메뉴 건너뛰기




Volumn 47, Issue 11, 2014, Pages 3656-3664

Multiple kernel clustering based on centered kernel alignment

Author keywords

Centered kernel alignment; Clustering; Data fusion; Multiple kernel learning

Indexed keywords

CLUSTERING ALGORITHMS; OPTIMIZATION;

EID: 84904391527     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2014.05.005     Document Type: Article
Times cited : (104)

References (37)
  • 2
    • 34547965335 scopus 로고    scopus 로고
    • Adaptive dimension reduction using discriminant analysis and k-means clustering
    • Z. Ghahramani (Ed.) ACM, New York, NY, USA
    • C.H.Q. Ding, T. Li, Adaptive dimension reduction using discriminant analysis and k-means clustering, in: Z. Ghahramani (Ed.), Proceedings of the 24th International Conference on Machine Learning, ACM, New York, NY, USA, 2007, pp. 521-528.
    • (2007) Proceedings of the 24th International Conference on Machine Learning , pp. 521-528
    • Ding, C.H.Q.1    Li, T.2
  • 3
    • 79959501613 scopus 로고    scopus 로고
    • Feature selection and kernel learning for local learning-based clustering
    • H. Zeng, and Y.-M. Cheung Feature selection and kernel learning for local learning-based clustering IEEE Trans. Pattern Anal. Mach. Intell. 33 8 2011 1532 1547
    • (2011) IEEE Trans. Pattern Anal. Mach. Intell. , vol.33 , Issue.8 , pp. 1532-1547
    • Zeng, H.1    Cheung, Y.-M.2
  • 4
    • 80055024879 scopus 로고    scopus 로고
    • Minkowski metric, feature weighting and anomalous cluster initializing in k-means clustering
    • R.C. de Amorim, and B. Mirkin Minkowski metric, feature weighting and anomalous cluster initializing in k-means clustering Pattern Recognit. 45 3 2012 1061 1075
    • (2012) Pattern Recognit. , vol.45 , Issue.3 , pp. 1061-1075
    • De Amorim, R.C.1    Mirkin, B.2
  • 6
    • 78149292222 scopus 로고    scopus 로고
    • Clustering complex data with group-dependent feature selection
    • K. Daniilidis, P. Maragos, N. Paragios, Springer-Verlag Berlin, Heidelberg
    • Y.-Y. Lin, T.-L. Liu, and C.-S. Fuh Clustering complex data with group-dependent feature selection K. Daniilidis, P. Maragos, N. Paragios, Proceedings of 11th European Conference on Computer Vision 2010 Springer-Verlag Berlin, Heidelberg 84 97
    • (2010) Proceedings of 11th European Conference on Computer Vision , pp. 84-97
    • Lin, Y.-Y.1    Liu, T.-L.2    Fuh, C.-S.3
  • 14
    • 80052213499 scopus 로고    scopus 로고
    • Multiple kernel learning algorithms
    • JULY
    • M. Gönen, and E. AlpaydIn Multiple kernel learning algorithms J. Mach. Learn. Res. 12 July 2011 2211 2268
    • (2011) J. Mach. Learn. Res. , vol.12 , pp. 2211-2268
    • Gönen, M.1    Alpaydin, E.2
  • 15
    • 85099527243 scopus 로고    scopus 로고
    • An overview of kernel alignment and its applications
    • T. Wang, D. Zhao, and S. Tian An overview of kernel alignment and its applications Artif. Intell. Rev. 2012 1 14
    • (2012) Artif. Intell. Rev. , pp. 1-14
    • Wang, T.1    Zhao, D.2    Tian, S.3
  • 17
    • 84859463794 scopus 로고    scopus 로고
    • Algorithms for learning kernels based on centered alignment
    • MARCH
    • C. Cortes, M. Mohri, and A. Rostamizadeh Algorithms for learning kernels based on centered alignment J. Mach. Learn. Res. 13 March 2012 795 828
    • (2012) J. Mach. Learn. Res. , vol.13 , pp. 795-828
    • Cortes, C.1    Mohri, M.2    Rostamizadeh, A.3
  • 22
    • 15344339935 scopus 로고    scopus 로고
    • Optimizing the kernel in the empirical feature space
    • DOI 10.1109/TNN.2004.841784
    • H. Xiong, M.N.S. Swamy, and M.O. Ahmad Optimizing the kernel in the empirical feature space IEEE Trans. Neural Netw. 16 2 2005 460 474 (Pubitemid 40390828)
    • (2005) IEEE Transactions on Neural Networks , vol.16 , Issue.2 , pp. 460-474
    • Xiong, H.1    Swamy, M.N.S.2    Ahmad, M.O.3
  • 23
    • 0003882879 scopus 로고    scopus 로고
    • American Mathematical Society Providence, RI
    • F.R.K. Chung Spectral Graph Theory 1997 American Mathematical Society Providence, RI
    • (1997) Spectral Graph Theory
    • Chung, F.R.K.1
  • 24
    • 84898937175 scopus 로고    scopus 로고
    • Spectral relaxation for k-means clustering
    • T.G. Dietterich, S. Becker, Z. Ghahramani, MIT Press Cambridge, MA
    • H. Zha, X. He, C.H.Q. Ding, M. Gu, and H.D. Simon Spectral relaxation for k-means clustering T.G. Dietterich, S. Becker, Z. Ghahramani, Advances in Neural Information Processing Systems vol. 14 2002 MIT Press Cambridge, MA 1057 1064
    • (2002) Advances in Neural Information Processing Systems , vol.14 , pp. 1057-1064
    • Zha, H.1    He, X.2    Ding, C.H.Q.3    Gu, M.4    Simon, H.D.5
  • 25
    • 84899013108 scopus 로고    scopus 로고
    • On spectral clustering analysis and an algorithm
    • T.G. Dietterich, S. Becker, Z. Ghahramani, MIT Press Cambridge, MA
    • A.Y. Ng, M.I. Jordan, and Y. Weiss On spectral clustering analysis and an algorithm T.G. Dietterich, S. Becker, Z. Ghahramani, Advances in Neural Information Processing Systems vol. 14 2002 MIT Press Cambridge, MA 849 856
    • (2002) Advances in Neural Information Processing Systems , vol.14 , pp. 849-856
    • Ng, A.Y.1    Jordan, M.I.2    Weiss, Y.3
  • 26
    • 34548583274 scopus 로고    scopus 로고
    • A tutorial on spectral clustering
    • U. von Luxburg A tutorial on spectral clustering Stat. Comput. 17 4 2007 395 416
    • (2007) Stat. Comput. , vol.17 , Issue.4 , pp. 395-416
    • Von Luxburg, U.1
  • 28
    • 33846580425 scopus 로고    scopus 로고
    • Local features and kernels for classification of texture and object categories: A comprehensive study
    • DOI 10.1007/s11263-006-9794-4
    • J. Zhang, M. Marszałek, S. Lazebnik, and C. Schmid Local features and kernels for classification of texture and object categories a comprehensive study Int. J. Comput. Vis. 73 2 2007 213 238 (Pubitemid 46181625)
    • (2007) International Journal of Computer Vision , vol.73 , Issue.2 , pp. 213-238
    • Zhang, J.1    Marszalek, M.2    Lazebnik, S.3    Schmid, C.4
  • 29
    • 0000008146 scopus 로고
    • Comparing partitions
    • L. Hubert, and P. Arabie Comparing partitions J. Classif. 2 1 1985 193 218
    • (1985) J. Classif. , vol.2 , Issue.1 , pp. 193-218
    • Hubert, L.1    Arabie, P.2
  • 30
    • 0041965980 scopus 로고    scopus 로고
    • Cluster ensembles a knowledge reuse framework for combining multiple partitions
    • MARCH
    • A. Strehl, and J. Ghosh Cluster ensembles a knowledge reuse framework for combining multiple partitions J. Mach. Learn. Res. 3 march 2003 583 617
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 583-617
    • Strehl, A.1    Ghosh, J.2
  • 32
    • 0030213052 scopus 로고    scopus 로고
    • Texture features for browsing and retrieval of image data
    • B. Manjunathi, and W. Ma Texture features for browsing and retrieval of image data IEEE Trans. Pattern Anal. Mach. Intell. 18 8 1996 837 842
    • (1996) IEEE Trans. Pattern Anal. Mach. Intell. , vol.18 , Issue.8 , pp. 837-842
    • Manjunathi, B.1    Ma, W.2
  • 33
    • 0036647193 scopus 로고    scopus 로고
    • Multiresolution gray-scale and rotation invariant texture classification with local binary patterns
    • DOI 10.1109/TPAMI.2002.1017623
    • T. Ojala, M. Pietikainen, and T. Maenpaa Multiresolution gray-scale and rotation invariant texture classification with local binary patterns IEEE Trans. Pattern Anal. Mach. Intell. 24 7 2002 971 987 (Pubitemid 34835471)
    • (2002) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.24 , Issue.7 , pp. 971-987
    • Ojala, T.1    Pietikainen, M.2    Maenpaa, T.3
  • 34
    • 33947693882 scopus 로고    scopus 로고
    • Learning the kernel matrix by maximizing a KFD-based class separability criterion
    • DOI 10.1016/j.patcog.2006.12.031, PII S0031320307000143
    • G.D. Dit-YanYeung, and Hong Chang Learning the kernel matrix by maximizing a KFD-based class separability criterion Pattern Recognit. 40 7 2007 2021 2028 (Pubitemid 46497251)
    • (2007) Pattern Recognition , vol.40 , Issue.7 , pp. 2021-2028
    • Yeung, D.-Y.1    Chang, H.2    Dai, G.3
  • 35
    • 34548025132 scopus 로고    scopus 로고
    • A survey of kernel and spectral methods for clustering
    • DOI 10.1016/j.patcog.2007.05.018, PII S0031320307002580
    • M. Filippone, F. Camastra, F. Masulli, and S. Rovetta A survey of kernel and spectral methods for clustering Pattern Recognit. 41 1 2008 176 190 (Pubitemid 47284212)
    • (2008) Pattern Recognition , vol.41 , Issue.1 , pp. 176-190
    • Filippone, M.1    Camastra, F.2    Masulli, F.3    Rovetta, S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.