메뉴 건너뛰기




Volumn 12, Issue 1, 2014, Pages 93-111

Toughening and functionalization of bioactive ceramic and glass bone scaffolds by biopolymer coatings and infiltration: A review of the last 5 years

Author keywords

bioactive glasses; bioceramics; bone tissue engineering; calcium phosphates; composite materials; drug delivery; growth factors; hydroxyapatite; scaffolds

Indexed keywords

BIOACTIVE GLASS; BIOACTIVITY; BIOCERAMICS; BIOMECHANICS; BONE; CALCIUM PHOSPHATE; COMPOSITE MATERIALS; DRUG DELIVERY; FRACTURE MECHANICS; FRACTURE TOUGHNESS; FUNCTIONAL POLYMERS; GROWTH (MATERIALS); HYDROXYAPATITE; PLASTIC COATINGS; SCAFFOLDS; STRENGTH OF MATERIALS; TISSUE;

EID: 84918498786     PISSN: 17434440     EISSN: 17452422     Source Type: Journal    
DOI: 10.1586/17434440.2015.958075     Document Type: Review
Times cited : (104)

References (142)
  • 1
    • 4544273208 scopus 로고    scopus 로고
    • Bone tissue engineering: State of the art and future trends
    • Salgado AJ, Coutinho OP, Reis RL. Bone tissue engineering: state of the art and future trends. Macromol Biosci 2004;4: 743-65
    • (2004) Macromol Biosci , vol.4 , pp. 743-765
    • Salgado, A.J.1    Coutinho, O.P.2    Reis, R.L.3
  • 2
    • 84918555345 scopus 로고    scopus 로고
    • Mechanical functionality by hierarchical structuring - Lessons from biological materials
    • Fratzl P, Gupta H, Burgert I. Mechanical functionality by hierarchical structuring - Lessons from biological materials. Comp Biochem Physiol A Mol Integr Physiol 2007;146:S132
    • (2007) Comp Biochem Physiol A Mol Integr Physiol , vol.146 , pp. S132
    • Fratzl, P.1    Gupta, H.2    Burgert, I.3
  • 3
    • 84918516869 scopus 로고    scopus 로고
    • Functional mapping of bone on the micrometer-scale by scanning acoustic microscopy
    • Fix D, Puchegger S, Pilz-Allen C, et al. Functional mapping of bone on the micrometer-scale by scanning acoustic microscopy. Bone 2012;50:S125-6
    • (2012) Bone , vol.50 , pp. S125-S126
    • Fix, D.1    Puchegger, S.2    Pilz-Allen, C.3
  • 4
    • 39149107458 scopus 로고    scopus 로고
    • Bone mineralization density distribution in health and disease
    • Roschger P, Paschalis EP, Fratzl P, Klaushofer K. Bone mineralization density distribution in health and disease. Bone 2008;42:456-66
    • (2008) Bone , vol.42 , pp. 456-466
    • Roschger, P.1    Paschalis, E.P.2    Fratzl, P.3    Klaushofer, K.4
  • 5
    • 84898058214 scopus 로고    scopus 로고
    • The relevance of biomaterials to the prevention and treatment of osteoporosis
    • Arcos D, Boccaccini AR, Bohner M, et al. The relevance of biomaterials to the prevention and treatment of osteoporosis. Acta Biomater 2014.10(5):1793-805. Available from: http://dx.doi.org/10.1016/j. actbio.2014.01.004
    • (2014) Acta Biomater , vol.10 , Issue.5 , pp. 1793-1805
    • Arcos, D.1    Boccaccini, A.R.2    Bohner, M.3
  • 6
    • 84877797477 scopus 로고    scopus 로고
    • Bone tissue engineering in osteoporosis
    • Jakob F, Ebert R, Ignatius A, et al. Bone tissue engineering in osteoporosis. Maturitas 2013;75:118-24
    • (2013) Maturitas , vol.75 , pp. 118-124
    • Jakob, F.1    Ebert, R.2    Ignatius, A.3
  • 7
    • 33750608853 scopus 로고    scopus 로고
    • Challenges in tissue engineering
    • Ikada Y. Challenges in tissue engineering. J R Soc Interface 2006;3:589-601
    • (2006) J R Soc Interface , vol.3 , pp. 589-601
    • Ikada, Y.1
  • 8
    • 78049415804 scopus 로고    scopus 로고
    • A review of the mechanical behavior of CaP and CaP/polymer composites for applications in bone replacement and repair
    • Wagoner Johnson AJ, Herschler BA. A review of the mechanical behavior of CaP and CaP/polymer composites for applications in bone replacement and repair. Acta Biomater 2011;7:16-30
    • (2011) Acta Biomater , vol.7 , pp. 16-30
    • Wagoner Johnson, A.J.1    Herschler, B.A.2
  • 9
    • 39149124477 scopus 로고    scopus 로고
    • State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective
    • Hutmacher DW, Schantz JT, Xu C, et al. State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. J Tissue Eng Regen Med 2007;1:245-60
    • (2007) J Tissue Eng Regen Med , vol.1 , pp. 245-260
    • Hutmacher, D.W.1    Schantz, J.T.2    Xu, C.3
  • 10
    • 79955589951 scopus 로고    scopus 로고
    • Bioactive glass in tissue engineering
    • Rahaman MN, Day DE, Bal BS, et al. Bioactive glass in tissue engineering. Acta Biomater 2011;7:2355-73
    • (2011) Acta Biomater , vol.7 , pp. 2355-2373
    • Rahaman, M.N.1    Day, D.E.2    Bal, B.S.3
  • 11
    • 33644934897 scopus 로고    scopus 로고
    • Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering
    • Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 2006;27:3413-31
    • (2006) Biomaterials , vol.27 , pp. 3413-3431
    • Rezwan, K.1    Chen, Q.Z.2    Blaker, J.J.3    Boccaccini, A.R.4
  • 12
    • 84888644789 scopus 로고    scopus 로고
    • Toward strong and tough glass and ceramic scaffolds for bone repair
    • Fu Q, Saiz E, Rahaman MN, Tomsia AP. Toward strong and tough glass and ceramic scaffolds for bone repair. Adv Funct Mater 2013;23:5461-76
    • (2013) Adv Funct Mater , vol.23 , pp. 5461-5476
    • Fu, Q.1    Saiz, E.2    Rahaman, M.N.3    Tomsia, A.P.4
  • 13
    • 29244481982 scopus 로고    scopus 로고
    • 45S5 Bioglass-derived glass-ceramic scaffolds for bone tissue engineering
    • Chen QZ, Thompson ID, Boccaccini AR. 45S5 Bioglass-derived glass-ceramic scaffolds for bone tissue engineering. Biomaterials 2006;27:2414-25
    • (2006) Biomaterials , vol.27 , pp. 2414-2425
    • Chen, Q.Z.1    Thompson, I.D.2    Boccaccini, A.R.3
  • 14
    • 79955665338 scopus 로고    scopus 로고
    • Three-dimensional glass-derived scaffolds for bone tissue engineering: Current trends and forecasts for the future
    • Baino F, Vitale-Brovarone C. Three-dimensional glass-derived scaffolds for bone tissue engineering: current trends and forecasts for the future. J Biomed Mater Res A 2011;97:514-35
    • (2011) J Biomed Mater Res A , vol.97 , pp. 514-535
    • Baino, F.1    Vitale-Brovarone, C.2
  • 15
    • 67349094545 scopus 로고    scopus 로고
    • Preparation of porous 45S5 Bioglass-derived glass-ceramic scaffolds by using rice husk as a porogen additive
    • Wu SC, Hsu HC, Hsiao SH, Ho WF. Preparation of porous 45S5 Bioglass-derived glass-ceramic scaffolds by using rice husk as a porogen additive. J Mater Sci Mater Med 2009;20:1229-36
    • (2009) J Mater Sci Mater Med , vol.20 , pp. 1229-1236
    • Wu, S.C.1    Hsu, H.C.2    Hsiao, S.H.3    Ho, W.F.4
  • 16
    • 79960987431 scopus 로고    scopus 로고
    • Three-dimensional bioactive glass implants fabricated by rapid prototyping based on CO2 laser cladding
    • Comesaña R, Lusquiños F, Del Val J, et al. Three-dimensional bioactive glass implants fabricated by rapid prototyping based on CO2. laser cladding. Acta Biomater 2011;7: 3476-87
    • (2011) Acta Biomater , vol.7 , pp. 3476-3487
    • Comesaña, R.1    Lusquiños, F.2    Del Val, J.3
  • 17
    • 80052130756 scopus 로고    scopus 로고
    • Bioactive glass scaffolds for bone tissue engineering: State of the art and future perspectives
    • Fu Q, Saiz Rahaman MN, Tomsia AP. Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives. Mater Sci Eng C Mater Biol Appl 2011;31:1245-56
    • (2011) Mater Sci Eng C Mater Biol Appl , vol.31 , pp. 1245-1256
    • Fu, Q.1    Saiz Rahaman, M.N.2    Tomsia, A.P.3
  • 18
    • 67049100945 scopus 로고    scopus 로고
    • Interconnected porous hydroxyapatite ceramics for bone tissue engineering
    • Yoshikawa H, Tamai N, Murase T, Myoui A. Interconnected porous hydroxyapatite ceramics for bone tissue engineering. J R Soc Interface 2009; 6(Suppl 3):S341-8
    • (2009) J R Soc Interface , vol.6 , pp. S341-S348
    • Yoshikawa, H.1    Tamai, N.2    Murase, T.3    Myoui, A.4
  • 19
    • 55349129981 scopus 로고    scopus 로고
    • Review paper: Behavior of ceramic biomaterials derived from tricalcium phosphate in physiological condition
    • Kamitakahara M, Ohtsuki C, Miyazaki T. Review paper: behavior of ceramic biomaterials derived from tricalcium phosphate in physiological condition. J Biomater Appl 2008;23:197-212
    • (2008) J Biomater Appl , vol.23 , pp. 197-212
    • Kamitakahara, M.1    Ohtsuki, C.2    Miyazaki, T.3
  • 20
    • 0036020404 scopus 로고    scopus 로고
    • Development and in vitro characterisation of novel bioresorbable and bioactive composite materials based on polylactide foams and Bioglass for tissue engineering applications
    • Roether JA, Boccaccini AR, Hench LL, et al. Development and in vitro characterisation of novel bioresorbable and bioactive composite materials based on polylactide foams and Bioglass for tissue engineering applications. Biomaterials 2002;23:3871-8
    • (2002) Biomaterials , vol.23 , pp. 3871-3878
    • Roether, J.A.1    Boccaccini, A.R.2    Hench, L.L.3
  • 21
    • 18844428375 scopus 로고    scopus 로고
    • Bioactive composite materials for tissue engineering scaffolds
    • Boccaccini AR, Blaker JJ. Bioactive composite materials for tissue engineering scaffolds. Expert Rev Med Devices 2005;2: 303-17
    • (2005) Expert Rev Med Devices , vol.2 , pp. 303-317
    • Boccaccini, A.R.1    Blaker, J.J.2
  • 22
    • 84865695624 scopus 로고    scopus 로고
    • Bio-inspired composite and cell instructive platforms for bone regeneration
    • Guarino V, Gloria A, Raucci MG, et al. Bio-inspired composite and cell instructive platforms for bone regeneration. Int Mater Rev 2012;57:256-75
    • (2012) Int Mater Rev , vol.57 , pp. 256-275
    • Guarino, V.1    Gloria, A.2    Raucci, M.G.3
  • 23
    • 79959529821 scopus 로고    scopus 로고
    • Hydroxyapatite scaffolds infiltrated with thermally crosslinked polycaprolactone fumarate and polycaprolactone itaconate
    • Sharifi S, Shafieyan Y, Mirzadeh H, et al. Hydroxyapatite scaffolds infiltrated with thermally crosslinked polycaprolactone fumarate and polycaprolactone itaconate. J Biomed Mater Res A 2011;98:257-67
    • (2011) J Biomed Mater Res A , vol.98 , pp. 257-267
    • Sharifi, S.1    Shafieyan, Y.2    Mirzadeh, H.3
  • 24
    • 84869083059 scopus 로고    scopus 로고
    • A novel foam-like silane modified alumina scaffold coated with nano-hydroxyapatite-poly(ε-caprolactone fumarate) composite layer
    • Joughehdousta S, Behnamghaderb A, Imanic M, et al. A novel foam-like silane modified alumina scaffold coated with nano-hydroxyapatite-poly(ε-caprolactone fumarate) composite layer. Ceram Int 2013;39:209-18
    • (2013) Ceram Int , vol.39 , pp. 209-218
    • Joughehdousta, S.1    Behnamghaderb, A.2    Imanic, M.3
  • 25
    • 84879900559 scopus 로고    scopus 로고
    • The use of poly (ε-caprolactone) to enhance the mechanical strength of porous Si-substituted carbonate apatite
    • Bang LT, Kawachi G, Nakagawa M, et al. The use of poly (ε-caprolactone) to enhance the mechanical strength of porous Si-substituted carbonate apatite. J Appl Polym Sci 2013;130:426-33
    • (2013) J Appl Polym Sci , vol.130 , pp. 426-433
    • Bang, L.T.1    Kawachi, G.2    Nakagawa, M.3
  • 26
    • 44349098524 scopus 로고    scopus 로고
    • Polymer-bioceramic composites for tissue engineering scaffolds
    • Yunos DM, Bretcanu O, Boccaccini AR. Polymer-bioceramic composites for tissue engineering scaffolds. J Mater Sci 2008;43: 4433-42
    • (2008) J Mater Sci , vol.43 , pp. 4433-4442
    • Yunos, D.M.1    Bretcanu, O.2    Boccaccini, A.R.3
  • 27
    • 0037109450 scopus 로고    scopus 로고
    • Fracture behavior and biocompatibility evaluation of nylon-infiltrated porous hydroxyapatite
    • Nakahira A, Tamai M, Miki S, Pezzotti G. Fracture behavior and biocompatibility evaluation of nylon-infiltrated porous hydroxyapatite. J Mater Sci 2002;37: 4425-30
    • (2002) J Mater Sci , vol.37 , pp. 4425-4430
    • Nakahira, A.1    Tamai, M.2    Miki, S.3    Pezzotti, G.4
  • 28
    • 79957471632 scopus 로고    scopus 로고
    • Softening bioactive glass for bone regeneration: Sol-gel hybrid materials
    • Valliant EM, Jones JR. Softening bioactive glass for bone regeneration: sol-gel hybrid materials. Soft Matter 2011;7:5083
    • (2011) Soft Matter , vol.7 , pp. 5083
    • Valliant, E.M.1    Jones, J.R.2
  • 29
    • 29944431590 scopus 로고    scopus 로고
    • Preparation of bioactive glass-polyvinyl alcohol hybrid foams by the sol-gel method
    • Pereira MM, Jones JR, Orefice RL, Hench LL. Preparation of bioactive glass-polyvinyl alcohol hybrid foams by the sol-gel method. J Mater Sci Mater Med 2005;16:1045-50
    • (2005) J Mater Sci Mater Med , vol.16 , pp. 1045-1050
    • Pereira, M.M.1    Jones, J.R.2    Orefice, R.L.3    Hench, L.L.4
  • 30
    • 84870253740 scopus 로고    scopus 로고
    • Review of bioactive glass: From Hench to hybrids
    • Jones JR. Review of bioactive glass: from Hench to hybrids. Acta Biomater 2013;9: 4457-86
    • (2013) Acta Biomater , vol.9 , pp. 4457-4486
    • Jones, J.R.1
  • 31
    • 80052273289 scopus 로고    scopus 로고
    • Direct ink writing of highly porous and strong glass scaffolds for load-bearing bone defects repair and regeneration
    • Fu Q, Saiz E, Tomsia AP. Direct ink writing of highly porous and strong glass scaffolds for load-bearing bone defects repair and regeneration. Acta Biomater 2011;7: 3547-54
    • (2011) Acta Biomater , vol.7 , pp. 3547-3554
    • Fu, Q.1    Saiz, E.2    Tomsia, A.P.3
  • 32
    • 80052110439 scopus 로고    scopus 로고
    • Porous and strong bioactive glass (13-93) scaffolds fabricated by freeze extrusion technique
    • Huang TS, Rahaman MN, Doiphode ND, et al. Porous and strong bioactive glass (13-93) scaffolds fabricated by freeze extrusion technique. Mater Sci Eng C 2011;31: 1482-9
    • (2011) Mater Sci Eng C , vol.31 , pp. 1482-1489
    • Huang, T.S.1    Rahaman, M.N.2    Doiphode, N.D.3
  • 33
    • 37149020667 scopus 로고    scopus 로고
    • Biodegradable polymer coated 45S5 Bioglass-derived glass-ceramic scaffolds for bone tissue engineering
    • Bretcanu O, Chen Q, Misra SK, et al. Biodegradable polymer coated 45S5 Bioglass-derived glass-ceramic scaffolds for bone tissue engineering. Glass Technol Eur J Glass Sci Technol A 2007;48:227-34
    • (2007) Glass Technol Eur J Glass Sci Technol A , vol.48 , pp. 227-234
    • Bretcanu, O.1    Chen, Q.2    Misra, S.K.3
  • 34
    • 67449158188 scopus 로고    scopus 로고
    • Toughening of porous bioceramic scaffolds by bioresorbable polymeric coatings
    • Dorozhkin S, Ajaal T. Toughening of porous bioceramic scaffolds by bioresorbable polymeric coatings. Proc Inst Mech Eng H 2009;223:459-70
    • (2009) Proc Inst Mech Eng H , vol.223 , pp. 459-470
    • Dorozhkin, S.1    Ajaal, T.2
  • 35
    • 77956932744 scopus 로고    scopus 로고
    • Mechanical properties and cytocompatibility of poly(ε-caprolactone)- infiltrated biphasic calcium phosphate scaffolds with bimodal pore distribution
    • Peroglio M, Gremillard L, Gauthier C, et al. Mechanical properties and cytocompatibility of poly(ε-caprolactone)- infiltrated biphasic calcium phosphate scaffolds with bimodal pore distribution. Acta Biomater 2010;6:4369-79
    • (2010) Acta Biomater , vol.6 , pp. 4369-4379
    • Peroglio, M.1    Gremillard, L.2    Gauthier, C.3
  • 36
    • 84872011592 scopus 로고    scopus 로고
    • Physical and mechanical properties of a poly-3-hydroxybutyrate-coated nanocrystalline hydroxyapatite scaffold for bone tissue engineering
    • Foroughi MR, Karbasi S, Ebrahimi-Kahrizsangi R. Physical and mechanical properties of a poly-3-hydroxybutyrate-coated nanocrystalline hydroxyapatite scaffold for bone tissue engineering. J Porous Mater 2012;19: 667-75
    • (2012) J Porous Mater , vol.19 , pp. 667-675
    • Foroughi, M.R.1    Karbasi, S.2    Ebrahimi-Kahrizsangi, R.3
  • 37
    • 77950595308 scopus 로고    scopus 로고
    • The influence of polymer concentrations on the structure and mechanical properties of porous polycaprolactone-coated hydroxyapatite scaffolds
    • Zhao J, Duan K, Zhang JW, et al. The influence of polymer concentrations on the structure and mechanical properties of porous polycaprolactone-coated hydroxyapatite scaffolds. Appl Surf Sci 2010;256:4586-90
    • (2010) Appl Surf Sci , vol.256 , pp. 4586-4590
    • Zhao, J.1    Duan, K.2    Zhang, J.W.3
  • 38
    • 79961168901 scopus 로고    scopus 로고
    • Enhanced mechanical performance and biological evaluation of a PLGA coated β-TCP composite scaffold for load-bearing applications
    • Kang Y, Scully A, Young DA, et al. Enhanced mechanical performance and biological evaluation of a PLGA coated β-TCP composite scaffold for load-bearing applications. Eur Polym J 2011;47:1569-77
    • (2011) Eur Polym J , vol.47 , pp. 1569-1577
    • Kang, Y.1    Scully, A.2    Young, D.A.3
  • 39
    • 79952188226 scopus 로고    scopus 로고
    • Bioactive SrO-SiO2 glass with well-ordered mesopores: Characterization, physiochemistry and biological properties
    • Wu C, Fan W, Gelinsky M, et al. Bioactive SrO-SiO2 glass with well-ordered mesopores: characterization, physiochemistry and biological properties. Acta Biomater 2011;7:1797-806
    • (2011) Acta Biomater , vol.7 , pp. 1797-1806
    • Wu, C.1    Fan, W.2    Gelinsky, M.3
  • 40
    • 79251644177 scopus 로고    scopus 로고
    • Effects of bioactive glass nanoparticles on the mechanical and biological behavior of composite coated scaffolds
    • Roohani-Esfahani SI, Nouri-Khorasani S, Lu ZF, et al. Effects of bioactive glass nanoparticles on the mechanical and biological behavior of composite coated scaffolds. Acta Biomater 2011;7:1307-18
    • (2011) Acta Biomater , vol.7 , pp. 1307-1318
    • Roohani-Esfahani, S.I.1    Nouri-Khorasani, S.2    Lu, Z.F.3
  • 41
    • 80051673322 scopus 로고    scopus 로고
    • Mechanical strength of ceramic scaffolds reinforced with biopolymers is comparable to that of human bone
    • Henriksen SS, Ding M, Juhl MV, et al. Mechanical strength of ceramic scaffolds reinforced with biopolymers is comparable to that of human bone. J Mater Sci Mater Med 2011;22:1111-18
    • (2011) J Mater Sci Mater Med , vol.22 , pp. 1111-1118
    • Henriksen, S.S.1    Ding, M.2    Juhl, M.V.3
  • 42
    • 74049143921 scopus 로고    scopus 로고
    • Bone tissue engineering therapeutics: Controlled drug delivery in three-dimensional scaffolds
    • Mouriño V, Boccaccini AR. Bone tissue engineering therapeutics: controlled drug delivery in three-dimensional scaffolds. J R Soc Interface 2010;7:209-27
    • (2010) J R Soc Interface , vol.7 , pp. 209-227
    • Mouriño, V.1    Boccaccini, A.R.2
  • 43
    • 0141569948 scopus 로고    scopus 로고
    • Strength enhancement of porous hydroxyapatite ceramics by polymer impregnation
    • Komlev VS, Barinov SM. Strength enhancement of porous hydroxyapatite ceramics by polymer impregnation. J Mater Sci Lett 2003;22:1215-17
    • (2003) J Mater Sci Lett , vol.22 , pp. 1215-1217
    • Komlev, V.S.1    Barinov, S.M.2
  • 44
    • 0345256537 scopus 로고    scopus 로고
    • Hydroxyapatite/poly(ε-caprolactone) composite coatings on hydroxyapatite porous bone scaffold for drug delivery
    • Kim HW, Knowles JC, Kim HE. Hydroxyapatite/poly(ε-caprolactone) composite coatings on hydroxyapatite porous bone scaffold for drug delivery. Biomaterials 2004;25:1279-87
    • (2004) Biomaterials , vol.25 , pp. 1279-1287
    • Kim, H.W.1    Knowles, J.C.2    Kim, H.E.3
  • 45
    • 15244354813 scopus 로고    scopus 로고
    • Hydroxyapatite porous scaffold engineered with biological polymer hybrid coating for antibiotic Vancomycin release
    • Kim HW, Knowles JC, Kim HE. Hydroxyapatite porous scaffold engineered with biological polymer hybrid coating for antibiotic Vancomycin release. J Mater Sci Mater Med 2005;16:189-95
    • (2005) J Mater Sci Mater Med , vol.16 , pp. 189-195
    • Kim, H.W.1    Knowles, J.C.2    Kim, H.E.3
  • 46
    • 33846670513 scopus 로고    scopus 로고
    • Toughening of bio-ceramics scaffolds by polymer coating
    • Peroglio M, Gremillard L, Chevalier J, et al. Toughening of bio-ceramics scaffolds by polymer coating. J Eur Ceram Soc 2007;27: 2679-85
    • (2007) J Eur Ceram Soc , vol.27 , pp. 2679-2685
    • Peroglio, M.1    Gremillard, L.2    Chevalier, J.3
  • 47
    • 33751537871 scopus 로고    scopus 로고
    • Poly (D, L - Lactic acid) coated 45S5 Bioglass ® -based scaffolds: Processing and characterization
    • Chen QZ, Boccaccini AR. Poly (D, L - lactic acid) coated 45S5 Bioglass ® -based scaffolds: processing and characterization. J Biomed Mater Res A 2006;77:445-57
    • (2006) J Biomed Mater Res A , vol.77 , pp. 445-457
    • Chen, Q.Z.1    Boccaccini, A.R.2
  • 48
    • 38949201618 scopus 로고    scopus 로고
    • Improvement of mechanical and biological properties of porous CaSiO3 scaffolds by poly(D,L-lactic acid) modification
    • Wu C, Ramaswamy Y, Boughton P, Zreiqat H. Improvement of mechanical and biological properties of porous CaSiO3 scaffolds by poly(D,L-lactic acid) modification. Acta Biomater 2008;4:343-53
    • (2008) Acta Biomater , vol.4 , pp. 343-353
    • Wu, C.1    Ramaswamy, Y.2    Boughton, P.3    Zreiqat, H.4
  • 49
    • 70350464346 scopus 로고    scopus 로고
    • Non-crystalline composite tissue engineering scaffolds using boron-containing bioactive glass and poly(D,L-lactic acid) coatings
    • Mantsos T, Chatzistavrou X, Roether JA, et al. Non-crystalline composite tissue engineering scaffolds using boron-containing bioactive glass and poly(D,L-lactic acid) coatings. Biomed Mater 2009;4:055002
    • (2009) Biomed Mater , vol.4 , pp. 055002
    • Mantsos, T.1    Chatzistavrou, X.2    Roether, J.A.3
  • 50
    • 84901701194 scopus 로고    scopus 로고
    • Fabrication and characterization of 45S5 Bioglass® composite scaffolds
    • Shamsudin S, Suhaida MG, Sahid S, et al. Fabrication and characterization of 45S5 Bioglass® composite scaffolds. Adv Mater Res 2014;925:442-9
    • (2014) Adv Mater Res , vol.925 , pp. 442-449
    • Shamsudin, S.1    Suhaida, M.G.2    Sahid, S.3
  • 51
    • 33846820043 scopus 로고    scopus 로고
    • Porous calcium phosphate ceramics modified with PLGA-bioactive glass
    • Miao X, Tan LP, Tan LS, Huang X. Porous calcium phosphate ceramics modified with PLGA-bioactive glass. Mater Sci Eng C 2007;27:274-9
    • (2007) Mater Sci Eng C , vol.27 , pp. 274-279
    • Miao, X.1    Tan, L.P.2    Tan, L.S.3    Huang, X.4
  • 52
    • 41549155901 scopus 로고    scopus 로고
    • Mechanical and biological properties of hydroxyapatite/tricalcium phosphate scaffolds coated with poly(lactic-co-glycolic acid)
    • Miao X, Tan DM, Li J, et al. Mechanical and biological properties of hydroxyapatite/tricalcium phosphate scaffolds coated with poly(lactic-co-glycolic acid). Acta Biomater 2008;4:638-45
    • (2008) Acta Biomater , vol.4 , pp. 638-645
    • Miao, X.1    Tan, D.M.2    Li, J.3
  • 53
    • 34247494347 scopus 로고    scopus 로고
    • Novel porous hydroxyapatite prepared by combining H2O2 foaming with PU sponge and modified with PLGA and bioactive glass
    • Huang X, Miao X. Novel porous hydroxyapatite prepared by combining H2O2 foaming with PU sponge and modified with PLGA and bioactive glass. J Biomater Appl 2007;21:351-74
    • (2007) J Biomater Appl , vol.21 , pp. 351-374
    • Huang, X.1    Miao, X.2
  • 54
    • 79956092133 scopus 로고    scopus 로고
    • The influences of poly(lactic-co-glycolic acid) (PLGA) coating on the biodegradability, bioactivity, and biocompatibility of calcium silicate bioceramics
    • Zhao L, Lin K, Zhang M, et al. The influences of poly(lactic-co-glycolic acid) (PLGA) coating on the biodegradability, bioactivity, and biocompatibility of calcium silicate bioceramics. J Mater Sci 2011;46: 4986-93
    • (2011) J Mater Sci , vol.46 , pp. 4986-4993
    • Zhao, L.1    Lin, K.2    Zhang, M.3
  • 55
    • 26844524309 scopus 로고    scopus 로고
    • Preparation and characterization of interpenetrating phased TCP/HA/PLGA composites
    • Miao X, Lim WK, Huang X, Chen Y. Preparation and characterization of interpenetrating phased TCP/HA/PLGA composites. Mater Lett 2005;59: 4000-5
    • (2005) Mater Lett , vol.59 , pp. 4000-4005
    • Miao, X.1    Lim, W.K.2    Huang, X.3    Chen, Y.4
  • 57
    • 84893756528 scopus 로고    scopus 로고
    • Preparation and characterization of an advanced medical device for bone regeneration
    • Dorati R, Colonna C, Genta I, et al. Preparation and characterization of an advanced medical device for bone regeneration. AAPS Pharm Sci Tech 2013;15: 75-82
    • (2013) AAPS Pharm Sci Tech , vol.15 , pp. 75-82
    • Dorati, R.1    Colonna, C.2    Genta, I.3
  • 58
    • 84884849076 scopus 로고    scopus 로고
    • Biosilicate ® -gelatine bone scaffolds by the foam replica technique: Development and characterization
    • Desimone D, Li W, Roether JA, et al. Biosilicate ® -gelatine bone scaffolds by the foam replica technique: development and characterization. Sci Technol Adv Mater 2013;14:045008
    • (2013) Sci Technol Adv Mater , vol.14 , pp. 045008
    • Desimone, D.1    Li, W.2    Roether, J.A.3
  • 59
    • 84880081280 scopus 로고    scopus 로고
    • Multiple silk coatings on biphasic calcium phosphate scaffolds: Effect on physical and mechanical properties and in vitro osteogenic response of human mesenchymal stem cells
    • Li JJ, Gil ES, Hayden RS, et al. Multiple silk coatings on biphasic calcium phosphate scaffolds: effect on physical and mechanical properties and in vitro osteogenic response of human mesenchymal stem cells. Biomacromolecules 2013;14:2179-88
    • (2013) Biomacromolecules , vol.14 , pp. 2179-2188
    • Li, J.J.1    Gil, E.S.2    Hayden, R.S.3
  • 60
    • 84896395076 scopus 로고    scopus 로고
    • Technologies for multilayered scaffolds suitable for interface tissue engineering
    • Nooeaid P, Roether JA, Weber E, et al. Technologies for multilayered scaffolds suitable for interface tissue engineering. Adv Eng Mater 2014;16(3):319-27
    • (2014) Adv Eng Mater , vol.16 , Issue.3 , pp. 319-327
    • Nooeaid, P.1    Roether, J.A.2    Weber, E.3
  • 61
    • 84884975848 scopus 로고    scopus 로고
    • Stiffness improvement of 45S5 Bioglass® - Based scaffolds through natural and synthetic biopolymer coatings: An ultrasonic study
    • Hum J, Luczynski KW, Nooeaid P, et al. Stiffness Improvement of 45S5 Bioglass® - Based Scaffolds Through Natural and Synthetic Biopolymer Coatings: an Ultrasonic Study. Strain 2013;49:431-9
    • (2013) Strain , vol.49 , pp. 431-439
    • Hum, J.1    Luczynski, K.W.2    Nooeaid, P.3
  • 62
    • 0036345131 scopus 로고    scopus 로고
    • In situ polymerization into porous ceramics: A novel route to tough biomimetic materials
    • Pezzotti G, Asmus SMF, Ferroni LP, Miki S. In situ polymerization into porous ceramics: a novel route to tough biomimetic materials. J Mater Sci Mater Med 2002;13: 783-7
    • (2002) J Mater Sci Mater Med , vol.13 , pp. 783-787
    • Pezzotti, G.1    Asmus, S.M.F.2    Ferroni, L.P.3    Miki, S.4
  • 63
    • 0015484859 scopus 로고
    • Elastic behavior of polymer-impregnated porous ceramics
    • Hasselman DPH, Gebauer J, Manson JA. Elastic Behavior of Polymer-Impregnated Porous Ceramics. J Am Ceram Soc 1972;55:588-91
    • (1972) J Am Ceram Soc , vol.55 , pp. 588-591
    • Hasselman, D.P.H.1    Gebauer, J.2    Manson, J.A.3
  • 64
    • 0021371913 scopus 로고
    • Elasticity and damping of porous materials and impregnated materials
    • Nielsen LF. Elasticity and Damping of Porous Materials and Impregnated Materials. J Am Ceram Soc 1983;67:93-8
    • (1983) J Am Ceram Soc , vol.67 , pp. 93-98
    • Nielsen, L.F.1
  • 65
    • 0015159064 scopus 로고
    • The effect of porosity on the compressive strength and elastic modulus of polymer impregnated concrete
    • Manning DG, Hope BB. The effect of porosity on the compressive strength and elastic modulus of polymer impregnated concrete. Cement Concrete Res 1971;I: 631-44
    • (1971) Cement Concrete Res , vol.I , pp. 631-644
    • Manning, D.G.1    Hope, B.B.2
  • 66
    • 0015346372 scopus 로고
    • Effect of polymer impregnation on physical and mechanical behavior of ceramic tile bodies
    • Gebauer J, Hasselman DPH. Effect of polymer impregnation on physical and mechanical behavior of ceramic tile bodies. Am Ceram Soc Bull 1972;51:471-3
    • (1972) Am Ceram Soc Bull , vol.51 , pp. 471-473
    • Gebauer, J.1    Hasselman, D.P.H.2
  • 67
    • 0001215828 scopus 로고    scopus 로고
    • Evaluation of the critical processing parameters of ormosil coatings on the increase of the strength of glass
    • Verganelakis V, Nicolaou PD, Trapalis C, Kordas G. Evaluation of the critical processing parameters of ormosil coatings on the increase of the strength of glass. J Non-Cryst Solids 2000;265:265-75
    • (2000) J Non-Cryst Solids , vol.265 , pp. 265-275
    • Verganelakis, V.1    Nicolaou, P.D.2    Trapalis, C.3    Kordas, G.4
  • 69
    • 1942425023 scopus 로고    scopus 로고
    • Strengthening of glass rods and bottles with water based epoxy acrylate coatings
    • Wang FH, Chen XM, Ellis B, et al. Strengthening of glass rods and bottles with water based epoxy acrylate coatings. Mater Sci Technol 1997;13:163-71
    • (1997) Mater Sci Technol , vol.13 , pp. 163-171
    • Wang, F.H.1    Chen, X.M.2    Ellis, B.3
  • 70
    • 0037678697 scopus 로고    scopus 로고
    • Effect of orientation on the in vitro fracture toughness of dentin: The role of toughening mechanisms
    • Nalla R. Effect of orientation on the in vitro fracture toughness of dentin: the role of toughening mechanisms. Biomaterials 2003;24:3955-68
    • (2003) Biomaterials , vol.24 , pp. 3955-3968
    • Nalla, R.1
  • 71
    • 78650107947 scopus 로고    scopus 로고
    • A molecular rationale of shock absorption and self-healing in a biomimetic apatite-collagen composite under mechanical load
    • Zahn D. A molecular rationale of shock absorption and self-healing in a biomimetic apatite-collagen composite under mechanical load. Angew Chem Int Ed Engl 2010;49: 9405-7
    • (2010) Angew Chem Int Ed Engl , vol.49 , pp. 9405-9407
    • Zahn, D.1
  • 72
    • 79952483103 scopus 로고    scopus 로고
    • Finite element method (FEM), mechanobiology and biomimetic scaffolds in bone tissue engineering
    • Boccaccio A, Ballini A, Pappalettere C, et al. Finite element method (FEM), mechanobiology and biomimetic scaffolds in bone tissue engineering. Int J Biol Sci 2011;7:112-32
    • (2011) Int J Biol Sci , vol.7 , pp. 112-132
    • Boccaccio, A.1    Ballini, A.2    Pappalettere, C.3
  • 74
    • 0037362192 scopus 로고    scopus 로고
    • Mechanistic fracture criteria for the failure of human cortical bone
    • Nalla RK, Kinney JH, Ritchie RO. Mechanistic fracture criteria for the failure of human cortical bone. Nat Mater 2003;2: 164-8
    • (2003) Nat Mater , vol.2 , pp. 164-168
    • Nalla, R.K.1    Kinney, J.H.2    Ritchie, R.O.3
  • 75
    • 33846524780 scopus 로고    scopus 로고
    • Boccaccini, a Mechanical properties and bioactivity of porous PLGA/TiO2 nanoparticle-filled composites for tissue engineering scaffolds
    • Torres F, Nazhat S, Sheikhmdfadzullah S, Maquet V. Boccaccini, a Mechanical properties and bioactivity of porous PLGA/TiO2 nanoparticle-filled composites for tissue engineering scaffolds. Compos Sci Technol 2007;67:1139-47
    • (2007) Compos Sci Technol , vol.67 , pp. 1139-1147
    • Torres, F.1    Nazhat, S.2    Sheikhmdfadzullah, S.3    Maquet, V.4
  • 77
    • 62649102745 scopus 로고    scopus 로고
    • TiO2 foams with poly-(d, l-lactic acid) (PDLLA) and PDLLA/Bioglass® coatings for bone tissue engineering scaffolds
    • Novak S, Druce J, Chen Q.-Z, Boccaccini AR. TiO2 foams with poly-(d, l-lactic acid) (PDLLA) and PDLLA/Bioglass® coatings for bone tissue engineering scaffolds. J Mater Sci 2009;44: 1442-8
    • (2009) J Mater Sci , vol.44 , pp. 1442-1448
    • Novak, S.1    Druce, J.2    Chen, Q.-Z.3    Boccaccini, A.R.4
  • 78
    • 84862799085 scopus 로고    scopus 로고
    • Fabrication aspects of PLA-CaP/PLGA-CaP composites for orthopedic applications: A review
    • Zhou H, Lawrence JG, Bhaduri SB. Fabrication aspects of PLA-CaP/PLGA-CaP composites for orthopedic applications: a review. Acta Biomater 2012;8:1999-2016
    • (2012) Acta Biomater , vol.8 , pp. 1999-2016
    • Zhou, H.1    Lawrence, J.G.2    Bhaduri, S.B.3
  • 79
    • 77953028358 scopus 로고    scopus 로고
    • The influence hydroxyapatite nanoparticle shape and size on the properties of biphasic calcium phosphate scaffolds coated with hydroxyapatite-PCL composites
    • Roohani-Esfahani SI, Nouri-Khorasani S, Lu Z, et al. The influence hydroxyapatite nanoparticle shape and size on the properties of biphasic calcium phosphate scaffolds coated with hydroxyapatite-PCL composites. Biomaterials 2010;31:5498-509
    • (2010) Biomaterials , vol.31 , pp. 5498-5509
    • Roohani-Esfahani, S.I.1    Nouri-Khorasani, S.2    Lu, Z.3
  • 80
    • 77956915095 scopus 로고    scopus 로고
    • Improving the compressive strength of bioceramic robocast scaffolds by polymer infiltration
    • Martínez-Vázquez FJ, Perera FH, Miranda P, et al. Improving the compressive strength of bioceramic robocast scaffolds by polymer infiltration. Acta Biomater 2010;6:4361-8
    • (2010) Acta Biomater , vol.6 , pp. 4361-4368
    • Martínez-Vázquez, F.J.1    Perera, F.H.2    Miranda, P.3
  • 82
    • 84891619440 scopus 로고    scopus 로고
    • Improvement of compressive properties of porous HA scaffold by introducing PCL secondary phase
    • Yos P, Todo M. Improvement of compressive properties of porous HA scaffold by introducing PCL secondary phase. Adv Mater Res 2014;858:96-102
    • (2014) Adv Mater Res , vol.858 , pp. 96-102
    • Yos, P.1    Todo, M.2
  • 83
    • 84884208870 scopus 로고    scopus 로고
    • A polycaprolactone/cuttlefish bone-derived hydroxyapatite composite porous scaffold for bone tissue engineering
    • Kim BS, Yang SS, Lee J. A polycaprolactone/cuttlefish bone-derived hydroxyapatite composite porous scaffold for bone tissue engineering. J Biomed Mater Res B Appl Biomater 2013;101B:1302-9
    • (2013) J Biomed Mater Res B Appl Biomater , vol.101 B , pp. 1302-1309
    • Kim, B.S.1    Yang, S.S.2    Lee, J.3
  • 84
    • 84889082638 scopus 로고    scopus 로고
    • PCL-coated hydroxyapatite scaffold derived from cuttlefish bone: Morphology, mechanical properties and bioactivity
    • Milovac D, Gallego Ferrer G, Ivankovic M, Ivankovic H. PCL-coated hydroxyapatite scaffold derived from cuttlefish bone: morphology, mechanical properties and bioactivity. Mater Sci Eng C Mater Biol Appl 2014;34:437-45
    • (2014) Mater Sci Eng C Mater Biol Appl , vol.34 , pp. 437-445
    • Milovac, D.1    Gallego Ferrer, G.2    Ivankovic, M.3    Ivankovic, H.4
  • 85
    • 84855968318 scopus 로고    scopus 로고
    • Effect of self-assembled nanofibrous silk/polycaprolactone layer on the osteoconductivity and mechanical properties of biphasic calcium phosphate scaffolds
    • Roohani-Esfahani SI, Lu ZF, Li JJ, et al. Effect of self-assembled nanofibrous silk/polycaprolactone layer on the osteoconductivity and mechanical properties of biphasic calcium phosphate scaffolds. Acta Biomater 2012;8:302-12
    • (2012) Acta Biomater , vol.8 , pp. 302-312
    • Roohani-Esfahani, S.I.1    Lu, Z.F.2    Li, J.J.3
  • 86
    • 84875752682 scopus 로고    scopus 로고
    • Mechanical behavior and cell response of PCL coated-TCP foam for cancellous-type bone replacement
    • Bang LT, Tsuru K, Munar M, Ishikawa KOR. Mechanical behavior and cell response of PCL coated-TCP foam for cancellous-type bone replacement. Ceram Int 2013;39:5631-7
    • (2013) Ceram Int , vol.39 , pp. 5631-5637
    • Bang, L.T.1    Tsuru, K.2    Munar, M.3    Ishikawa, K.O.R.4
  • 87
    • 66949116096 scopus 로고    scopus 로고
    • In vitro biocompatibility of 45S5 Bioglass-derived glass - Ceramic scaffolds coated with poly (3-hydroxybutyrate)
    • Bretcanu O, Misra S, Roy I, et al. In vitro biocompatibility of 45S5 Bioglass-derived glass - ceramic scaffolds coated with poly (3-hydroxybutyrate). J Tissue Eng Regen Med 2009;3:139-48
    • (2009) J Tissue Eng Regen Med , vol.3 , pp. 139-148
    • Bretcanu, O.1    Misra, S.2    Roy, I.3
  • 88
    • 84876253884 scopus 로고    scopus 로고
    • Mechanical evaluation of nHAp scaffold coated with poly-3-hydroxybutyrate for bone tissue engineering
    • Foroughi MR, Karbasi S, Ebrahimi-Kahrizsangi R. Mechanical evaluation of nHAp scaffold coated with poly-3-hydroxybutyrate for bone tissue engineering. J Nanosci Nanotechnol 2013;13:1555-62
    • (2013) J Nanosci Nanotechnol , vol.13 , pp. 1555-1562
    • Foroughi, M.R.1    Karbasi, S.2    Ebrahimi-Kahrizsangi, R.3
  • 89
    • 84883255557 scopus 로고    scopus 로고
    • Poly(lactideco-glycolide acid)/biphasic calcium phosphate composite coating on a porous scaffold to deliver simvastatin for bone tissue engineering
    • Sadiasa A, Kim MS, Lee BT. Poly(lactideco-glycolide acid)/biphasic calcium phosphate composite coating on a porous scaffold to deliver simvastatin for bone tissue engineering. J Drug Target 2013;21: 719-29
    • (2013) J Drug Target , vol.21 , pp. 719-729
    • Sadiasa, A.1    Kim, M.S.2    Lee, B.T.3
  • 90
    • 84877731244 scopus 로고    scopus 로고
    • Mechanical properties' improvement of a tricalcium phosphate scaffold with poly-l-lactic acid in selective laser sintering
    • 10pp
    • Liu D, Zhuang J, Shuai C, Peng S. Mechanical properties' improvement of a tricalcium phosphate scaffold with poly-l-lactic acid in selective laser sintering. Biofabrication 2013;5:025005; 10pp
    • (2013) Biofabrication , vol.5 , pp. 025005
    • Liu, D.1    Zhuang, J.2    Shuai, C.3    Peng, S.4
  • 91
    • 84879880536 scopus 로고    scopus 로고
    • Biocompatibility and strengthening of porous hydroxyapatite scaffolds using poly(llactic acid) coating
    • Lee J, Kim IK, Kim TG, et al. Biocompatibility and strengthening of porous hydroxyapatite scaffolds using poly(llactic acid) coating. J Porous Mater 2013;20:719-25
    • (2013) J Porous Mater , vol.20 , pp. 719-725
    • Lee, J.1    Kim, I.K.2    Kim, T.G.3
  • 92
    • 84871396354 scopus 로고    scopus 로고
    • Hydroxyapatite/poly-l-lactide nanocomposites coating improves the adherence and proliferation of human bone mesenchymal stem cells on porous biphasic calcium phosphate scaffolds
    • Nie L, Chen D, Yang Q, et al. Hydroxyapatite/poly-l-lactide nanocomposites coating improves the adherence and proliferation of human bone mesenchymal stem cells on porous biphasic calcium phosphate scaffolds. Mater Lett 2013;92:25-8
    • (2013) Mater Lett , vol.92 , pp. 25-28
    • Nie, L.1    Chen, D.2    Yang, Q.3
  • 93
    • 33846285717 scopus 로고    scopus 로고
    • Fabrication and in vitro characterization of porous biodegradable composites based on phosphate glasses and oligolactide-containing polymer networks
    • Brauer DS, Rüssel C, Vogt S, et al. Fabrication and in vitro characterization of porous biodegradable composites based on phosphate glasses and oligolactide-containing polymer networks. J Biomed Mater Res A 2007;80:410-20
    • (2007) J Biomed Mater Res A , vol.80 , pp. 410-420
    • Brauer, D.S.1    Rüssel, C.2    Vogt, S.3
  • 94
    • 84874751633 scopus 로고    scopus 로고
    • Influence of pressure-assisted polymerization on the microstructure and strength of polymer-infiltrated ceramics
    • Franco Steier V, Koplin C, Kailer A. Influence of pressure-assisted polymerization on the microstructure and strength of polymer-infiltrated ceramics. J Mater Sci 2013;48:3239-47
    • (2013) J Mater Sci , vol.48 , pp. 3239-3247
    • Franco Steier, V.1    Koplin, C.2    Kailer, A.3
  • 95
    • 0035998390 scopus 로고    scopus 로고
    • Three-dimensional macroporous calcium phosphate bioceramics with nested chitosan sponges for load-bearing bone implants
    • Zhang Y, Zhang M. Three-dimensional macroporous calcium phosphate bioceramics with nested chitosan sponges for load-bearing bone implants. J Biomed Mater Res 2001;61:1-8
    • (2001) J Biomed Mater Res , vol.61 , pp. 1-8
    • Zhang, Y.1    Zhang, M.2
  • 96
    • 84865501454 scopus 로고    scopus 로고
    • In vivo osteointegration of three-dimensional crosslinked gelatin-coated hydroxyapatite foams
    • Gil-Albarova J, Vila M, Badiola-Vargas J, et al. In vivo osteointegration of three-dimensional crosslinked gelatin-coated hydroxyapatite foams. Acta Biomater 2012;8:3777-83
    • (2012) Acta Biomater , vol.8 , pp. 3777-3783
    • Gil-Albarova, J.1    Vila, M.2    Badiola-Vargas, J.3
  • 97
    • 84881185572 scopus 로고    scopus 로고
    • Bioactive polymeric-ceramic hybrid 3D scaffold for application in bone tissue regeneration
    • Torres AL, Gaspar VM, Serra IR, et al. Bioactive polymeric-ceramic hybrid 3D scaffold for application in bone tissue regeneration. Mater Sci Eng C Mater Biol Appl 2013;33:4460-9
    • (2013) Mater Sci Eng C Mater Biol Appl , vol.33 , pp. 4460-4469
    • Torres, A.L.1    Gaspar, V.M.2    Serra, I.R.3
  • 98
    • 84879535754 scopus 로고    scopus 로고
    • Bioactive ceramics: From bone grafts to tissue engineering
    • Salinas AJ, Vallet-Regí M. Bioactive ceramics: from bone grafts to tissue engineering. RSC Adv 2013;3:11116
    • (2013) RSC Adv , vol.3 , pp. 11116
    • Salinas, A.J.1    Vallet-Regí, M.2
  • 99
    • 78650737357 scopus 로고    scopus 로고
    • Compression behaviour of biphasic calcium phosphate and biphasic calcium phosphate-agarose scaffolds for bone regeneration
    • Puértolas JA, Vadillo JL, Sánchez-Salcedo S, et al. Compression behaviour of biphasic calcium phosphate and biphasic calcium phosphate-agarose scaffolds for bone regeneration. Acta Biomater 2011;7:841-7
    • (2011) Acta Biomater , vol.7 , pp. 841-847
    • Puértolas, J.A.1    Vadillo, J.L.2    Sánchez-Salcedo, S.3
  • 100
    • 77955477587 scopus 로고    scopus 로고
    • Biopolymer-coated hydroxyapatite foams: A new antidote for heavy metal intoxication
    • Sánchez-Salcedo S, Vila M, Izquierdo-Barba I, et al. Biopolymer-coated hydroxyapatite foams: a new antidote for heavy metal intoxication. J Mater Chem 2010;20:6956
    • (2010) J Mater Chem , vol.20 , pp. 6956
    • Sánchez-Salcedo, S.1    Vila, M.2    Izquierdo-Barba, I.3
  • 101
    • 36949028122 scopus 로고    scopus 로고
    • An optimized β-tricalcium phosphate and agarose scaffold fabrication technique
    • Roman J, Cabanas MV, Pena J, et al. An optimized β-tricalcium phosphate and agarose scaffold fabrication technique. J Biomed Mater Res A 2008;84A:99-107
    • (2008) J Biomed Mater Res A , vol.84 A , pp. 99-107
    • Roman, J.1    Cabanas, M.V.2    Pena, J.3
  • 103
    • 84855464275 scopus 로고    scopus 로고
    • Biological performance of hydroxyapatite-biopolymer foams: In vitro cell response
    • Cicuéndez M, Izquierdo-Barba I, Sánchez-Salcedo S, et al. Biological performance of hydroxyapatite-biopolymer foams: in vitro cell response. Acta Biomater 2012;8:802-10
    • (2012) Acta Biomater , vol.8 , pp. 802-810
    • Cicuéndez, M.1    Izquierdo-Barba, I.2    Sánchez-Salcedo, S.3
  • 104
    • 78249264710 scopus 로고    scopus 로고
    • Suppression of anoikis by collagen coating of interconnected macroporous nanometric carbonated hydroxyapatite/agarose scaffolds
    • Alcaide M, Serrano MC, Roman J, et al. Suppression of anoikis by collagen coating of interconnected macroporous nanometric carbonated hydroxyapatite/agarose scaffolds. J Biomed Mater Res A 2010;95A:793-800
    • (2010) J Biomed Mater Res A , vol.95 A , pp. 793-800
    • Alcaide, M.1    Serrano, M.C.2    Roman, J.3
  • 105
    • 69549120335 scopus 로고    scopus 로고
    • Matrix assisted pulsed laser evaporation (MAPLE) of Poly(D,L lactide) (PDLLA) on three dimensional Bioglass® structures
    • Califano V, Bloisi F, Vicari LRM, et al. Matrix assisted pulsed laser evaporation (MAPLE) of Poly(D,L lactide) (PDLLA) on three dimensional Bioglass® structures. Adv Eng Mater 2009;11:685-9
    • (2009) Adv Eng Mater , vol.11 , pp. 685-689
    • Califano, V.1    Bloisi, F.2    Vicari, L.R.M.3
  • 106
    • 84861885153 scopus 로고    scopus 로고
    • Poly-dl-lactic acid coated Bioglass® scaffolds: Toughening effects and osteosarcoma cell proliferation
    • Bretcanu O, Boccaccini AR, Salih V. Poly-dl-lactic acid coated Bioglass® scaffolds: toughening effects and osteosarcoma cell proliferation. J Mater Sci 2012;47:5661-72
    • (2012) J Mater Sci , vol.47 , pp. 5661-5672
    • Bretcanu, O.1    Boccaccini, A.R.2    Salih, V.3
  • 107
    • 84880310833 scopus 로고    scopus 로고
    • Response of 45S5 Bioglass® Foams to Tensile Loading
    • Řehořek L, Chlup Z, Meng D, et al. Response of 45S5 Bioglass® Foams to Tensile Loading. Ceram Int 2013;39: 8015-20
    • (2013) Ceram Int , vol.39 , pp. 8015-8020
    • Řehořek, L.1    Chlup, Z.2    Meng, D.3
  • 108
    • 78649816978 scopus 로고    scopus 로고
    • Bone-like elastomer-toughened scaffolds with degradability kinetics matching healing rates of Injured Bone
    • Chen QZ, Quinn JMW, Thouas GA, et al. Bone-Like Elastomer-Toughened Scaffolds with Degradability Kinetics Matching Healing Rates of Injured Bone. Adv Eng Mater 2010;12:B642-8
    • (2010) Adv Eng Mater , vol.12 , pp. B642-B648
    • Chen, Q.Z.1    Quinn, J.M.W.2    Thouas, G.A.3
  • 109
    • 84862696180 scopus 로고    scopus 로고
    • Synthesis, properties and biomedical applications of poly(glycerol sebacate) (PGS): A review
    • Rai R, Tallawi M, Grigore A, Boccaccini AR. Synthesis, properties and biomedical applications of poly(glycerol sebacate) (PGS): a review. Prog Polym Sci 2012;37:1051-78
    • (2012) Prog Polym Sci , vol.37 , pp. 1051-1078
    • Rai, R.1    Tallawi, M.2    Grigore, A.3    Boccaccini, A.R.4
  • 110
    • 79959557862 scopus 로고    scopus 로고
    • Novel, simple and reproducible method for preparation of composite hierarchal porous structure scaffolds
    • Roohani-Esfahani SI, Lu Z, Zreiqat H. Novel, simple and reproducible method for preparation of composite hierarchal porous structure scaffolds. Mater Lett 2011;65: 2578-81
    • (2011) Mater Lett , vol.65 , pp. 2578-2581
    • Roohani-Esfahani, S.I.1    Lu, Z.2    Zreiqat, H.3
  • 111
    • 84873942775 scopus 로고    scopus 로고
    • Repairing a critical-sized bone defect with highly porous modified and unmodified baghdadite scaffolds
    • Roohani-Esfahani SI, Dunstan CR, Davies B, et al. Repairing a critical-sized bone defect with highly porous modified and unmodified baghdadite scaffolds. Acta Biomater 2012;8:4162-72
    • (2012) Acta Biomater , vol.8 , pp. 4162-4172
    • Roohani-Esfahani, S.I.1    Dunstan, C.R.2    Davies, B.3
  • 112
    • 84867559188 scopus 로고    scopus 로고
    • The effect of poly(lactic-co-glycolic acid) (PLGA) coating on the mechanical, biodegradable, bioactive properties and drug release of porous calcium silicate scaffolds
    • Zhao L, Wu C, Lin K, Chang J. The effect of poly(lactic-co-glycolic acid) (PLGA) coating on the mechanical, biodegradable, bioactive properties and drug release of porous calcium silicate scaffolds. Biomed Mater Eng 2012;22:289-300
    • (2012) Biomed Mater Eng , vol.22 , pp. 289-300
    • Zhao, L.1    Wu, C.2    Lin, K.3    Chang, J.4
  • 113
    • 70350022756 scopus 로고    scopus 로고
    • Electrospun nanofibrous biodegradable polyester coatings on Bioglass®-based glass-ceramics for tissue engineering
    • Bretcanu O, Misra SK, Yunos DM, et al. Kowalewski T. a. Electrospun nanofibrous biodegradable polyester coatings on Bioglass®based glass-ceramics for tissue engineering. Mater Chem Phys 2009;118: 420-6
    • (2009) Mater Chem Phys , vol.118 , pp. 420-426
    • Bretcanu, O.1    Misra, S.K.2    Yunos, D.M.3    Kowalewski, T.A.4
  • 114
    • 84862803719 scopus 로고    scopus 로고
    • Counterionic biopolymers-reinforced bioactive glass scaffolds with improved mechanical properties in wet state
    • Yang G, Yang X, Zhang L, et al. Counterionic biopolymers-reinforced bioactive glass scaffolds with improved mechanical properties in wet state. Mater Lett 2012;75:80-3
    • (2012) Mater Lett , vol.75 , pp. 80-83
    • Yang, G.1    Yang, X.2    Zhang, L.3
  • 115
    • 84869081346 scopus 로고    scopus 로고
    • Biomimetic coating on bioactive glass-derived scaffolds mimicking bone tissue
    • Bellucci D, Sola A, Gentile P, et al. Biomimetic coating on bioactive glass-derived scaffolds mimicking bone tissue. J Biomed Mater Res A 2012;100: 3259-66
    • (2012) J Biomed Mater Res A , vol.100 , pp. 3259-3266
    • Bellucci, D.1    Sola, A.2    Gentile, P.3
  • 116
    • 84874745044 scopus 로고    scopus 로고
    • Gelatin coated 45S5 bioglass®-derived scaffolds for bone tissue engineering
    • Metze AL, Grimm A, Nooeaid P, et al. Gelatin Coated 45S5 Bioglass®-Derived Scaffolds for Bone Tissue Engineering. Key Eng Mater 2013;541:31-9
    • (2013) Key Eng Mater , vol.541 , pp. 31-39
    • Metze, A.L.1    Grimm, A.2    Nooeaid, P.3
  • 117
    • 68849100411 scopus 로고    scopus 로고
    • Mechanical properties of organically modified silicates for bone regeneration
    • Manzano M, Salinas AJ, Gil FJ, Vallet-Regí M. Mechanical properties of organically modified silicates for bone regeneration. J Mater Sci Mater Med 2009;20:1795-801
    • (2009) J Mater Sci Mater Med , vol.20 , pp. 1795-1801
    • Manzano, M.1    Salinas, A.J.2    Gil, F.J.3    Vallet-Regí, M.4
  • 118
    • 84880311762 scopus 로고    scopus 로고
    • Bioglass®-based scaffolds incorporating polycaprolactone and chitosan coatings for controlled vancomycin delivery
    • Avaialble from
    • Yao Q, Nooeaid P, Roether JA, et al. Bioglass®-based scaffolds incorporating polycaprolactone and chitosan coatings for controlled vancomycin delivery. Ceram Int 2013;39(7):7517-22. Avaialble from http://dx.doi.org/10.1016/j.ceramint.2013.03.002
    • (2013) Ceram Int , vol.39 , Issue.7 , pp. 7517-7522
    • Yao, Q.1    Nooeaid, P.2    Roether, J.A.3
  • 119
    • 84892567042 scopus 로고    scopus 로고
    • Mechanical reinforcement of Bioglass®-based scaffolds by novel polyvinyl-alcohol/microfibrillated cellulose composite coating
    • Bertolla L, Dlouhý I, Philippart A, Boccaccini AR. Mechanical reinforcement of Bioglass®-based scaffolds by novel polyvinyl-alcohol/microfibrillated cellulose composite coating. Mater Lett 2014;118: 204-7
    • (2014) Mater Lett , vol.118 , pp. 204-207
    • Bertolla, L.1    Dlouhý, I.2    Philippart, A.3    Boccaccini, A.R.4
  • 120
    • 84881174537 scopus 로고    scopus 로고
    • 45S5 Bioglass®-derived scaffolds coated with organic-inorganic hybrids containing graphene
    • Fabbri P, Valentini L, Hum J, et al. 45S5 Bioglass®-derived scaffolds coated with organic-inorganic hybrids containing graphene. Mater Sci Eng C 2013;33: 3592-600
    • (2013) Mater Sci Eng C , vol.33 , pp. 3592-3600
    • Fabbri, P.1    Valentini, L.2    Hum, J.3
  • 121
    • 33847042303 scopus 로고    scopus 로고
    • Osteochondral tissue engineering
    • Martin I, Miot S, Barbero A, et al. Osteochondral tissue engineering. J Biomech 2007;40:750-65
    • (2007) J Biomech , vol.40 , pp. 750-765
    • Martin, I.1    Miot, S.2    Barbero, A.3
  • 122
    • 84866751885 scopus 로고    scopus 로고
    • Osteochondral tissue engineering: Scaffolds, stem cells and applications
    • Nooeaid P, Salih V, Beier JP, Boccaccini AR. Osteochondral tissue engineering: scaffolds, stem cells and applications. J Cell Mol Med 2012;16: 2247-70
    • (2012) J Cell Mol Med , vol.16 , pp. 2247-2270
    • Nooeaid, P.1    Salih, V.2    Beier, J.P.3    Boccaccini, A.R.4
  • 123
    • 84865729983 scopus 로고    scopus 로고
    • Simple fabrication technique for multilayered stratified composite scaffolds suitable for interface tissue engineering
    • Liverani L, Roether JA, Nooeaid P, et al. Simple fabrication technique for multilayered stratified composite scaffolds suitable for interface tissue engineering. Mater Sci Eng A 2012;557:54-8
    • (2012) Mater Sci Eng A , vol.557 , pp. 54-58
    • Liverani, L.1    Roether, J.A.2    Nooeaid, P.3
  • 124
    • 77952580560 scopus 로고    scopus 로고
    • Fabrication and characterization of electrospun poly-DL-lactide (PDLLA) fibrous coatings on 45S5 Bioglass® substrates for bone tissue engineering applications
    • Yunos DM, Ahmad Z, Boccaccini AR. Fabrication and characterization of electrospun poly-DL-lactide (PDLLA) fibrous coatings on 45S5 Bioglass® substrates for bone tissue engineering applications. J Chem Technol Biotechnol 2009;85:768-74
    • (2009) J Chem Technol Biotechnol , vol.85 , pp. 768-774
    • Yunos, D.M.1    Ahmad, Z.2    Boccaccini, A.R.3
  • 125
    • 84871576495 scopus 로고    scopus 로고
    • Stratified scaffolds for osteochondral tissue engineering applications: Electrospun PDLLA nanofibre coated Bioglass(R)-derived foams
    • Yunos DM, Ahmad Z, Salih V, Boccaccini AR. Stratified scaffolds for osteochondral tissue engineering applications: electrospun PDLLA nanofibre coated Bioglass(R)-derived foams. J Biomater Appl 2011;27:537-51
    • (2011) J Biomater Appl , vol.27 , pp. 537-551
    • Yunos, D.M.1    Ahmad, Z.2    Salih, V.3    Boccaccini, A.R.4
  • 126
    • 79951577364 scopus 로고    scopus 로고
    • A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics
    • Hoppe A, Güldal NS, Boccaccini AR, Boccaccini AR. A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 2011;32(11):2757-74
    • (2011) Biomaterials , vol.32 , Issue.11 , pp. 2757-2774
    • Hoppe, A.1    Güldal, N.S.2    Boccaccini, A.R.3    Boccaccini, A.R.4
  • 127
    • 84887177861 scopus 로고    scopus 로고
    • Preparation and characterization of vancomycin releasing PHBV coated 45S5 Bioglass®-based glass-ceramic scaffolds for bone tissue engineering
    • Avaialble from
    • Li W, Nooeaid P, Roether JA, et al. Preparation and characterization of vancomycin releasing PHBV coated 45S5 Bioglass®-based glass-ceramic scaffolds for bone tissue engineering. J Eur Ceram Soc 2013;Avaialble from http://dx.doi.org/10.1016/j.jeurceramsoc.2013.08.0
    • (2013) J Eur Ceram Soc
    • Li, W.1    Nooeaid, P.2    Roether, J.A.3
  • 128
    • 84881146246 scopus 로고    scopus 로고
    • Multifunctional bioactive glass scaffolds coated with layers of poly(D,Llactide-co-glycolide) and poly(nisopropylacrylamide-co-acrylic acid) microgels loaded with vancomycin
    • Olalde B, Garmendia N, Sáez-Martínez V, et al. Multifunctional bioactive glass scaffolds coated with layers of poly(D,Llactide-co-glycolide) and poly(nisopropylacrylamide-co-acrylic acid) microgels loaded with vancomycin. Mater Sci Eng C Mater Biol Appl 2013;33:3760-7
    • (2013) Mater Sci Eng C Mater Biol Appl , vol.33 , pp. 3760-3767
    • Olalde, B.1    Garmendia, N.2    Sáez-Martínez, V.3
  • 129
    • 77955890420 scopus 로고    scopus 로고
    • Multi-functional P(3HB) microsphere/45S5 Bioglass-based composite scaffolds for bone tissue engineering
    • Francis L, Meng D, Knowles JC, et al. Multi-functional P(3HB) microsphere/45S5 Bioglass-based composite scaffolds for bone tissue engineering. Acta Biomater 2010;6:2773-86
    • (2010) Acta Biomater , vol.6 , pp. 2773-2786
    • Francis, L.1    Meng, D.2    Knowles, J.C.3
  • 130
    • 84890314021 scopus 로고    scopus 로고
    • 3HB) microsphere-coated 45S5 Bioglass(®)- based scaffolds for bone tissue engineering
    • Meng D, Francis L, Thompson ID, et al. 3HB) microsphere-coated 45S5 Bioglass(®)- based scaffolds for bone tissue engineering. J Mater Sci Mater Med 2013;24(12): 2809-17
    • (2013) J Mater Sci Mater Med , vol.24 , Issue.12 , pp. 2809-2817
    • Meng, D.1    Francis, L.2    Thompson, I.D.3
  • 131
    • 0033278249 scopus 로고    scopus 로고
    • Enhancement by recombinant human bone morphogenetic protein-2 of bone formation by means of porous hydroxyapatite in mandibular bone defects
    • Yoshida K, Bessho K, Fujimura K, et al. Enhancement by Recombinant Human Bone Morphogenetic Protein-2 of Bone Formation by Means of Porous Hydroxyapatite in Mandibular Bone Defects. J Dent Res 1999;78:1505-10
    • (1999) J Dent Res , vol.78 , pp. 1505-1510
    • Yoshida, K.1    Bessho, K.2    Fujimura, K.3
  • 132
    • 48749091334 scopus 로고    scopus 로고
    • Improvement of porous β-TCP scaffolds with rhBMP-2 chitosan carrier film for bone tissue application
    • Abarrategi A, Moreno-Vicente C, Ramos V, et al. Improvement of porous β-TCP scaffolds with rhBMP-2 chitosan carrier film for bone tissue application. Tissue Eng Part A 2008;14:1305-19
    • (2008) Tissue Eng Part A , vol.14 , pp. 1305-1319
    • Abarrategi, A.1    Moreno-Vicente, C.2    Ramos, V.3
  • 133
    • 84865977165 scopus 로고    scopus 로고
    • Evaluation of BMP-2 tethered polyelectrolyte coatings on hydroxyapatite scaffolds in vivo
    • Shiels S, Oh S, Bae C, et al. Evaluation of BMP-2 tethered polyelectrolyte coatings on hydroxyapatite scaffolds in vivo. J Biomed Mater Res B Appl Biomater 2012;100B: 1782-91
    • (2012) J Biomed Mater Res B Appl Biomater , vol.100 B , pp. 1782-1791
    • Shiels, S.1    Oh, S.2    Bae, C.3
  • 134
    • 77956483928 scopus 로고    scopus 로고
    • Proliferation and mineralization of bone marrow cells cultured on macroporous hydroxyapatite scaffolds functionalized with collagen type I for bone tissue regeneration
    • Teixeira S, Fernandes MH, Ferraz MP, Monteiro FJ. Proliferation and mineralization of bone marrow cells cultured on macroporous hydroxyapatite scaffolds functionalized with collagen type I for bone tissue regeneration. J Biomed Mater Res A 2010;95:1-8
    • (2010) J Biomed Mater Res A , vol.95 , pp. 1-8
    • Teixeira, S.1    Fernandes, M.H.2    Ferraz, M.P.3    Monteiro, F.J.4
  • 135
    • 84868124644 scopus 로고    scopus 로고
    • Osteogenesis and angiogenesis induced by porous β-CaSiO3./PDLGA composite scaffold via activation of AMPK/ERK1/2 and PI3K/Akt pathways
    • Wang C, Lin K, Chang J, Sun J. Osteogenesis and angiogenesis induced by porous β-CaSiO3./PDLGA composite scaffold via activation of AMPK/ERK1/2 and PI3K/Akt pathways. Biomaterials 2013;34:64-77
    • (2013) Biomaterials , vol.34 , pp. 64-77
    • Wang, C.1    Lin, K.2    Chang, J.3    Sun, J.4
  • 136
    • 80855124906 scopus 로고    scopus 로고
    • Effect of β-tricalcium phosphate coated with zoledronic acid on human osteoblasts and human osteoclasts in vitro
    • Kadow-Romacker A, Greiner S, Schmidmaier G, Wildemann B. Effect of β-tricalcium phosphate coated with zoledronic acid on human osteoblasts and human osteoclasts in vitro. J Biomater Appl 2011;27:577-85
    • (2011) J Biomater Appl , vol.27 , pp. 577-585
    • Kadow-Romacker, A.1    Greiner, S.2    Schmidmaier, G.3    Wildemann, B.4
  • 137
    • 51749101730 scopus 로고    scopus 로고
    • Carrier systems and application of growth factors in orthopaedics
    • Schmidmaier G, Schwabe P, Strobel C, Wildemann B. Carrier systems and application of growth factors in orthopaedics. Injury 2008;39:S37-43
    • (2008) Injury , vol.39 , pp. S37-43
    • Schmidmaier, G.1    Schwabe, P.2    Strobel, C.3    Wildemann, B.4
  • 138
    • 0035034516 scopus 로고    scopus 로고
    • Local application of growth factors (insulin-like growth factor-1 and transforming growth factor-beta1) from a biodegradable poly(D,L-lactide) coating of osteosynthetic implants accelerates fracture healing in rats
    • Schmidmaier G, Wildemann B, Bail H, et al. Local application of growth factors (insulin-like growth factor-1 and transforming growth factor-beta1) from a biodegradable poly(D,L-lactide) coating of osteosynthetic implants accelerates fracture healing in rats. Bone 2001;28:341-50
    • (2001) Bone , vol.28 , pp. 341-350
    • Schmidmaier, G.1    Wildemann, B.2    Bail, H.3
  • 139
    • 80755125722 scopus 로고    scopus 로고
    • Mussel-inspired porous SiO2 scaffolds with improved mineralization and cytocompatibility for drug delivery and bone tissue engineering
    • Wu C, Fan W, Chang J, Xiao Y. Mussel-inspired porous SiO2 scaffolds with improved mineralization and cytocompatibility for drug delivery and bone tissue engineering. J Mater Chem 2011;21:18300
    • (2011) J Mater Chem , vol.21 , pp. 18300
    • Wu, C.1    Fan, W.2    Chang, J.3    Xiao, Y.4
  • 140
    • 84865287726 scopus 로고    scopus 로고
    • Intra-operatively customized implant coating strategies for local and controlled drug delivery to bone
    • Trajkovski B, Petersen A, Strube P, et al. Intra-operatively customized implant coating strategies for local and controlled drug delivery to bone. Adv Drug Deliv Rev 2012;64:1142-51
    • (2012) Adv Drug Deliv Rev , vol.64 , pp. 1142-1151
    • Trajkovski, B.1    Petersen, A.2    Strube, P.3
  • 141
    • 40349089949 scopus 로고    scopus 로고
    • Porous bioceramics reinforced by coating gelatin
    • Liu B, Lin P, Shen Y, Dong Y. Porous bioceramics reinforced by coating gelatin. J Mater Sci Mater Med 2008;19:1203-07
    • (2008) J Mater Sci Mater Med , vol.19 , pp. 1203-1207
    • Liu, B.1    Lin, P.2    Shen, Y.3    Dong, Y.4
  • 142
    • 37349078593 scopus 로고    scopus 로고
    • Fabrication of bioactive composite by developing PLLA onto the framework of sintered HA scaffold
    • Tian T, Jiang D, Zhang J, Lin Q. Fabrication of Bioactive Composite by developing PLLA onto the Framework of Sintered HA Scaffold. Mater Sci Eng C 2008;28:51-6
    • (2008) Mater Sci Eng C , vol.28 , pp. 51-56
    • Tian, T.1    Jiang, D.2    Zhang, J.3    Lin, Q.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.