacy and Confidentiality
, vol.4
, Issue.1
, pp. 4
-
-
Rubinstein, B.I.P.1
Bartlett, P.L.2
Huang, L.3
Taft, N.4
-
32
-
-
84898996940
-
(Nearly) optimal algorithms for private online learning in full-information and bandit settings
-
Lake Tahoe, California
-
Thakurta, Abhradeep G. and Smith, Adam. (Nearly) optimal algorithms for private online learning in full-information and bandit settings. In Conference on Neural Information Processing Systems (NIPS), Lake Tahoe, California, pp. 2733-2741, 2013.
-
(2013)
Conference on Neural Information Processing Systems (NIPS)
, pp. 2733-2741
-
-
Thakurta, A.G.1
Smith, A.2
-
33
-
-
84879815183
-
Faster algorithms for privately releasing marginals
-
Warwick, England
-
Thaler, Justin, Ullman, Jonathan, and Vadhan, Salil. Faster algorithms for privately releasing marginals. In International Colloquium on Automata, Languages and Programming (ICALP), Warwick, England, pp. 810-821, 2012.
-
(2012)
International Colloquium on Automata, Languages and Programming (ICALP)
, pp. 810-821
-
-
Thaler, J.1
Ullman, J.2
Vadhan, S.3
-
34
-
-
84879825242
-
2+0(1) counting queries with differential privacy is hard
-
Palo Alto, California
-
2+0(1) counting queries with differential privacy is hard. In ACM SIGACT Symposium on Theory of Computing (STOC), Palo Alto, California, pp. 361-370, 2013.
-
(2013)
ACM SIGACT Symposium on Theory of Computing (STOC)
, pp. 361-370
-
-
Ullman, J.1
-
35
-
-
79953172891
-
PCPs and the hardness of generating private synthetic data
-
Providence, Rhode Island
-
Ullman, J. and Vadhan, S.P. PCPs and the hardness of generating private synthetic data. In IACR Theory of Cryptography Conference (TCC), Providence, Rhode Island, pp. 400-416, 2011.
-
(2011)
IACR Theory of Cryptography Conference (TCC)
, pp. 400-416
-
-
Ullman, J.1
Vadhan, S.P.2
-
36
-
-
84881345800
-
Accurate and efficient private release of datacubes and contingency tables
-
Brisbane, Australia
-
Yaroslavtsev, Grigory, Cormode, Graham, Procopiuc, Cecilia M., and Srivastava, Divesh. Accurate and efficient private release of datacubes and contingency tables. In IEEE International Conference on Data Engineering (ICDE), Brisbane, Australia, pp. 745-756, 2013.
-
(2013)
IEEE International Conference on Data Engineering (ICDE)
, pp. 745-756
-
-
Yaroslavtsev, G.1
Cormode, G.2
Procopiuc, C.M.3
Srivastava, D.4
-
37
-
-
84904281795
-
Privbayes: Private data release via bayesian networks
-
Snowbird, Utah
-
Zhang, Jun, Cormode, Graham, Procopiuc, Cecilia M., Srivastava, Divesh, and Xiao, Xiaokui. Privbayes: Private data release via bayesian networks. In ACM SIGMOD International Conference on Management of Data (SIGMOD), Snowbird, Utah, 2014.
-
(2014)
ACM SIGMOD International Conference on Management of Data (SIGMOD)
-
-
Zhang, J.1
Cormode, G.2
Procopiuc, C.M.3
Srivastava, D.4
Xiao, X.5
|