메뉴 건너뛰기




Volumn 3, Issue , 2012, Pages 2339-2347

A simple and practical algorithm for differentially private data release

Author keywords

[No Author keywords available]

Indexed keywords

PRIVATE DATA; THEORETICAL GUARANTEES;

EID: 84877755332     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (412)

References (27)
  • 1
    • 1142275486 scopus 로고    scopus 로고
    • Revealing information while preserving privacy
    • I. Dinur and K. Nissim. Revealing information while preserving privacy. In PODS, 2003.
    • (2003) PODS
    • Dinur, I.1    Nissim, K.2
  • 2
    • 33244461250 scopus 로고    scopus 로고
    • Privacy-preserving datamining on vertically partitioned databases
    • Springer
    • Cynthia Dwork and Kobbi Nissim. Privacy-preserving datamining on vertically partitioned databases. In CRYPTO. Springer, 2004.
    • (2004) CRYPTO
    • Dwork, C.1    Nissim, K.2
  • 3
    • 33746086554 scopus 로고    scopus 로고
    • Calibrating noise to sensitivity in private data analysis
    • C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity in private data analysis. In TCC, 2006.
    • (2006) TCC
    • Dwork, C.1    McSherry, F.2    Nissim, K.3    Smith, A.4
  • 4
    • 77954693909 scopus 로고    scopus 로고
    • The differential privacy frontier (extended abstract)
    • Cynthia Dwork. The differential privacy frontier (extended abstract). In TCC, 2009.
    • (2009) TCC
    • Dwork, C.1
  • 5
    • 84863306898 scopus 로고    scopus 로고
    • The promise of differential privacy: A tutorial on algorithmic techniques
    • Cynthia Dwork. The promise of differential privacy: A tutorial on algorithmic techniques. In FOCS, 2011.
    • (2011) FOCS
    • Dwork, C.1
  • 6
    • 0032202014 scopus 로고    scopus 로고
    • Efficient noise-tolerant learning from statistical queries
    • Michael J. Kearns. Efficient noise-tolerant learning from statistical queries. Journal of the ACM (JACM), 45(6):983-1006, 1998.
    • (1998) Journal of the ACM (JACM) , vol.45 , Issue.6 , pp. 983-1006
    • Kearns, M.J.1
  • 7
    • 33244468835 scopus 로고    scopus 로고
    • Practical privacy: The SuLQ framework
    • ACM
    • Avrim Blum, Cynthia Dwork, Frank McSherry, and Kobbi Nissim. Practical privacy: the SuLQ framework. In Proc. 24th PODS, pages 128-138. ACM, 2005.
    • (2005) Proc. 24th PODS , pp. 128-138
    • Blum, A.1    Dwork, C.2    McSherry, F.3    Nissim, K.4
  • 8
    • 78751482528 scopus 로고    scopus 로고
    • A multiplicative weights mechanism for interactive privacy-preserving data analysis
    • Moritz Hardt and Guy Rothblum. A multiplicative weights mechanism for interactive privacy-preserving data analysis. In FOCS, 2010.
    • (2010) FOCS
    • Hardt, M.1    Rothblum, G.2
  • 9
    • 79959740503 scopus 로고    scopus 로고
    • Privately releasing conjunctions and the statistical query barrier
    • Anupam Gupta, Moritz Hardt, Aaron Roth, and Jon Ullman. Privately releasing conjunctions and the statistical query barrier. In STOC, 2011.
    • (2011) STOC
    • Gupta, A.1    Hardt, M.2    Roth, A.3    Ullman, J.4
  • 10
    • 46749128577 scopus 로고    scopus 로고
    • Mechanism design via differential privacy
    • Frank McSherry and Kunal Talwar. Mechanism design via differential privacy. In FOCS, 2007.
    • (2007) FOCS
    • McSherry, F.1    Talwar, K.2
  • 11
    • 84862661374 scopus 로고    scopus 로고
    • Efficient batch query answering under differential privacy
    • abs/1103.1367
    • Chao Li and Gerome Miklau. Efficient batch query answering under differential privacy. CoRR, abs/1103.1367, 2011.
    • (2011) CoRR
    • Li, C.1    Miklau, G.2
  • 12
    • 84863733988 scopus 로고    scopus 로고
    • An adaptive mechanism for accurate query answering under differential privacy
    • to appear
    • Chao Li and Gerome Miklau. An adaptive mechanism for accurate query answering under differential privacy. to appear, PVLDB, 2012.
    • (2012) PVLDB
    • Li, C.1    Miklau, G.2
  • 13
    • 84864124854 scopus 로고    scopus 로고
    • Differential privacy and the risk-utility tradeoff for multi-dimensional contingency tables
    • Stephen E. Fienberg, Alessandro Rinaldo, and Xiolin Yang. Differential privacy and the risk-utility tradeoff for multi-dimensional contingency tables. In Privacy in Statistical Databases, 2010.
    • (2010) Privacy in Statistical Databases
    • Fienberg, S.E.1    Rinaldo, A.2    Yang, X.3
  • 14
    • 79959954388 scopus 로고    scopus 로고
    • Differentially private data cubes: Optimizing noise sources and consistency
    • Bolin Ding, MarianneWinslett, Jiawei Han, and Zhenhui Li. Differentially private data cubes: optimizing noise sources and consistency. In SIGMOD, 2011.
    • (2011) SIGMOD
    • Ding, B.1    Winslett, M.2    Han, J.3    Li, Z.4
  • 15
    • 70350689921 scopus 로고    scopus 로고
    • On the complexity of differentially private data release: Efficient algorithms and hardness results
    • Cynthia Dwork, Moni Naor, Omer Reingold, Guy N. Rothblum, and Salil P. Vadhan. On the complexity of differentially private data release: efficient algorithms and hardness results. In STOC, 2009.
    • (2009) STOC
    • Dwork, C.1    Naor, M.2    Reingold, O.3    Rothblum, G.N.4    Vadhan, S.P.5
  • 16
    • 84923559797 scopus 로고    scopus 로고
    • PCPs and the hardness of generating private synthetic data
    • Jonathan Ullman and Salil P. Vadhan. PCPs and the hardness of generating private synthetic data. In TCC, 2011.
    • (2011) TCC
    • Ullman, J.1    Vadhan, S.P.2
  • 17
    • 70350689921 scopus 로고    scopus 로고
    • On the complexity of differentially private data release: Efficient algorithms and hardness results
    • C. Dwork, M. Naor, O. Reingold, G.N. Rothblum, and S. Vadhan. On the complexity of differentially private data release: efficient algorithms and hardness results. In STOC, 2009.
    • (2009) STOC
    • Dwork, C.1    Naor, M.2    Reingold, O.3    Rothblum, G.N.4    Vadhan, S.5
  • 18
    • 85047802462 scopus 로고    scopus 로고
    • A learning theory approach to non-interactive database privacy
    • Avrim Blum, Katrina Ligett, and Aaron Roth. A learning theory approach to non-interactive database privacy. In STOC, 2008.
    • (2008) STOC
    • Blum, A.1    Ligett, K.2    Roth, A.3
  • 19
    • 78751522594 scopus 로고    scopus 로고
    • Boosting and differential privacy
    • Cynthia Dwork, Guy Rothblum, and Salil Vadhan. Boosting and differential privacy. In FOCS, 2010.
    • (2010) FOCS
    • Dwork, C.1    Rothblum, G.2    Vadhan, S.3
  • 20
    • 77954719763 scopus 로고    scopus 로고
    • The median mechanism: Interactive and efficient privacy with multiple queries
    • Aaron Roth and Tim Roughgarden. The median mechanism: Interactive and efficient privacy with multiple queries. In STOC, 2010.
    • (2010) STOC
    • Roth, A.1    Roughgarden, T.2
  • 21
    • 35448955720 scopus 로고    scopus 로고
    • Privacy, accuracy, and consistency too: A holistic solution to contingency table release
    • B. Barak, K. Chaudhuri, C. Dwork, S. Kale, F. McSherry, and K. Talwar. Privacy, accuracy, and consistency too: a holistic solution to contingency table release. In PODS, 2007.
    • (2007) PODS
    • Barak, B.1    Chaudhuri, K.2    Dwork, C.3    Kale, S.4    McSherry, F.5    Talwar, K.6
  • 22
    • 77954715960 scopus 로고    scopus 로고
    • Optimizing linear counting queries under differential privacy
    • C. Li, M. Hay, V. Rastogi, G. Miklau, and A. McGregor. Optimizing linear counting queries under differential privacy. In PODS, 2010.
    • (2010) PODS
    • Li, C.1    Hay, M.2    Rastogi, V.3    Miklau, G.4    McGregor, A.5
  • 24
    • 78650518102 scopus 로고    scopus 로고
    • Boosting the accuracy of differentially-private queries through consistency
    • Michael Hay, Vibhor Rastogi, Gerome Miklau, and Dan Suciu. Boosting the accuracy of differentially-private queries through consistency. In VLDB, 2010.
    • (2010) VLDB
    • Hay, M.1    Rastogi, V.2    Miklau, G.3    Suciu, D.4
  • 25
    • 84877742369 scopus 로고    scopus 로고
    • Measuring the achievable error of query sets under differential privacy
    • abs/1202.3399v2
    • Chao Li and Gerome Miklau. Measuring the achievable error of query sets under differential privacy. CoRR, abs/1202.3399v2, 2012.
    • (2012) CoRR
    • Li, C.1    Miklau, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.