메뉴 건너뛰기




Volumn , Issue , 2014, Pages 1423-1434

PrivBayes: Private data release via Bayesian networks

Author keywords

Bayesian network; Differential privacy; Synthetic data generation

Indexed keywords

DATA PRIVACY;

EID: 84904281795     PISSN: 07308078     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (201)

References (40)
  • 2
    • 84904285346 scopus 로고    scopus 로고
    • Statlib. http://lib.stat.cmu.edu/.
    • Statlib
  • 5
    • 35448955720 scopus 로고    scopus 로고
    • Privacy, accuracy, and consistency too: A holistic solution to contingency table release
    • B. Barak, K. Chaudhuri, C. Dwork, S. Kale, F. McSherry, and K. Talwar. Privacy, accuracy, and consistency too: a holistic solution to contingency table release. In PODS, pages 273-282, 2007.
    • (2007) PODS , pp. 273-282
    • Barak, B.1    Chaudhuri, K.2    Dwork, C.3    Kale, S.4    McSherry, F.5    Talwar, K.6
  • 6
    • 77956209107 scopus 로고    scopus 로고
    • Discovering frequent patterns in sensitive data
    • R. Bhaskar, S. Laxman, A. Smith, and A. Thakurta. Discovering frequent patterns in sensitive data. In KDD, pages 503-512, 2010.
    • (2010) KDD , pp. 503-512
    • Bhaskar, R.1    Laxman, S.2    Smith, A.3    Thakurta, A.4
  • 8
    • 84858769465 scopus 로고    scopus 로고
    • Privacy-preserving logistic regression
    • K. Chaudhuri and C. Monteleoni. Privacy-preserving logistic regression. In NIPS, pages 289-296, 2008.
    • (2008) NIPS , pp. 289-296
    • Chaudhuri, K.1    Monteleoni, C.2
  • 11
    • 84933530882 scopus 로고
    • Approximating discrete probability distributions with dependence trees
    • C. K. Chow and C. N. Liu. Approximating discrete probability distributions with dependence trees. IEEE Transactions on Information Theory, 14:462-467, 1968.
    • (1968) IEEE Transactions on Information Theory , vol.14 , pp. 462-467
    • Chow, C.K.1    Liu, C.N.2
  • 15
    • 79959954388 scopus 로고    scopus 로고
    • Differentially private data cubes: Optimizing noise sources and consistency
    • B. Ding, M. Winslett, J. Han, and Z. Li. Differentially private data cubes: optimizing noise sources and consistency. In SIGMOD, pages 217-228, 2011.
    • (2011) SIGMOD , pp. 217-228
    • Ding, B.1    Winslett, M.2    Han, J.3    Li, Z.4
  • 16
    • 33746335051 scopus 로고    scopus 로고
    • Differential privacy
    • C. Dwork. Differential privacy. In ICALP, pages 1-12, 2006.
    • (2006) ICALP , pp. 1-12
    • Dwork, C.1
  • 17
    • 33745556605 scopus 로고    scopus 로고
    • Calibrating noise to sensitivity in private data analysis
    • C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity in private data analysis. In TCC, pages 265-284, 2006.
    • (2006) TCC , pp. 265-284
    • Dwork, C.1    McSherry, F.2    Nissim, K.3    Smith, A.4
  • 19
    • 77956195013 scopus 로고    scopus 로고
    • Data mining with differential privacy
    • A. Friedman and A. Schuster. Data mining with differential privacy. In KDD, pages 493-502, 2010.
    • (2010) KDD , pp. 493-502
    • Friedman, A.1    Schuster, A.2
  • 20
    • 84877755332 scopus 로고    scopus 로고
    • A simple and practical algorithm for differentially private data release
    • M. Hardt, K. Ligett, and F. McSherry. A simple and practical algorithm for differentially private data release. In NIPS, pages 2348-2356, 2012.
    • (2012) NIPS , pp. 2348-2356
    • Hardt, M.1    Ligett, K.2    McSherry, F.3
  • 21
    • 78650518102 scopus 로고    scopus 로고
    • Boosting the accuracy of differentially private histograms through consistency
    • M. Hay, V. Rastogi, G. Miklau, and D. Suciu. Boosting the accuracy of differentially private histograms through consistency. PVLDB, 3(1):1021-1032, 2010.
    • (2010) PVLDB , vol.3 , Issue.1 , pp. 1021-1032
    • Hay, M.1    Rastogi, V.2    Miklau, G.3    Suciu, D.4
  • 22
    • 84920035372 scopus 로고    scopus 로고
    • Private convex optimization for empirical risk minimization with applications to high-dimensional regression
    • D. Kifer, A. D. Smith, and A. Thakurta. Private convex optimization for empirical risk minimization with applications to high-dimensional regression. Journal of Machine Learning Research-Proceedings Track, 23:25.1-25.40, 2012.
    • (2012) Journal of Machine Learning Research-Proceedings Track , vol.23 , pp. 251-2540
    • Kifer, D.1    Smith, A.D.2    Thakurta, A.3
  • 24
    • 77954715960 scopus 로고    scopus 로고
    • Optimizing linear counting queries under differential privacy
    • C. Li, M. Hay, V. Rastogi, G. Miklau, and A. McGregor. Optimizing linear counting queries under differential privacy. In PODS, pages 123-134, 2010.
    • (2010) PODS , pp. 123-134
    • Li, C.1    Hay, M.2    Rastogi, V.3    Miklau, G.4    McGregor, A.5
  • 25
    • 84863733988 scopus 로고    scopus 로고
    • An adaptive mechanism for accurate query answering under differential privacy
    • C. Li and G. Miklau. An adaptive mechanism for accurate query answering under differential privacy. PVLDB, 5(6):514-525, 2012.
    • (2012) PVLDB , vol.5 , Issue.6 , pp. 514-525
    • Li, C.1    Miklau, G.2
  • 26
    • 84875580068 scopus 로고    scopus 로고
    • Optimal error of query sets under the differentially-private matrix mechanism
    • C. Li and G. Miklau. Optimal error of query sets under the differentially-private matrix mechanism. In ICDT, pages 272-283, 2013.
    • (2013) ICDT , pp. 272-283
    • Li, C.1    Miklau, G.2
  • 27
    • 84872862536 scopus 로고    scopus 로고
    • Privbasis: Frequent itemset mining with differential privacy
    • N. Li, W. Qardaji, D. Su, and J. Cao. Privbasis: Frequent itemset mining with differential privacy. PVLDB, 5(11):1340-1351, 2012.
    • (2012) PVLDB , vol.5 , Issue.11 , pp. 1340-1351
    • Li, N.1    Qardaji, W.2    Su, D.3    Cao, J.4
  • 28
    • 34347345603 scopus 로고    scopus 로고
    • PhD thesis, School of Computer Science, Carnegie-Mellon University, Pittsburgh, PA, May
    • D. Margaritis. Learning Bayesian Network Model Structure from Data. PhD thesis, School of Computer Science, Carnegie-Mellon University, Pittsburgh, PA, May 2003.
    • (2003) Learning Bayesian Network Model Structure from Data
    • Margaritis, D.1
  • 29
    • 84874716590 scopus 로고    scopus 로고
    • Differentially-private network trace analysis
    • F. McSherry and R. Mahajan. Differentially-private network trace analysis. In SIGCOMM, pages 123-134, 2010.
    • (2010) SIGCOMM , pp. 123-134
    • McSherry, F.1    Mahajan, R.2
  • 30
    • 70350678967 scopus 로고    scopus 로고
    • Differentially private recommender systems: Building privacy into the netflix prize contenders
    • F. McSherry and I. Mironov. Differentially private recommender systems: Building privacy into the netflix prize contenders. In KDD, pages 627-636, 2009.
    • (2009) KDD , pp. 627-636
    • McSherry, F.1    Mironov, I.2
  • 31
    • 46749128577 scopus 로고    scopus 로고
    • Mechanism design via differential privacy
    • F. McSherry and K. Talwar. Mechanism design via differential privacy. In FOCS, pages 94-103, 2007.
    • (2007) FOCS , pp. 94-103
    • McSherry, F.1    Talwar, K.2
  • 32
    • 84862658503 scopus 로고    scopus 로고
    • GUPT: Privacy preserving data analysis made easy
    • P. Mohan, A. Thakurta, E. Shi, D. Song, and D. Culler. GUPT: privacy preserving data analysis made easy. In SIGMOD, pages 349-360, 2012.
    • (2012) SIGMOD , pp. 349-360
    • Mohan, P.1    Thakurta, A.2    Shi, E.3    Song, D.4    Culler, D.5
  • 33
    • 35448955271 scopus 로고    scopus 로고
    • Smooth sensitivity and sampling in private data analysis
    • K. Nissim, S. Raskhodnikova, and A. Smith. Smooth sensitivity and sampling in private data analysis. In STOC, pages 75-84, 2007.
    • (2007) STOC , pp. 75-84
    • Nissim, K.1    Raskhodnikova, S.2    Smith, A.3
  • 34
    • 77954711910 scopus 로고    scopus 로고
    • Differentially private aggregation of distributed time-series with transformation and encryption
    • V. Rastogi and S. Nath. Differentially private aggregation of distributed time-series with transformation and encryption. In SIGMOD, pages 735-746, 2010.
    • (2010) SIGMOD , pp. 735-746
    • Rastogi, V.1    Nath, S.2
  • 36
    • 79959714549 scopus 로고    scopus 로고
    • Privacy-preserving statistical estimation with optimal convergence rate
    • A. Smith. Privacy-preserving statistical estimation with optimal convergence rate. In STOC, 2011.
    • (2011) STOC
    • Smith, A.1
  • 37
    • 77952787160 scopus 로고    scopus 로고
    • Differential privacy via wavelet transforms
    • X. Xiao, G. Wang, and J. Gehrke. Differential privacy via wavelet transforms. In ICDE, pages 225-236, 2010.
    • (2010) ICDE , pp. 225-236
    • Xiao, X.1    Wang, G.2    Gehrke, J.3
  • 38
    • 84881345800 scopus 로고    scopus 로고
    • Accurate and efficient private release of datacubes and contingency tables
    • G. Yaroslavtsev, G. Cormode, C. M. Procopiuc, and D. Srivastava. Accurate and efficient private release of datacubes and contingency tables. In ICDE, pages 745-756, 2013.
    • (2013) ICDE , pp. 745-756
    • Yaroslavtsev, G.1    Cormode, G.2    Procopiuc, C.M.3    Srivastava, D.4
  • 39
    • 84872862526 scopus 로고    scopus 로고
    • Low-rank mechanism: Optimizing batch queries under differential privacy
    • G. Yuan, Z. Zhang, M. Winslett, X. Xiao, Y. Yang, and Z. Hao. Low-rank mechanism: Optimizing batch queries under differential privacy. PVLDB, 5(11):1352-1363, 2012.
    • (2012) PVLDB , vol.5 , Issue.11 , pp. 1352-1363
    • Yuan, G.1    Zhang, Z.2    Winslett, M.3    Xiao, X.4    Yang, Y.5    Hao, Z.6
  • 40
    • 84880547850 scopus 로고    scopus 로고
    • PrivGene: Differentially private model fitting using genetic algorithms
    • J. Zhang, X. Xiao, Y. Yang, Z. Zhang, and M. Winslett. PrivGene: differentially private model fitting using genetic algorithms. In SIGMOD, pages 665-676, 2013.
    • (2013) SIGMOD , pp. 665-676
    • Zhang, J.1    Xiao, X.2    Yang, Y.3    Zhang, Z.4    Winslett, M.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.