-
1
-
-
0035464823
-
The circle of life: Cell cycle regulation in airway smooth muscle
-
Ammit AJ, Panettieri RA, Jr. The circle of life: Cell cycle regulation in airway smooth muscle. J Appl Physiol 2001; 91: 1431-7.
-
(2001)
J Appl Physiol
, vol.91
, pp. 1431-1437
-
-
Ammit, A.J.1
Panettieri Jr, R.A.2
-
2
-
-
0029048550
-
Regulation of differentiation of vascular smooth muscle cells
-
Owens GK. Regulation of differentiation of vascular smooth muscle cells. Physiol Rev 1995; 75: 487-517.
-
(1995)
Physiol Rev
, vol.75
, pp. 487-517
-
-
Owens, G.K.1
-
3
-
-
3042588831
-
Molecular regulation of vascular smooth muscle cell differentiation in development and disease
-
Owens GK, Kumar MS, Wamhoff BR. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev 2004; 84: 767-801.
-
(2004)
Physiol Rev
, vol.84
, pp. 767-801
-
-
Owens, G.K.1
Kumar, M.S.2
Wamhoff, B.R.3
-
5
-
-
34249289023
-
Developmental basis of vascular smooth muscle diversity
-
Majesky MW. Developmental basis of vascular smooth muscle diversity. Arterioscler Thromb Vasc Biol 2007; 27: 1248-58.
-
(2007)
Arterioscler Thromb Vasc Biol
, vol.27
, pp. 1248-1258
-
-
Majesky, M.W.1
-
6
-
-
14044276931
-
Molecular determinants of vascular smooth muscle cell diversity
-
Yoshida T, Owens GK. Molecular determinants of vascular smooth muscle cell diversity. Circ Res 2005; 96: 280-91.
-
(2005)
Circ Res
, vol.96
, pp. 280-291
-
-
Yoshida, T.1
Owens, G.K.2
-
7
-
-
0029964385
-
Pericardial mesoderm generates a population of coronary smooth muscle cells migrating into the heart along with ingrowth of the epicardial organ
-
Mikawa T, Gourdie RG. Pericardial mesoderm generates a population of coronary smooth muscle cells migrating into the heart along with ingrowth of the epicardial organ. Dev Biol 1996; 174: 221-32.
-
(1996)
Dev Biol
, vol.174
, pp. 221-232
-
-
Mikawa, T.1
Gourdie, R.G.2
-
8
-
-
17644382625
-
Secondary heart field contributes myocardium and smooth muscle to the arterial pole of the developing heart
-
Waldo KL, Hutson MR, Ward CC, Zdanowicz M, Stadt HA, Kumiski D, Abu-Issa R, Kirby ML. Secondary heart field contributes myocardium and smooth muscle to the arterial pole of the developing heart. Dev Biol 2005; 281: 78-90.
-
(2005)
Dev Biol
, vol.281
, pp. 78-90
-
-
Waldo, K.L.1
Hutson, M.R.2
Ward, C.C.3
Zdanowicz, M.4
Stadt, H.A.5
Kumiski, D.6
Abu-Issa, R.7
Kirby, M.L.8
-
10
-
-
0033013014
-
Expressional regulation of smooth muscle cell-specific genes in association with phenotypic modulation
-
Sobue K, Hayashi K, Nishida W. Expressional regulation of smooth muscle cell-specific genes in association with phenotypic modulation. Mol Cell Biochem 1999; 190: 105-18.
-
(1999)
Mol Cell Biochem
, vol.190
, pp. 105-118
-
-
Sobue, K.1
Hayashi, K.2
Nishida, W.3
-
11
-
-
34249307295
-
Regulation of vascular smooth muscle cell differentiation
-
Rzucidlo EM, Martin KA, Powell RJ. Regulation of vascular smooth muscle cell differentiation. J Vasc Surg 2007; 45 Suppl A: A25-32.
-
(2007)
J Vasc Surg
, vol.45
, pp. A25-A32
-
-
Rzucidlo, E.M.1
Martin, K.A.2
Powell, R.J.3
-
12
-
-
0032482202
-
Pdgf, tgf-beta, and heterotypic cell-cell interactions mediate endothelial cell-induced recruitment of 10t1/2 cells and their differentiation to a smooth muscle fate
-
Hirschi KK, Rohovsky SA, D'Amore PA. Pdgf, tgf-beta, and heterotypic cell-cell interactions mediate endothelial cell-induced recruitment of 10t1/2 cells and their differentiation to a smooth muscle fate. J Cell Biol 1998; 141: 805-14.
-
(1998)
J Cell Biol
, vol.141
, pp. 805-814
-
-
Hirschi, K.K.1
Rohovsky, S.A.2
D'Amore, P.A.3
-
13
-
-
0037405501
-
Central role for rho in tgf-beta1-induced alpha-smooth muscle actin expression during epithelial-mesenchymal transition
-
Masszi A, Di Ciano C, Sirokmany G, Arthur WT, Rotstein OD, Wang J, et al. Central role for rho in tgf-beta1-induced alpha-smooth muscle actin expression during epithelial-mesenchymal transition. Am J Physiol Renal Physiol 2003; 284: F911-924.
-
(2003)
Am J Physiol Renal Physiol
, vol.284
, pp. F911-924
-
-
Masszi, A.1
Di Ciano, C.2
Sirokmany, G.3
Arthur, W.T.4
Rotstein, O.D.5
Wang, J.6
-
14
-
-
0042831330
-
Smad3 mediates transforming growth factor-beta-induced alpha-smooth muscle actin expression
-
Hu B, Wu Z, Phan SH. Smad3 mediates transforming growth factor-beta-induced alpha-smooth muscle actin expression. Am J Respir Cell Mol Biol 2003; 29: 397-404.
-
(2003)
Am J Respir Cell Mol Biol
, vol.29
, pp. 397-404
-
-
Hu, B.1
Wu, Z.2
Phan, S.H.3
-
15
-
-
2442716332
-
Transforming growth factor-beta-induced differentiation of smooth muscle from a neural crest stem cell line
-
Chen S, Lechleider RJ. Transforming growth factor-beta-induced differentiation of smooth muscle from a neural crest stem cell line. Circ Res 2004; 94: 1195-202.
-
(2004)
Circ Res
, vol.94
, pp. 1195-1202
-
-
Chen, S.1
Lechleider, R.J.2
-
16
-
-
8644264026
-
Transforming growth factor-beta1 signaling contributes to development of smooth muscle cells from embryonic stem cells
-
Sinha S, Hoofnagle MH, Kingston PA, McCanna ME, Owens GK. Transforming growth factor-beta1 signaling contributes to development of smooth muscle cells from embryonic stem cells. Am J Physiol Cell Physiol 2004; 287: C1560-8.
-
(2004)
Am J Physiol Cell Physiol
, vol.287
, pp. C1560-C1568
-
-
Sinha, S.1
Hoofnagle, M.H.2
Kingston, P.A.3
McCanna, M.E.4
Owens, G.K.5
-
17
-
-
24744446597
-
Transforming growth factor-beta1-induced expression of smooth muscle marker genes involves activation of pkn and p38 mapk
-
Deaton RA, Su C, Valencia TG, Grant SR. Transforming growth factor-beta1-induced expression of smooth muscle marker genes involves activation of pkn and p38 mapk. J Biol Chem 2005; 280: 31172-81.
-
(2005)
J Biol Chem
, vol.280
, pp. 31172-31181
-
-
Deaton, R.A.1
Su, C.2
Valencia, T.G.3
Grant, S.R.4
-
18
-
-
77952919493
-
Notch and transforming growth factor-beta (tgfbeta) signaling pathways cooperatively regulate vascular smooth muscle cell differentiation
-
Tang Y, Urs S, Boucher J, Bernaiche T, Venkatesh D, Spicer DB, et al. Notch and transforming growth factor-beta (tgfbeta) signaling pathways cooperatively regulate vascular smooth muscle cell differentiation. J Biol Chem 2010; 285: 17556-63.
-
(2010)
J Biol Chem
, vol.285
, pp. 17556-17563
-
-
Tang, Y.1
Urs, S.2
Boucher, J.3
Bernaiche, T.4
Venkatesh, D.5
Spicer, D.B.6
-
19
-
-
0027250532
-
Transforming growth factor beta 1-mediated inhibition of smooth muscle cell proliferation is associated with a late g1 cell cycle arrest
-
Reddy KB, Howe PH. Transforming growth factor beta 1-mediated inhibition of smooth muscle cell proliferation is associated with a late g1 cell cycle arrest. J Cell Physiol 1993; 156: 48-55.
-
(1993)
J Cell Physiol
, vol.156
, pp. 48-55
-
-
Reddy, K.B.1
Howe, P.H.2
-
20
-
-
27744494454
-
Transforming growth factor-beta-dependent growth inhibition in primary vascular smooth muscle cells is p38-dependent
-
Seay U, Sedding D, Krick S, Hecker M, Seeger W, Eickelberg O. Transforming growth factor-beta-dependent growth inhibition in primary vascular smooth muscle cells is p38-dependent. J Pharmacol Exp Ther 2005; 315: 1005-12.
-
(2005)
J Pharmacol Exp Ther
, vol.315
, pp. 1005-1012
-
-
Seay, U.1
Sedding, D.2
Krick, S.3
Hecker, M.4
Seeger, W.5
Eickelberg, O.6
-
21
-
-
0028180133
-
Tgf-beta promotes proliferation of cultured smc via both pdgf-aa-dependent and pdgf-aa-independent mechanisms
-
Stouffer GA, Owens GK. Tgf-beta promotes proliferation of cultured smc via both pdgf-aa-dependent and pdgf-aa-independent mechanisms. J Clin Invest 1994; 45, 93: 2048-55.
-
(1994)
J Clin Invest
, vol.45
, Issue.93
, pp. 2048-2055
-
-
Stouffer, G.A.1
Owens, G.K.2
-
22
-
-
84864429174
-
Transforming growth factor-beta increases vascular smooth muscle cell proliferation through the smad3 and extracellular signal-regulated kinase mitogen-activated protein kinases pathways
-
Suwanabol PA, Seedial SM, Shi X, Zhang F, Yamanouchi D, Roenneburg D, et al. Transforming growth factor-beta increases vascular smooth muscle cell proliferation through the smad3 and extracellular signal-regulated kinase mitogen-activated protein kinases pathways. J Vasc Surg 2012; 56: 446-54.
-
(2012)
J Vasc Surg
, vol.56
, pp. 446-454
-
-
Suwanabol, P.A.1
Seedial, S.M.2
Shi, X.3
Zhang, F.4
Yamanouchi, D.5
Roenneburg, D.6
-
23
-
-
68049103323
-
Tgf-beta through smad3 signaling stimulates vascular smooth muscle cell proliferation and neointimal formation
-
Tsai S, Hollenbeck ST, Ryer EJ, Edlin R, Yamanouchi D, Kundi R, et al. Tgf-beta through smad3 signaling stimulates vascular smooth muscle cell proliferation and neointimal formation. Am J Physiol Heart Circ Physiol 2009; 297: H540-549.
-
(2009)
Am J Physiol Heart Circ Physiol
, vol.297
, pp. H540-549
-
-
Tsai, S.1
Hollenbeck, S.T.2
Ryer, E.J.3
Edlin, R.4
Yamanouchi, D.5
Kundi, R.6
-
24
-
-
0032582808
-
Differentiated phenotype of smooth muscle cells depends on signaling pathways through insulin-like growth factors and phosphatidylinositol 3-kinase
-
Hayashi K, Saga H, Chimori Y, Kimura K, Yamanaka Y, Sobue K. Differentiated phenotype of smooth muscle cells depends on signaling pathways through insulin-like growth factors and phosphatidylinositol 3-kinase. J Biol Chem 1998; 273: 28860-7.
-
(1998)
J Biol Chem
, vol.273
, pp. 28860-28867
-
-
Hayashi, K.1
Saga, H.2
Chimori, Y.3
Kimura, K.4
Yamanaka, Y.5
Sobue, K.6
-
25
-
-
0025963130
-
Protein kinase c activation allows pulmonary artery smooth muscle cells to proliferate to hypoxia
-
Dempsey EC, McMurtry IF, O'Brien RF. Protein kinase c activation allows pulmonary artery smooth muscle cells to proliferate to hypoxia. Am J Physiol 1991; 260: L136-145.
-
(1991)
Am J Physiol
, vol.260
, pp. L136-145
-
-
Dempsey, E.C.1
McMurtry, I.F.2
O'Brien, R.F.3
-
26
-
-
0031054412
-
Interdependence between muscle differentiation and cell-cycle control
-
Maione R, Amati P. Interdependence between muscle differentiation and cell-cycle control. Biochim Biophys Acta 1997; 1332: M19-30.
-
(1997)
Biochim Biophys Acta
, vol.1332
, pp. M19-30
-
-
Maione, R.1
Amati, P.2
-
27
-
-
0030829722
-
Cell cycle exit upon myogenic differentiation
-
Walsh K, Perlman H. Cell cycle exit upon myogenic differentiation. Curr Opin Genet Dev 1997; 7: 597-602.
-
(1997)
Curr Opin Genet Dev
, vol.7
, pp. 597-602
-
-
Walsh, K.1
Perlman, H.2
-
28
-
-
0027499329
-
Mechanisms of inhibition by heparin of vascular smooth muscle cell proliferation and migration
-
Au YP, Kenagy RD, Clowes MM, Clowes AW. Mechanisms of inhibition by heparin of vascular smooth muscle cell proliferation and migration. Haemostasis 1993; 23 (S1): 177-182.
-
(1993)
Haemostasis
, vol.23
, Issue.S1
, pp. 177-182
-
-
Au, Y.P.1
Kenagy, R.D.2
Clowes, M.M.3
Clowes, A.W.4
-
29
-
-
0024340202
-
Heparin, heparan sulfate, smooth muscle cells, and atherosclerosis
-
Karnovsky MJ, Wright TC, Jr., Castellot JJ, Jr., Choay J, Lormeau JC, Petitou M. Heparin, heparan sulfate, smooth muscle cells, and atherosclerosis. Ann N Y Acad Sci 1989; 556: 268-81.
-
(1989)
Ann N Y Acad Sci
, vol.556
, pp. 268-281
-
-
Karnovsky, M.J.1
Wright Jr, T.C.2
Castellot Jr, J.J.3
Choay, J.4
Lormeau, J.C.5
Petitou, M.6
-
30
-
-
0028170451
-
Proliferative activity and alpha-smooth muscle actin expression in cultured rat aortic smooth muscle cells are differently modulated by transforming growth factor-beta 1 and heparin
-
Orlandi A, Ropraz P, Gabbiani G. Proliferative activity and alpha-smooth muscle actin expression in cultured rat aortic smooth muscle cells are differently modulated by transforming growth factor-beta 1 and heparin. Exp Cell Res 1994; 214: 528-36.
-
(1994)
Exp Cell Res
, vol.214
, pp. 528-536
-
-
Orlandi, A.1
Ropraz, P.2
Gabbiani, G.3
-
31
-
-
0028063933
-
Developmentally timed expression of an embryonic growth phenotype in vascular smooth muscle cells
-
Cook CL, Weiser MC, Schwartz PE, Jones CL, Majack RA. Developmentally timed expression of an embryonic growth phenotype in vascular smooth muscle cells. Circ Res 1994; 74: 189-96.
-
(1994)
Circ Res
, vol.74
, pp. 189-196
-
-
Cook, C.L.1
Weiser, M.C.2
Schwartz, P.E.3
Jones, C.L.4
Majack, R.A.5
-
32
-
-
0003470455
-
Proliferation and differentiation of smooth muscle cell precursors occurs simultaneously during the development of the vessel wall
-
Lee SH, Hungerford JE, Little CD, Iruela-Arispe ML. Proliferation and differentiation of smooth muscle cell precursors occurs simultaneously during the development of the vessel wall. Dev Dyn 1997; 209: 342-52.
-
(1997)
Dev Dyn
, vol.209
, pp. 342-352
-
-
Lee, S.H.1
Hungerford, J.E.2
Little, C.D.3
Iruela-Arispe, M.L.4
-
33
-
-
0036566328
-
Inactivation of cdc7 kinase in mouse es cells results in s-phase arrest and p53-dependent cell death
-
Kim JM, Nakao K, Nakamura K, Saito I, Katsuki M, Arai K, et al. Inactivation of cdc7 kinase in mouse es cells results in s-phase arrest and p53-dependent cell death. EMBO J 2002; 21: 2168-79.
-
(2002)
EMBO J
, vol.21
, pp. 2168-2179
-
-
Kim, J.M.1
Nakao, K.2
Nakamura, K.3
Saito, I.4
Katsuki, M.5
Arai, K.6
-
34
-
-
65249189337
-
Cdc7 kinase is a predictor of survival and a novel therapeutic target in epithelial ovarian carcinoma
-
Kulkarni AA, Kingsbury SR, Tudzarova S, Hong HK, Loddo M, Rashid M, et al. Cdc7 kinase is a predictor of survival and a novel therapeutic target in epithelial ovarian carcinoma. Clin Cancer Res 2009; 15: 2417-25.
-
(2009)
Clin Cancer Res
, vol.15
, pp. 2417-2425
-
-
Kulkarni, A.A.1
Kingsbury, S.R.2
Tudzarova, S.3
Hong, H.K.4
Loddo, M.5
Rashid, M.6
-
35
-
-
4944256913
-
Cdc7 inhibition reveals a p53-dependent replication checkpoint that is defective in cancer cells
-
Montagnoli A, Tenca P, Sola F, Carpani D, Brotherton D, Albanese C, et al. Cdc7 inhibition reveals a p53-dependent replication checkpoint that is defective in cancer cells. Cancer Res 2004; 64: 7110-6.
-
(2004)
Cancer Res
, vol.64
, pp. 7110-7116
-
-
Montagnoli, A.1
Tenca, P.2
Sola, F.3
Carpani, D.4
Brotherton, D.5
Albanese, C.6
-
36
-
-
0032574671
-
A human homolog of the yeast cdc7 gene is overexpressed in some tumors and transformed cell lines
-
Hess GF, Drong RF, Weiland KL, Slightom JL, Sclafani RA, Hollingsworth RE. A human homolog of the yeast cdc7 gene is overexpressed in some tumors and transformed cell lines. Gene 1998; 211: 133-40.
-
(1998)
Gene
, vol.211
, pp. 133-140
-
-
Hess, G.F.1
Drong, R.F.2
Weiland, K.L.3
Slightom, J.L.4
Sclafani, R.A.5
Hollingsworth, R.E.6
-
37
-
-
0033472743
-
Cdc7 kinase complex as a molecular switch for DNA replication
-
Masai H, Sato N, Takeda T, Arai K. Cdc7 kinase complex as a molecular switch for DNA replication. Front Biosci 1999; 4: D834-840.
-
(1999)
Front Biosci
, vol.4
, pp. D834-840
-
-
Masai, H.1
Sato, N.2
Takeda, T.3
Arai, K.4
-
39
-
-
0027192941
-
Cell cycle regulation of the yeast cdc7 protein kinase by association with the dbf4 protein
-
Jackson AL, Pahl PM, Harrison K, Rosamond J, Sclafani RA. Cell cycle regulation of the yeast cdc7 protein kinase by association with the dbf4 protein. Mol Cell Biol 1993; 13: 2899-908.
-
(1993)
Mol Cell Biol
, vol.13
, pp. 2899-2908
-
-
Jackson, A.L.1
Pahl, P.M.2
Harrison, K.3
Rosamond, J.4
Sclafani, R.A.5
-
40
-
-
0015847513
-
Genetic control of the cell division cycle in yeast: V Genetic analysis of cdc mutants
-
Hartwell LH, Mortimer RK, Culotti J, Culotti M. Genetic control of the cell division cycle in yeast: V. Genetic analysis of cdc mutants. Genetics 1973; 74: 267-86.
-
(1973)
Genetics
, vol.74
, pp. 267-286
-
-
Hartwell, L.H.1
Mortimer, R.K.2
Culotti, J.3
Culotti, M.4
-
41
-
-
0024441048
-
Initiation of eukaryotic DNA replication in vitro
-
Stillman B. Initiation of eukaryotic DNA replication in vitro. Annu Rev Cell Biol 1989; 5: 197-245.
-
(1989)
Annu Rev Cell Biol
, vol.5
, pp. 197-245
-
-
Stillman, B.1
-
42
-
-
0025835604
-
Cdc7 protein kinase activity is required for mitosis and meiosis in saccharomyces cerevisiae
-
Buck V, White A, Rosamond J. Cdc7 protein kinase activity is required for mitosis and meiosis in saccharomyces cerevisiae. Mol Gen Genet 1991;227: 452-7.
-
(1991)
Mol Gen Genet
, vol.227
, pp. 452-457
-
-
Buck, V.1
White, A.2
Rosamond, J.3
-
43
-
-
0030925249
-
Analyses of saccharomyces cerevisiae cdc7 kinase point mutants: Dominant-negative inhibition of DNA replication on overexpression of kinase-negative cdc7 proteins
-
Ohtoshi A, Miyake T, Arai K, Masai H. Analyses of saccharomyces cerevisiae cdc7 kinase point mutants: Dominant-negative inhibition of DNA replication on overexpression of kinase-negative cdc7 proteins. Mol Gen Genet 1997; 254: 562-70.
-
(1997)
Mol Gen Genet
, vol.254
, pp. 562-570
-
-
Ohtoshi, A.1
Miyake, T.2
Arai, K.3
Masai, H.4
-
44
-
-
0034666016
-
Human cdc7-related kinase complex In vitro phosphorylation of mcm by concerted actions of cdks and cdc7 and that of a criticial threonine residue of cdc7 by cdks
-
Masai H, Matsui E, You Z, Ishimi Y, Tamai K, Arai K. Human cdc7-related kinase complex. In vitro phosphorylation of mcm by concerted actions of cdks and cdc7 and that of a criticial threonine residue of cdc7 by cdks. J Biol Chem 2000; 275: 29042-52.
-
(2000)
J Biol Chem
, vol.275
, pp. 29042-29052
-
-
Masai, H.1
Matsui, E.2
You, Z.3
Ishimi, Y.4
Tamai, K.5
Arai, K.6
-
45
-
-
0027978640
-
Interaction of dbf4, the cdc7 protein kinase regulatory subunit, with yeast replication origins in vivo
-
Dowell SJ, Romanowski P, Diffley JF. Interaction of dbf4, the cdc7 protein kinase regulatory subunit, with yeast replication origins in vivo. Science 1994; 265: 1243-6.
-
(1994)
Science
, vol.265
, pp. 1243-1246
-
-
Dowell, S.J.1
Romanowski, P.2
Diffley, J.F.3
-
46
-
-
0029810269
-
Cell cycle control of DNA replication
-
Stillman B. Cell cycle control of DNA replication. Science 1996; 274: 1659-64.
-
(1996)
Science
, vol.274
, pp. 1659-1664
-
-
Stillman, B.1
-
47
-
-
0030877320
-
Human and xenopus cdnas encoding budding yeast cdc7-related kinases: In vitro phosphorylation of mcm subunits by a putative human homologue of cdc7
-
Sato N, Arai K, Masai H. Human and xenopus cdnas encoding budding yeast cdc7-related kinases: In vitro phosphorylation of mcm subunits by a putative human homologue of cdc7. EMBO J 1997; 16: 4340-51.
-
(1997)
EMBO J
, vol.16
, pp. 4340-4351
-
-
Sato, N.1
Arai, K.2
Masai, H.3
-
48
-
-
0032555483
-
Purification of hsk1, a minichromosome maintenance protein kinase from fission yeast
-
Brown GW, Kelly TJ. Purification of hsk1, a minichromosome maintenance protein kinase from fission yeast. J Biol Chem 1998; 273: 22083-90.
-
(1998)
J Biol Chem
, vol.273
, pp. 22083-22090
-
-
Brown, G.W.1
Kelly, T.J.2
-
49
-
-
0032814213
-
A fission yeast gene, him1(+)/dfp1(+), encoding a regulatory subunit for hsk1 kinase, plays essential roles in s-phase initiation as well as in s-phase checkpoint control and recovery from DNA damage
-
Takeda T, Ogino K, Matsui E, Cho MK, Kumagai H, Miyake T, et al. A fission yeast gene, him1(+)/dfp1(+), encoding a regulatory subunit for hsk1 kinase, plays essential roles in s-phase initiation as well as in s-phase checkpoint control and recovery from DNA damage. Mol Cell Biol 1999; 19: 5535-47.
-
(1999)
Mol Cell Biol
, vol.19
, pp. 5535-5547
-
-
Takeda, T.1
Ogino, K.2
Matsui, E.3
Cho, M.K.4
Kumagai, H.5
Miyake, T.6
-
50
-
-
0031435940
-
Mcm2 is a target of regulation by cdc7-dbf4 during the initiation of DNA synthesis
-
Lei M, Kawasaki Y, Young MR, Kihara M, Sugino A, Tye BK. Mcm2 is a target of regulation by cdc7-dbf4 during the initiation of DNA synthesis. Genes Dev 1997; 11: 3365-74.
-
(1997)
Genes Dev
, vol.11
, pp. 3365-3374
-
-
Lei, M.1
Kawasaki, Y.2
Young, M.R.3
Kihara, M.4
Sugino, A.5
Tye, B.K.6
-
51
-
-
70350371630
-
Dbf4-cdc7 phosphorylation of mcm2 is required for cell growth
-
Bruck I, Kaplan D. Dbf4-cdc7 phosphorylation of mcm2 is required for cell growth. J Biol Chem 2009; 284: 28823-31.
-
(2009)
J Biol Chem
, vol.284
, pp. 28823-28831
-
-
Bruck, I.1
Kaplan, D.2
-
52
-
-
0034634576
-
Characterization of the yeast cdc7p/ dbf4p complex purified from insect cells Its protein kinase activity is regulated by rad53p
-
Kihara M, Nakai W, Asano S, Suzuki A, Kitada K, Kawasaki Y, et al. Characterization of the yeast cdc7p/ dbf4p complex purified from insect cells. Its protein kinase activity is regulated by rad53p. J Biol Chem 2000; 275: 35051-62.
-
(2000)
J Biol Chem
, vol.275
, pp. 35051-35062
-
-
Kihara, M.1
Nakai, W.2
Asano, S.3
Suzuki, A.4
Kitada, K.5
Kawasaki, Y.6
-
53
-
-
0031006539
-
Mcm5/cdc46-bob1 bypasses the requirement for the s phase activator cdc7p
-
Hardy CF, Dryga O, Seematter S, Pahl PM, Sclafani RA. Mcm5/cdc46-bob1 bypasses the requirement for the s phase activator cdc7p. Proc Natl Acad Sci U S A 1997; 94: 3151-5.
-
(1997)
Proc Natl Acad Sci U S A
, vol.94
, pp. 3151-3155
-
-
Hardy, C.F.1
Dryga, O.2
Seematter, S.3
Pahl, P.M.4
Sclafani, R.A.5
-
54
-
-
0037336323
-
The structure and function of mcm from archaeal m Thermoautotrophicum
-
Fletcher RJ, Bishop BE, Leon RP, Sclafani RA, Ogata CM, Chen XS. The structure and function of mcm from archaeal m. Thermoautotrophicum. Nat Struct Biol 2003; 10: 160-7.
-
(2003)
Nat Struct Biol
, vol.10
, pp. 160-167
-
-
Fletcher, R.J.1
Bishop, B.E.2
Leon, R.P.3
Sclafani, R.A.4
Ogata, C.M.5
Chen, X.S.6
-
55
-
-
0034949629
-
DNA replication licensing and human cell proliferation
-
Stoeber K, Tlsty TD, Happerfield L, Thomas GA, Romanov S, Bobrow L, et al. DNA replication licensing and human cell proliferation. J Cell Sci 2001; 114: 2027-41.
-
(2001)
J Cell Sci
, vol.114
, pp. 2027-2041
-
-
Stoeber, K.1
Tlsty, T.D.2
Happerfield, L.3
Thomas, G.A.4
Romanov, S.5
Bobrow, L.6
-
56
-
-
0042197119
-
Single-strand DNA gaps trigger an atr- and cdc7-dependent checkpoint
-
Costanzo V, Gautier J. Single-strand DNA gaps trigger an atr- and cdc7-dependent checkpoint. Cell Cycle 2003; 2: 17.
-
(2003)
Cell Cycle
, vol.2
, pp. 17
-
-
Costanzo, V.1
Gautier, J.2
-
57
-
-
0027492461
-
Thrombin stimulates proliferation of cultured rat aortic smooth muscle cells by a proteolytically activated receptor
-
McNamara CA, Sarembock IJ, Gimple LW, Fenton JW, 2nd, Coughlin SR, Owens GK. Thrombin stimulates proliferation of cultured rat aortic smooth muscle cells by a proteolytically activated receptor. J Clin Invest 1993; 91: 94-8.
-
(1993)
J Clin Invest
, vol.91
, pp. 94-98
-
-
McNamara, C.A.1
Sarembock, I.J.2
Gimple, L.W.3
Fenton II, J.W.4
Coughlin, S.R.5
Owens, G.K.6
-
58
-
-
84863128000
-
Cell division cycle 7 is a novel regulator of transforming growth factor-beta-induced smooth muscle cell differentiation
-
Shi N, Xie WB, Chen SY. Cell division cycle 7 is a novel regulator of transforming growth factor-beta-induced smooth muscle cell differentiation. J Biol Chem 2012; 287: 6860-7.
-
(2012)
J Biol Chem
, vol.287
, pp. 6860-6867
-
-
Shi, N.1
Xie, W.B.2
Chen, S.Y.3
-
59
-
-
0025806760
-
The cdc7 protein of saccharomyces cerevisiae is a phosphoprotein that contains protein kinase activity
-
Yoon HJ, Campbell JL. The cdc7 protein of saccharomyces cerevisiae is a phosphoprotein that contains protein kinase activity. Proc Natl Acad Sci U S A 1991; 88: 3574-8.
-
(1991)
Proc Natl Acad Sci U S A
, vol.88
, pp. 3574-3578
-
-
Yoon, H.J.1
Campbell, J.L.2
-
60
-
-
0027479493
-
Regulation of saccharomyces cerevisiae cdc7 function during the cell cycle
-
Yoon HJ, Loo S, Campbell JL. Regulation of saccharomyces cerevisiae cdc7 function during the cell cycle. Mol Biol Cell 1993; 4: 195-208.
-
(1993)
Mol Biol Cell
, vol.4
, pp. 195-208
-
-
Yoon, H.J.1
Loo, S.2
Campbell, J.L.3
-
61
-
-
55449084143
-
Cdc7-dbf4 regulates ndt80 transcription as well as reductional segregation during budding yeast meiosis
-
Lo HC, Wan L, Rosebrock A, Futcher B, Hollingsworth NM. Cdc7-dbf4 regulates ndt80 transcription as well as reductional segregation during budding yeast meiosis. Mol Biol Cell 2008; 19: 4956-67.
-
(2008)
Mol Biol Cell
, vol.19
, pp. 4956-4967
-
-
Lo, H.C.1
Wan, L.2
Rosebrock, A.3
Futcher, B.4
Hollingsworth, N.M.5
-
62
-
-
84863011469
-
Cdc7-dbf4 is a gene-specific regulator of meiotic transcription in yeast
-
Lo HC, Kunz RC, Chen X, Marullo A, Gygi SP, Hollingsworth NM. Cdc7-dbf4 is a gene-specific regulator of meiotic transcription in yeast. Mol Cell Biol 2012; 32: 541-57.
-
(2012)
Mol Cell Biol
, vol.32
, pp. 541-557
-
-
Lo, H.C.1
Kunz, R.C.2
Chen, X.3
Marullo, A.4
Gygi, S.P.5
Hollingsworth, N.M.6
-
63
-
-
33747195353
-
Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors
-
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126: 663-76.
-
(2006)
Cell
, vol.126
, pp. 663-676
-
-
Takahashi, K.1
Yamanaka, S.2
-
64
-
-
38049187707
-
Reprogramming of human somatic cells to pluripotency with defined factors
-
Park IH, Zhao R, West JA, Yabuuchi A, Huo H, Ince TA, et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature 2008; 451: 141-6.
-
(2008)
Nature
, vol.451
, pp. 141-146
-
-
Park, I.H.1
Zhao, R.2
West, J.A.3
Yabuuchi, A.4
Huo, H.5
Ince, T.A.6
-
65
-
-
15744367559
-
Kruppel-like factor 4 abrogates myocardin-induced activation of smooth muscle gene expression
-
Liu Y, Sinha S, McDonald OG, Shang Y, Hoofnagle MH, Owens GK. Kruppel-like factor 4 abrogates myocardin-induced activation of smooth muscle gene expression. J Biol Chem 2005; 280: 9719-27.
-
(2005)
J Biol Chem
, vol.280
, pp. 9719-9727
-
-
Liu, Y.1
Sinha, S.2
McDonald, O.G.3
Shang, Y.4
Hoofnagle, M.H.5
Owens, G.K.6
-
66
-
-
35448965633
-
Oxidized phospholipids induce phenotypic switching of vascular smooth muscle cells in vivo and in vitro
-
Pidkovka NA, Cherepanova OA, Yoshida T, Alexander MR, Deaton RA, Thomas JA, et al. Oxidized phospholipids induce phenotypic switching of vascular smooth muscle cells in vivo and in vitro. Circ Res 2007; 101: 792-801.
-
(2007)
Circ Res
, vol.101
, pp. 792-801
-
-
Pidkovka, N.A.1
Cherepanova, O.A.2
Yoshida, T.3
Alexander, M.R.4
Deaton, R.A.5
Thomas, J.A.6
-
67
-
-
66249114665
-
Sp1-dependent activation of klf4 is required for pdgf-bb-induced phenotypic modulation of smooth muscle
-
Deaton RA, Gan Q, Owens GK. Sp1-dependent activation of klf4 is required for pdgf-bb-induced phenotypic modulation of smooth muscle. Am J Physiol Heart Circ Physiol 2009; 296: H1027-37.
-
(2009)
Am J Physiol Heart Circ Physiol
, vol.296
, pp. H1027-H1037
-
-
Deaton, R.A.1
Gan, Q.2
Owens, G.K.3
-
68
-
-
8844252229
-
Ag/c element mediates repression of the sm22alpha promoter within phenotypically modulated smooth muscle cells in experimental atherosclerosis
-
Wamhoff BR, Hoofnagle MH, Burns A, Sinha S, Mc-Donald OG, Owens GK. A g/c element mediates repression of the sm22alpha promoter within phenotypically modulated smooth muscle cells in experimental atherosclerosis. Circ Res 2004; 95: 981-8.
-
(2004)
Circ Res
, vol.95
, pp. 981-988
-
-
Wamhoff, B.R.1
Hoofnagle, M.H.2
Burns, A.3
Sinha, S.4
McDonald, O.G.5
Owens, G.K.6
-
69
-
-
48249113711
-
Conditional deletion of kruppel-like factor 4 delays downregulation of smooth muscle cell differentiation markers but accelerates neointimal formation following vascular injury
-
Yoshida T, Kaestner KH, Owens GK. Conditional deletion of kruppel-like factor 4 delays downregulation of smooth muscle cell differentiation markers but accelerates neointimal formation following vascular injury. Circ Res 2008; 102: 1548-57.
-
(2008)
Circ Res
, vol.102
, pp. 1548-1557
-
-
Yoshida, T.1
Kaestner, K.H.2
Owens, G.K.3
-
70
-
-
31044442783
-
Control of srf binding to carg box chromatin regulates smooth muscle gene expression in vivo
-
McDonald OG, Wamhoff BR, Hoofnagle MH, Owens GK. Control of srf binding to carg box chromatin regulates smooth muscle gene expression in vivo. J Clin Invest 2006; 116: 36-48.
-
(2006)
J Clin Invest
, vol.116
, pp. 36-48
-
-
McDonald, O.G.1
Wamhoff, B.R.2
Hoofnagle, M.H.3
Owens, G.K.4
-
71
-
-
48249084551
-
Kruppel-like factor 4 Transcriptional regulator of proliferation, or inflammation, or differentiation, or all three?
-
Autieri MV. Kruppel-like factor 4: Transcriptional regulator of proliferation, or inflammation, or differentiation, or all three? Circ Res 2008; 102: 1455-7
-
(2008)
Circ Res
, vol.102
, pp. 1455-1457
-
-
Autieri, M.V.1
|