메뉴 건너뛰기




Volumn 10, Issue 1, 2013, Pages

Application of pattern recognition tools for classifying acute coronary syndrome: An integrated medical modeling

Author keywords

Acute coronary syndrome; Artificial intelligence; Classification; Clinical decision support systems; Diagnosis

Indexed keywords

ANGINA;

EID: 84884187089     PISSN: None     EISSN: 17424682     Source Type: Journal    
DOI: 10.1186/1742-4682-10-57     Document Type: Review
Times cited : (17)

References (35)
  • 1
    • 72449178378 scopus 로고    scopus 로고
    • Clinical diagnosis of acute coronary syndrome in patients with chest pain and a normal or non-diagnostic electrocardiogram
    • 10.1136/emj.2008.064428 19934131
    • Clinical diagnosis of acute coronary syndrome in patients with chest pain and a normal or non-diagnostic electrocardiogram. Goodacre S, Pett P, Arnold J, Chawla A, Hollingsworth J, Roe D, Crowder S, Mann C, Pitcher D, Brett C, Emerg Med J 2009 26 866 10.1136/emj.2008.064428 19934131
    • (2009) Emerg Med J , vol.26 , pp. 866
    • Goodacre, S.1    Pett, P.2    Arnold, J.3    Chawla, A.4    Hollingsworth, J.5    Roe, D.6    Crowder, S.7    Mann, C.8    Pitcher, D.9    Brett, C.10
  • 2
    • 34247371065 scopus 로고    scopus 로고
    • Evaluation of the Acutely Dyspneic Elderly Patient
    • DOI 10.1016/j.cger.2007.01.007, PII S0749069007000080, Emergencies in the Elderly Patient
    • Evaluation of the acutely dyspneic elderly patient. Torres M, Moayedi S, Clinics in geriatric medicine 2007 23 307 325 10.1016/j.cger.2007.01.007 17462519 (Pubitemid 46629006)
    • (2007) Clinics in Geriatric Medicine , vol.23 , Issue.2 , pp. 307-325
    • Torres, M.1    Moayedi, S.2
  • 3
    • 34247252059 scopus 로고    scopus 로고
    • Evaluation of the Elderly Patient with Acute Chest Pain
    • DOI 10.1016/j.cger.2007.01.005, PII S0749069007000067, Emergencies in the Elderly Patient
    • Evaluation of the elderly patient with acute chest pain. Kelly BS, Clinics in geriatric medicine 2007 23 327 349 10.1016/j.cger.2007.01.005 17462520 (Pubitemid 46617126)
    • (2007) Clinics in Geriatric Medicine , vol.23 , Issue.2 , pp. 327-349
    • Kelly, B.S.1
  • 4
    • 27644463448 scopus 로고    scopus 로고
    • Artificial neural network models for prediction of acute coronary syndromes using clinical data from the time of presentation
    • DOI 10.1016/j.annemergmed.2004.09.012, PII S0196064404014301
    • Artificial neural network models for prediction of acute coronary syndromes using clinical data from the time of presentation. Harrison RF, Kennedy RL, Annals of emergency medicine 2005 46 431 439 10.1016/j.annemergmed. 2004.09.012 16271675 (Pubitemid 41552393)
    • (2005) Annals of Emergency Medicine , vol.46 , Issue.5 , pp. 431-439
    • Harrison, R.F.1    Kennedy, R.L.2
  • 6
    • 84856158305 scopus 로고    scopus 로고
    • ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation the Task Force for the management of acute coronary syndromes (ACS) in patients presenting without persistent ST-segment elevation of the European Society of Cardiology (ESC)
    • 21873419
    • ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation The Task Force for the management of acute coronary syndromes (ACS) in patients presenting without persistent ST-segment elevation of the European Society of Cardiology (ESC). Hamm CW, Bassand J-P, Agewall S, Bax J, Boersma E, Bueno H, Caso P, Dudek D, Gielen S, Huber K, Eur Heart J 2011 32 2999 3054 21873419
    • (2011) Eur Heart J , vol.32 , pp. 2999-3054
    • Hamm, C.W.1    Bassand, J.-P.2    Agewall, S.3    Bax, J.4    Boersma, E.5    Bueno, H.6    Caso, P.7    Dudek, D.8    Gielen, S.9    Huber, K.10
  • 7
    • 57349180665 scopus 로고    scopus 로고
    • In search of the best method to predict acute coronary syndrome using only the electrocardiogram from the emergency department
    • 10.1016/j.jelectrocard.2008.07.010 18804783
    • In search of the best method to predict acute coronary syndrome using only the electrocardiogram from the emergency department. Forberg JL, Green M, Bjork J, Ohlsson M, Edenbrandt L, Ohlin H, Ekelund U, J Electrocardiol 2009 42 58 63 10.1016/j.jelectrocard.2008.07.010 18804783
    • (2009) J Electrocardiol , vol.42 , pp. 58-63
    • Forberg, J.L.1    Green, M.2    Bjork, J.3    Ohlsson, M.4    Edenbrandt, L.5    Ohlin, H.6    Ekelund, U.7
  • 8
    • 58349091028 scopus 로고    scopus 로고
    • A novel approach for classification of ECG arrhythmias: Type-2 fuzzy clustering neural network
    • 10.1016/j.eswa.2008.08.028
    • A novel approach for classification of ECG arrhythmias: type-2 fuzzy clustering neural network. Ceylan R, Özbay Y, Karlik B, Expert Syst Appl 2009 36 6721 6726 10.1016/j.eswa.2008.08.028
    • (2009) Expert Syst Appl , vol.36 , pp. 6721-6726
    • Ceylan, R.1    Özbay, Y.2    Karlik, B.3
  • 9
    • 58249094346 scopus 로고    scopus 로고
    • Exploring new possibilities for case-based explanation of artificial neural network ensembles
    • 10.1016/j.neunet.2008.09.014 19038532
    • Exploring new possibilities for case-based explanation of artificial neural network ensembles. Green M, Ekelund U, Edenbrandt L, Bjork J, Forberg JL, Ohlsson M, Neural Netw 2009 22 75 81 10.1016/j.neunet.2008.09.014 19038532
    • (2009) Neural Netw , vol.22 , pp. 75-81
    • Green, M.1    Ekelund, U.2    Edenbrandt, L.3    Bjork, J.4    Forberg, J.L.5    Ohlsson, M.6
  • 10
    • 79952376028 scopus 로고    scopus 로고
    • Hong Kong: Proceedings of the International MultiConference of Engineers and Computer Scientists
    • Adeli A, Neshat M, A fuzzy expert system for heart disease diagnosis Hong Kong: Proceedings of the International MultiConference of Engineers and Computer Scientists 2010
    • (2010) A Fuzzy Expert System for Heart Disease Diagnosis
    • Adeli, A.1    Neshat, M.2
  • 15
    • 50249131330 scopus 로고    scopus 로고
    • Predicting coronary artery disease using different artificial neural network models
    • 18676299
    • Predicting coronary artery disease using different artificial neural network models. Colak MC, Colak C, Kocaturk H, Sagiroglu S, Barutçu I, Anadolu Kardiyol Derg 2008 8 249 254 18676299
    • (2008) Anadolu Kardiyol Derg , vol.8 , pp. 249-254
    • Colak, M.C.1    Colak, C.2    Kocaturk, H.3    Sagiroglu, S.4    Barutçu, I.5
  • 18
    • 0038759361 scopus 로고    scopus 로고
    • Pattern analysis for machine olfaction: A review
    • DOI 10.1109/JSEN.2002.800688, PII 101109JSEN2002800688
    • Pattern analysis for machine olfaction: a review. Gutierrez-Osuna R, Sensors Journal, IEEE 2002 2 189 202 10.1109/JSEN.2002.800688 (Pubitemid 44362479)
    • (2002) IEEE Sensors Journal , vol.2 , Issue.3 , pp. 189-202
    • Gutierrez-Osuna, R.1
  • 19
    • 0027601884 scopus 로고
    • ANFIS: Adaptive-network-based fuzzy inference system
    • 10.1109/21.256541
    • ANFIS: adaptive-network-based fuzzy inference system. Jang JSR, IEEE Trans Syst Man Cybern 1993 23 665 685 10.1109/21.256541
    • (1993) IEEE Trans Syst Man Cybern , vol.23 , pp. 665-685
    • Jang, J.S.R.1
  • 20
    • 79955621501 scopus 로고    scopus 로고
    • Predicting corporate financial distress based on integration of decision tree classification and logistic regression
    • 10.1016/j.eswa.2011.02.173
    • Predicting corporate financial distress based on integration of decision tree classification and logistic regression. Chen MY, Expert Syst Appl 2011 38 11261 11272 10.1016/j.eswa.2011.02.173
    • (2011) Expert Syst Appl , vol.38 , pp. 11261-11272
    • Chen, M.Y.1
  • 25
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Bagging predictors. Breiman L, Mach Learn 1996 24 123 140 (Pubitemid 126724382)
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 26
    • 3142775061 scopus 로고    scopus 로고
    • On aggregating belief decision trees
    • DOI 10.1016/j.inffus.2004.01.001, PII S1566253504000132
    • On aggregating belief decision trees. Vannoorenberghe P, Information fusion 2004 5 179 188 10.1016/j.inffus.2004.01.001 (Pubitemid 38930718)
    • (2004) Information Fusion , vol.5 , Issue.3 , pp. 179-188
    • Vannoorenberghe, P.1
  • 27
    • 38349046524 scopus 로고    scopus 로고
    • Classification and regression trees, bagging, and boosting
    • Classification and regression trees, bagging, and boosting. Sutton CD, Handbook of Statistics 2005 24 303 329
    • (2005) Handbook of Statistics , vol.24 , pp. 303-329
    • Sutton, C.D.1
  • 29
    • 0036896235 scopus 로고    scopus 로고
    • An experimental study on diversity for bagging and boosting with linear classifiers
    • 10.1016/S1566-2535(02)00093-3
    • An experimental study on diversity for bagging and boosting with linear classifiers. Kuncheva L, Skurichina M, Duin RP, Information fusion 2002 3 245 258 10.1016/S1566-2535(02)00093-3
    • (2002) Information Fusion , vol.3 , pp. 245-258
    • Kuncheva, L.1    Skurichina, M.2    Duin, R.P.3
  • 33
    • 76649101119 scopus 로고    scopus 로고
    • Optimal classifier selection and negative bias in error rate estimation: An empirical study on high-dimensional prediction
    • 10.1186/1471-2288-9-85 20025773
    • Optimal classifier selection and negative bias in error rate estimation: an empirical study on high-dimensional prediction. Boulesteix A-L, Strobl C, BMC medical research methodology 2009 9 85 10.1186/1471-2288-9-85 20025773
    • (2009) BMC Medical Research Methodology , vol.9 , pp. 85
    • Boulesteix, A.-L.1    Strobl, C.2
  • 34
    • 33744921464 scopus 로고    scopus 로고
    • Resampling methods: Concepts, applications, and justification
    • 24051650
    • Resampling methods: concepts, applications, and justification. Yu CH, Practical Assessment, Research & Evaluation 2003 8 1 23 24051650
    • (2003) Practical Assessment, Research & Evaluation , vol.8 , pp. 1-23
    • Yu, C.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.