메뉴 건너뛰기




Volumn 9, Issue 11, 2014, Pages

A novel hybrid classification model of genetic algorithms, modified k-nearest neighbor and developed backpropagation neural network

Author keywords

[No Author keywords available]

Indexed keywords

ACCURACY; ARTICLE; ARTIFICIAL NEURAL NETWORK; CLASSIFICATION ALGORITHM; CLASSIFIER; EXPERIMENTAL STUDY; FRIEDMAN TEST; GENETIC ALGORITHM; GENETIC DATABASE; INTERMETHOD COMPARISON; K NEAREST NEIGHBOR; MEDICAL TECHNOLOGY; POPULATION GENETICS; POST HOC ANALYSIS; STANDARDIZATION; STATISTICAL ANALYSIS; STATISTICAL MODEL; STATISTICAL PARAMETERS; ALGORITHM; BREAST TUMOR; CARDIOLOGY; CLASSIFICATION; CLUSTER ANALYSIS; DIABETES MELLITUS; HUMAN; PATHOLOGY; PROCEDURES; REPRODUCIBILITY; THEORETICAL MODEL;

EID: 84913529070     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0112987     Document Type: Article
Times cited : (38)

References (64)
  • 2
    • 61749090884 scopus 로고    scopus 로고
    • Distance metric learning for large margin nearest neighbor classification
    • Weinberger KQ, Saul LK (2009) Distance metric learning for large margin nearest neighbor classification. The Journal of Machine Learning Research 10: 207-244.
    • (2009) The Journal of Machine Learning Research , vol.10 , pp. 207-244
    • Weinberger, K.Q.1    Saul, L.K.2
  • 3
    • 42349093612 scopus 로고    scopus 로고
    • Hierarchical K-Nearest neighbor classification using feature and observation space information
    • Kubota R, Uchino E, Suetake N (2008) Hierarchical K-Nearest neighbor classification using feature and observation space information. IEICE Electronics Express 5: 114-119.
    • (2008) IEICE Electronics Express , vol.5 , pp. 114-119
    • Kubota, R.1    Uchino, E.2    Suetake, N.3
  • 4
    • 60549106664 scopus 로고    scopus 로고
    • Nonparametric classification based on local mean and class statistics
    • Zeng Y, Yang Y, Zhao L (2009) Nonparametric classification based on local mean and class statistics. Expert Systems with Applications 36: 8443-8448.
    • (2009) Expert Systems with Applications , vol.36 , pp. 8443-8448
    • Zeng, Y.1    Yang, Y.2    Zhao, L.3
  • 6
    • 0037233261 scopus 로고    scopus 로고
    • Classification of heart sounds using an artificial neural network
    • Olmez T, Dokur Z (2003) Classification of heart sounds using an artificial neural network. Pattern Recognition Letters 24: 617-629.
    • (2003) Pattern Recognition Letters , vol.24 , pp. 617-629
    • Olmez, T.1    Dokur, Z.2
  • 7
    • 0037209480 scopus 로고    scopus 로고
    • Classification of heart rate data using artificial neural network and fuzzy equivalence relation
    • Rajendra AU, Subbanna BP, Iyengar SS, Rao A, Dua S (2003) Classification of heart rate data using artificial neural network and fuzzy equivalence relation. Pattern Recognition 36: 61-68.
    • (2003) Pattern Recognition , vol.36 , pp. 61-68
    • Rajendra, A.U.1    Subbanna, B.P.2    Iyengar, S.S.3    Rao, A.4    Dua, S.5
  • 8
    • 33751402587 scopus 로고    scopus 로고
    • Constructing of the risk classification model of cervical cancer by artificial neural network
    • Qiu X, Tao N, Tan Y, Wu X (2007) Constructing of the risk classification model of cervical cancer by artificial neural network. Expert Systems with Applications 32: 1094-1099.
    • (2007) Expert Systems with Applications , vol.32 , pp. 1094-1099
    • Qiu, X.1    Tao, N.2    Tan, Y.3    Wu, X.4
  • 11
    • 0037143979 scopus 로고    scopus 로고
    • The merging of neural networks, fuzzy logic, and genetic algorithms
    • Shapiro A (2002) The merging of neural networks, fuzzy logic, and genetic algorithms. Insurance: Mathematics and Economics 31: 115-131.
    • (2002) Insurance: Mathematics and Economics , vol.31 , pp. 115-131
    • Shapiro, A.1
  • 12
    • 34248545091 scopus 로고    scopus 로고
    • A hybrid classification method using error pattern modeling
    • Hur J, Kim JW (2008) A hybrid classification method using error pattern modeling. Expert Systems with Applications 34: 231-241.
    • (2008) Expert Systems with Applications , vol.34 , pp. 231-241
    • Hur, J.1    Kim, J.W.2
  • 13
    • 58549107351 scopus 로고    scopus 로고
    • Simultaneous cancer classification and gene selection with bayesian nearest neighbor method: An integrated approach
    • Chakraborty S (2009) Simultaneous cancer classification and gene selection with bayesian nearest neighbor method: an integrated approach. Computational Statistics & Data Analysis 53: 1462-1474.
    • (2009) Computational Statistics & Data Analysis , vol.53 , pp. 1462-1474
    • Chakraborty, S.1
  • 14
    • 0033722932 scopus 로고    scopus 로고
    • A hybrid genetic fuzzy neural network algorithm designed for classification problems involving several groups
    • Ostermark R (2000) A hybrid genetic fuzzy neural network algorithm designed for classification problems involving several groups. Fuzzy Sets and Systems 114: 311-324.
    • (2000) Fuzzy Sets and Systems , vol.114 , pp. 311-324
    • Ostermark, R.1
  • 15
    • 77950189563 scopus 로고    scopus 로고
    • A hybrid classification method of K nearest neighbor, bayesian methods and genetic algorithm
    • Aci M, Inan C, Avci M (2010) A hybrid classification method of K nearest neighbor, bayesian methods and genetic algorithm. Expert Systems with Applications 37: 5061-5067.
    • (2010) Expert Systems with Applications , vol.37 , pp. 5061-5067
    • Aci, M.1    Inan, C.2    Avci, M.3
  • 16
    • 39049162430 scopus 로고    scopus 로고
    • A new hybrid artificial neural networks and fuzzy regression model for time series forecasting
    • Khashei M, Reza Hejazi S, Bijari M (2008) A new hybrid artificial neural networks and fuzzy regression model for time series forecasting. Fuzzy Sets and Systems 159: 769-786.
    • (2008) Fuzzy Sets and Systems , vol.159 , pp. 769-786
    • Khashei, M.1    Reza Hejazi, S.2    Bijari, M.3
  • 17
    • 84890117327 scopus 로고    scopus 로고
    • A hybrid intelligent system for medical data classification
    • Seera M, Lim CP (2014) A hybrid intelligent system for medical data classification. Expert Systems with Applications 41: 2239-2249.
    • (2014) Expert Systems with Applications , vol.41 , pp. 2239-2249
    • Seera, M.1    Lim, C.P.2
  • 18
    • 84888293910 scopus 로고    scopus 로고
    • Hybrid intelligent modeling schemes for heart disease classification
    • Shao YE, Hou C-D, Chiu C-C (2014) Hybrid intelligent modeling schemes for heart disease classification. Applied Soft Computing 14: 47-52.
    • (2014) Applied Soft Computing , vol.14 , pp. 47-52
    • Shao, Y.E.1    Hou, C.-D.2    Chiu, C.-C.3
  • 19
    • 84889686436 scopus 로고    scopus 로고
    • Robust support vector machine-trained fuzzy system
    • Forghani Y, Yazdi HS (2014) Robust support vector machine-trained fuzzy system. Neural Networks 50: 154-165.
    • (2014) Neural Networks , vol.50 , pp. 154-165
    • Forghani, Y.1    Yazdi, H.S.2
  • 20
    • 44449124996 scopus 로고    scopus 로고
    • RotBoost: A technique for combining Rotation Forest and AdaBoost
    • Zhang C, Zhang J (2008) RotBoost: A technique for combining Rotation Forest and AdaBoost. Pattern recognition letters 29: 1524-1536.
    • (2008) Pattern Recognition Letters , vol.29 , pp. 1524-1536
    • Zhang, C.1    Zhang, J.2
  • 25
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by back-propagating errors. Nature 323: 533-536.
    • (1986) Nature , vol.323 , pp. 533-536
    • De Rumelhart1    Hinton, G.E.2    Williams, R.J.3
  • 32
    • 84875093181 scopus 로고    scopus 로고
    • A comparison of the spatial linear model to nearest neighbor (K-NN) methods for forestry applications
    • Ver Hoef J, Temesgen H (2013) A comparison of the spatial linear model to nearest neighbor (K-NN) methods for forestry applications. PLoS ONE 8: e59129.
    • (2013) PLoS ONE , vol.8 , pp. e59129
    • Ver Hoef, J.1    Temesgen, H.2
  • 35
    • 84913535709 scopus 로고    scopus 로고
    • Effective hand gesture classification approaches
    • Springer Singapore
    • Premaratne P (2014) Effective hand gesture classification approaches. Human Computer Interaction Using Hand Gestures: Springer Singapore. pp. 105-143.
    • (2014) Human Computer Interaction Using Hand Gestures , pp. 105-143
    • Premaratne, P.1
  • 38
    • 84895827060 scopus 로고    scopus 로고
    • Combining pet images and neuropsychological test data for automatic diagnosis of alzheimer's disease
    • Segovia F, Bastin C, Salmon E, Górriz J, Ramírez J, et al. (2014) Combining pet images and neuropsychological test data for automatic diagnosis of alzheimer's disease. PLoS ONE 9: e88687.
    • (2014) PLoS ONE , vol.9 , pp. e88687
    • Segovia, F.1    Bastin, C.2    Salmon, E.3    Górriz, J.4    Ramírez, J.5
  • 41
    • 80053576823 scopus 로고    scopus 로고
    • A genetic algorithm for optimized feature selection with resource constraints in software product lines
    • Guo J, White J, Wang G, Li J, Wang Y (2011) A genetic algorithm for optimized feature selection with resource constraints in software product lines. Journal of Systems and Software 84: 2208-2221.
    • (2011) Journal of Systems and Software , vol.84 , pp. 2208-2221
    • Guo, J.1    White, J.2    Wang, G.3    Li, J.4    Wang, Y.5
  • 42
    • 84913558783 scopus 로고    scopus 로고
    • Estimating and comparing classifiers
    • New York: Springer
    • Dougherty G (2013) Estimating and comparing classifiers. Pattern Recognition and Classification. New York: Springer pp. 157-176.
    • (2013) Pattern Recognition and Classification , pp. 157-176
    • Dougherty, G.1
  • 43
    • 76649101119 scopus 로고    scopus 로고
    • Optimal classifier selection and negative bias in error rate estimation: An empirical study on high-dimensional prediction
    • Boulesteix AL, Strobl C (2009) Optimal classifier selection and negative bias in error rate estimation: an empirical study on high-dimensional prediction. BMC medical research methodology 9: 85.
    • (2009) BMC Medical Research Methodology , vol.9 , pp. 85
    • Boulesteix, A.L.1    Strobl, C.2
  • 44
    • 77955381133 scopus 로고    scopus 로고
    • Measuring the prediction error. A comparison of cross-validation, bootstrap and covariance penalty methods
    • Borra S, Di Ciaccio A (2010) Measuring the prediction error. A comparison of cross-validation, bootstrap and covariance penalty methods. Computational Statistics & Data Analysis 54: 2976-2989.
    • (2010) Computational Statistics & Data Analysis , vol.54 , pp. 2976-2989
    • Borra, S.1    Di Ciaccio, A.2
  • 46
    • 73349136777 scopus 로고    scopus 로고
    • Evaluation measures of the classification performance of imbalanced data sets
    • Springer
    • Gu Q, Zhu L, Cai Z (2009) Evaluation measures of the classification performance of imbalanced data sets. Computational Intelligence and Intelligent Systems: Springer. pp. 461-471.
    • (2009) Computational Intelligence and Intelligent Systems , pp. 461-471
    • Gu, Q.1    Zhu, L.2    Cai, Z.3
  • 47
    • 37649025659 scopus 로고    scopus 로고
    • Application of irregular and unbalanced data to predict diabetic nephropathy using visualization and feature selection methods
    • Cho BH, Yu H, Kim K, Kim T, Kim I, et al. (2008) Application of irregular and unbalanced data to predict diabetic nephropathy using visualization and feature selection methods. Artificial Intelligence in Medicine 42: 37-53.
    • (2008) Artificial Intelligence in Medicine , vol.42 , pp. 37-53
    • Cho, B.H.1    Yu, H.2    Kim, K.3    Kim, T.4    Kim, I.5
  • 49
    • 0033931867 scopus 로고    scopus 로고
    • Assessing the accuracy of prediction algorithms for classification: An overview
    • Baldi P, Brunak S, Chauvin Y, Andersen C, Nielsen H (2000) Assessing the accuracy of prediction algorithms for classification: an overview. Bioinformatics 16: 412-424.
    • (2000) Bioinformatics , vol.16 , pp. 412-424
    • Baldi, P.1    Brunak, S.2    Chauvin, Y.3    Andersen, C.4    Nielsen, H.5
  • 50
    • 65649138430 scopus 로고    scopus 로고
    • A systematic analysis of performance measures for classification tasks
    • Sokolova M, Lapalme G (2009) A systematic analysis of performance measures for classification tasks. Information Processing & Management 45: 427-437.
    • (2009) Information Processing & Management , vol.45 , pp. 427-437
    • Sokolova, M.1    Lapalme, G.2
  • 51
    • 84864668842 scopus 로고    scopus 로고
    • A comparison of MCC and CEN error measures in multi-class prediction
    • Jurman G, Riccadonna S, Furlanello C (2012) A comparison of MCC and CEN error measures in multi-class prediction. PLoS ONE 7: e41882.
    • (2012) PLoS ONE , vol.7 , pp. e41882
    • Jurman, G.1    Riccadonna, S.2    Furlanello, C.3
  • 52
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to ROC analysis
    • Fawcett T (2006) An introduction to ROC analysis. Pattern recognition letters 27: 861-874.
    • (2006) Pattern Recognition Letters , vol.27 , pp. 861-874
    • Fawcett, T.1
  • 53
    • 9544250384 scopus 로고    scopus 로고
    • Comparing two K-category assignments by a K-Category correlation coefficient
    • Gorodkin J (2004) Comparing two K-category assignments by a K-Category correlation coefficient. Computational Biology and Chemistry 28: 367-374.
    • (2004) Computational Biology and Chemistry , vol.28 , pp. 367-374
    • Gorodkin, J.1
  • 55
    • 79960535211 scopus 로고    scopus 로고
    • A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
    • Derrac J, García S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm and Evolutionary Computation 1: 3-18.
    • (2011) Swarm and Evolutionary Computation , vol.1 , pp. 3-18
    • Derrac, J.1    García, S.2    Molina, D.3    Herrera, F.4
  • 56
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Demsar J (2006) Statistical comparisons of classifiers over multiple data sets. The Journal of Machine Learning Research 7: 1-30.
    • (2006) The Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demsar, J.1
  • 57
    • 64549120231 scopus 로고    scopus 로고
    • On learning the derivatives of an unknown mapping with multilayer feedforward networks
    • García S, Fernández A, Luengo J, Herrera F (2009) On learning the derivatives of an unknown mapping with multilayer feedforward networks. Soft Computing 13: 959-977.
    • (2009) Soft Computing , vol.13 , pp. 959-977
    • García, S.1    Fernández, A.2    Luengo, J.3    Herrera, F.4
  • 59
    • 84860504202 scopus 로고    scopus 로고
    • Power comparisons of shapiro-wilk, kolmogorov-smirnov, lilliefors and anderson-darling tests
    • Razali N, Wah YB (2011) Power comparisons of shapiro-wilk, kolmogorov-smirnov, lilliefors and anderson-darling tests. Journal of Statistical Modeling and Analytics 2: 21-33.
    • (2011) Journal of Statistical Modeling and Analytics , vol.2 , pp. 21-33
    • Razali, N.1    Wah, Y.B.2
  • 60
    • 58149287952 scopus 로고    scopus 로고
    • An extension on" statistical comparisons of classifiers over multiple data sets" for all pairwise comparisons
    • Garcia S, Herrera F (2008) An extension on" statistical comparisons of classifiers over multiple data sets" for all pairwise comparisons. Journal of Machine Learning Research 9.
    • (2008) Journal of Machine Learning Research , vol.9
    • Garcia, S.1    Herrera, F.2
  • 63
    • 33645762226 scopus 로고
    • A sharper bonferroni procedure for multiple tests of significance
    • Hochberg Y (1988) A sharper bonferroni procedure for multiple tests of significance. Biometrika 75: 800-802.
    • (1988) Biometrika , vol.75 , pp. 800-802
    • Hochberg, Y.1
  • 64
    • 0002294347 scopus 로고
    • A simple sequentially rejective multiple test procedure
    • Holm S (1979) A simple sequentially rejective multiple test procedure. Scandinavian journal of statistics: 65-70.
    • (1979) Scandinavian Journal of Statistics , pp. 65-70
    • Holm, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.