메뉴 건너뛰기




Volumn 9, Issue , 2009, Pages

Optimal classifier selection and negative bias in error rate estimation: An empirical study on high-dimensional prediction

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; CLASSIFICATION; COLON TUMOR; EMPIRICAL RESEARCH; EPIDEMIOLOGY; GENETIC SCREENING; GENETICS; HUMAN; MALE; METHODOLOGY; MICROARRAY ANALYSIS; PREDICTION AND FORECASTING; PROSTATE TUMOR; STATISTICAL MODEL; STATISTICS; TUMOR GENE;

EID: 76649101119     PISSN: None     EISSN: 14712288     Source Type: Journal    
DOI: 10.1186/1471-2288-9-85     Document Type: Article
Times cited : (59)

References (39)
  • 1
    • 36048930159 scopus 로고    scopus 로고
    • Almost all articles on cancer prognostic markers report statistically significant results
    • Almost all articles on cancer prognostic markers report statistically significant results. PA Kyzas D Denaxa-Kyza JP Ioannidis, European Journal of Cancer 2007 43 2559 2579 17981458
    • (2007) European Journal of Cancer , vol.43 , pp. 2559-2579
    • Kyzas, P.A.1    Denaxa-Kyza, D.2    Ioannidis, J.P.3
  • 2
    • 33846563409 scopus 로고    scopus 로고
    • Why most published research findings are false
    • Why Most Published Research Findings Are False. JPA Ioannidis, PLoS Medicine 2005 2 124 10.1371/journal.pmed.0020124 16060722
    • (2005) PLoS Medicine , vol.2
    • Ioannidis, J.P.A.1
  • 3
    • 13444249852 scopus 로고    scopus 로고
    • Prediction of cancer outcome with microarrays: A multiple random validation strategy
    • DOI 10.1016/S0140-6736(05)17866-0
    • Microarrays and molecular research: noise discovery. JP Ioannidis, The Lancet 2005 365 488 492 10.1016/S0140-6736(05)17866-0 (Pubitemid 40215731)
    • (2005) Lancet , vol.365 , Issue.9458 , pp. 488-492
    • Michiels, S.1    Koscielny, S.2    Hill, C.3
  • 4
    • 0035733108 scopus 로고
    • The control of the false discovery rate in multiple testing under dependency
    • The control of the false discovery rate in multiple testing under dependency. Y Benjamini D Yekutieli, Journal of the Royal Statistical Society B 1995 29 1165 1188
    • (1995) Journal of the Royal Statistical Society B , vol.29 , pp. 1165-1188
    • Benjamini, Y.1    Yekutieli, D.2
  • 5
    • 47749156020 scopus 로고    scopus 로고
    • A unified approach to false discovery rate estimation
    • 10.1186/1471-2105-9-303. 18613966
    • A unified approach to false discovery rate estimation. K Strimmer, BMC Bioinformatics 2008 9 303 10.1186/1471-2105-9-303 18613966
    • (2008) BMC Bioinformatics , vol.9 , pp. 303
    • Strimmer, K.1
  • 7
    • 0037245343 scopus 로고    scopus 로고
    • Pitfalls in the use of DNA microarray data for diagnostic and prognostic classification
    • Pitfalls in the Use of DNA Microarray Data for Diagnostic and Prognostic Classification. R Simon MD Radmacher K Dobbin LM McShane, Journal of the National Cancer Institute 2003 95 14 18 12509396 (Pubitemid 36124291)
    • (2003) Journal of the National Cancer Institute , vol.95 , Issue.1 , pp. 14-18
    • Simon, R.1    Radmacher, M.D.2    Dobbin, K.3    McShane, L.M.4
  • 8
    • 0242361278 scopus 로고    scopus 로고
    • Predictive ability of DNA microarrays for cancer outcomes and correlates: An empirical assessment
    • DOI 10.1016/S0140-6736(03)14686-7
    • Predictive ability of DNA microarrays for cancer outcomes and correlates: an empirical assessment. EE Ntzani JPA Ioannidis, The Lancet 2003 362 1439 1444 10.1016/S0140-6736(03)14686-7 (Pubitemid 37352879)
    • (2003) Lancet , vol.362 , Issue.9394 , pp. 1439-1444
    • Ntzani, E.E.1    Ioannidis, J.P.A.2
  • 9
    • 34547852206 scopus 로고    scopus 로고
    • WilcoxCV: An R package for fast variable selection in cross-validation
    • 10.1093/bioinformatics/btm162. 17495999
    • WilcoxCV: An R package for fast variable selection in cross-validation. AL Boulesteix, Bioinformatics 2007 23 1702 1704 10.1093/bioinformatics/btm162 17495999
    • (2007) Bioinformatics , vol.23 , pp. 1702-1704
    • Boulesteix, A.L.1
  • 10
    • 34447331698 scopus 로고    scopus 로고
    • Classification based upon gene expression data: Bias and precision of error rates
    • 10.1093/bioinformatics/btm117. 17392326
    • Classification based upon gene expression data: bias and precision of error rates. IA Wood PM Visscher KL Mengersen, Bioinformatics 2007 23 1363 1370 10.1093/bioinformatics/btm117 17392326
    • (2007) Bioinformatics , vol.23 , pp. 1363-1370
    • Wood, I.A.1    Visscher, P.M.2    Mengersen, K.L.3
  • 12
    • 33644860703 scopus 로고    scopus 로고
    • Bias in error estimation when using cross-validation for model selection
    • 10.1186/1471-2105-7-91. 16504092
    • Bias in error estimation when using cross-validation for model selection. S Varma R Simon, BMC Bioinformatics 2006 7 91 10.1186/1471-2105-7-91 16504092
    • (2006) BMC Bioinformatics , vol.7 , pp. 91
    • Varma, S.1    Simon, R.2
  • 14
    • 33846978784 scopus 로고    scopus 로고
    • Critical review of published microarray studies for cancer outcome and guidelines on statistical analysis and reporting
    • 10.1093/jnci/djk018. 17227998
    • Critical Review of Published Microarray Studies for Cancer Outcome and Guidelines on Statistical Analysis and Reporting. A Dupuy R Simon, Journal of the National Cancer Institute 2007 99 147 157 10.1093/jnci/djk018 17227998
    • (2007) Journal of the National Cancer Institute , vol.99 , pp. 147-157
    • Dupuy, A.1    Simon, R.2
  • 16
    • 60849119837 scopus 로고    scopus 로고
    • CMA - A comprehensive Bioconductor package for supervised classification with high dimensional data
    • 10.1186/1471-2105-9-439. 18925941
    • CMA - A comprehensive Bioconductor package for supervised classification with high dimensional data. M Slawski M Daumer AL Boulesteix, BMC Bioinformatics 2008 9 439 10.1186/1471-2105-9-439 18925941
    • (2008) BMC Bioinformatics , vol.9 , pp. 439
    • Slawski, M.1    Daumer, M.2    Boulesteix, A.L.3
  • 19
    • 0036489046 scopus 로고    scopus 로고
    • Comparison of discrimination methods for the classification of tumors using gene expression data
    • 10.1198/016214502753479248
    • Comparison of discrimination methods for the classification of tumors using gene expression data. S Dudoit J Fridlyand TP Speed, Journal of the American Statistical Association 2002 97 77 87 10.1198/016214502753479248
    • (2002) Journal of the American Statistical Association , vol.97 , pp. 77-87
    • Dudoit, S.1    Fridlyand, J.2    Speed, T.P.3
  • 21
    • 33846515112 scopus 로고    scopus 로고
    • Partial Least Squares: A versatile tool for the analysis of high-dimensional genomic data
    • 10.1093/bib/bbl016. 16772269
    • Partial Least Squares: A versatile tool for the analysis of high-dimensional genomic data. AL Boulesteix K Strimmer, Briefings in Bioinformatics 2007 8 32 44 10.1093/bib/bbl016 16772269
    • (2007) Briefings in Bioinformatics , vol.8 , pp. 32-44
    • Boulesteix, A.L.1    Strimmer, K.2
  • 23
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • DOI 10.1023/A:1010933404324
    • Random Forests. L Breiman, Machine Learning 2001 45 5 32 10.1023/A:1010933404324 (Pubitemid 32933532)
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 24
    • 30644464444 scopus 로고    scopus 로고
    • Gene selection and classification of microarray data using random forests
    • 10.1186/1471-2105-7-3. 16398926
    • Gene selection and classification of microarray data using random forests. R Diaz-Uriarte SA de Andrés, BMC Bioinformatics 2006 7 3 10.1186/1471-2105-7-3 16398926
    • (2006) BMC Bioinformatics , vol.7 , pp. 3
    • Diaz-Uriarte, R.1    De Andrés, S.A.2
  • 28
    • 41549141939 scopus 로고    scopus 로고
    • Boosting algorithms: Regularization, prediction and model fitting (with discussion)
    • 10.1214/07-STS242
    • Boosting algorithms: regularization, prediction and model fitting (with discussion). P Bühlmann T Hothorn, Statistical Science 2007 22 477 505 10.1214/07-STS242
    • (2007) Statistical Science , vol.22 , pp. 477-505
    • Bühlmann, P.1    Hothorn, T.2
  • 29
    • 33745558659 scopus 로고    scopus 로고
    • Reader's reaction to 'Dimension reduction for classification with gene expression microarray data' by Dai et al (2006)'
    • 10.2202/1544-6115.1226
    • Reader's reaction to 'Dimension reduction for classification with gene expression microarray data' by Dai et al (2006)'. AL Boulesteix, Statistical Applications in Genetics and Molecular Biology 2006 5 16 10.2202/1544-6115.1226
    • (2006) Statistical Applications in Genetics and Molecular Biology , vol.5 , pp. 16
    • Boulesteix, A.L.1
  • 30
    • 4544341015 scopus 로고    scopus 로고
    • Linear models and empirical Bayes methods for assessing differential expression in microarray experiments
    • 10.2202/1544-6115.1027
    • Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. G Smyth, Statistical Applications in Genetics and Molecular Biology 2004 3 3 10.2202/1544-6115.1027
    • (2004) Statistical Applications in Genetics and Molecular Biology , vol.3 , pp. 3
    • Smyth, G.1
  • 31
    • 15844413351 scopus 로고    scopus 로고
    • A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis
    • 10.1093/bioinformatics/bti033. 15374862
    • A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis. A Statnikov CF Aliferis I Tsamardinos D Hardin S Levy, Bioinformatics 2005 21 631 643 10.1093/ bioinformatics/bti033 15374862
    • (2005) Bioinformatics , vol.21 , pp. 631-643
    • Statnikov, A.1    Aliferis, C.F.2    Tsamardinos, I.3    Hardin, D.4    Levy, S.5
  • 32
    • 25144494760 scopus 로고    scopus 로고
    • Prediction error estimation: A comparison of resampling methods
    • 10.1093/bioinformatics/bti499. 15905277
    • Prediction error estimation: a comparison of resampling methods. A Molinaro R Simon RM Pfeiffer, Bioinformatics 2005 21 3301 3307 10.1093/bioinformatics/bti499 15905277
    • (2005) Bioinformatics , vol.21 , pp. 3301-3307
    • Molinaro, A.1    Simon, R.2    Pfeiffer, R.M.3
  • 33
    • 10444280144 scopus 로고    scopus 로고
    • An extensive comparison of recent classification tools applied to microarray data
    • 10.1016/j.csda.2004.03.017
    • An extensive comparison of recent classification tools applied to microarray data. J Lee J Lee M Park S Song, Computational Statistics and Data Analysis 2005 48 869 885 10.1016/j.csda.2004.03.017
    • (2005) Computational Statistics and Data Analysis , vol.48 , pp. 869-885
    • Lee, J.1    Lee, J.2    Park, M.3    Song, S.4
  • 34
    • 43149104388 scopus 로고    scopus 로고
    • Reducing the probability of false positive research findings by pre-publication validation - Experience with a large multiple sclerosis database
    • 10.1186/1471-2288-8-18. 18402689
    • Reducing the probability of false positive research findings by pre-publication validation - Experience with a large multiple sclerosis database. M Daumer U Held K Ickstadt M Heinz S Schach G Ebers, BMC Medical Research Methodology 2008 8 18 10.1186/1471-2288-8-18 18402689
    • (2008) BMC Medical Research Methodology , vol.8 , pp. 18
    • Daumer, M.1    Held, U.2    Ickstadt, K.3    Heinz, M.4    Schach, S.5    Ebers, G.6
  • 36
    • 76649126095 scopus 로고    scopus 로고
    • MCRestimate: Misclassification error estimation with cross-validation
    • version 1.10.2
    • MCRestimate: Misclassification error estimation with cross-validation. M Ruschhaupt U Mansmann P Warnat W Huber A Benner, R package version 1.10.2 2007
    • (2007) R Package
    • Ruschhaupt, M.1    Mansmann, U.2    Warnat, P.3    Huber, W.4    Benner, A.5
  • 37
    • 21444445077 scopus 로고    scopus 로고
    • Development and validation of therapeutically relevant multi-gene biomarker classifiers
    • Development and Validation of Therapeutically Relevant Multi-Gene Biomarker Classifiers. R Simon, Journal of the National Cancer Institute 2006 97 866 867
    • (2006) Journal of the National Cancer Institute , vol.97 , pp. 866-867
    • Simon, R.1
  • 38
    • 33748693297 scopus 로고    scopus 로고
    • Validation and Clinical Utility of a 70-Gene Prognostic Signature for Women with Node-Negative Breast Cancer
    • 16954471
    • Validation and Clinical Utility of a 70-Gene Prognostic Signature for Women With Node-Negative Breast Cancer. M Buyse S Loi L van't Veer., et al. Journal of the National Cancer Institute 2006 98 1183 1192 16954471
    • (2006) Journal of the National Cancer Institute , vol.98 , pp. 1183-1192
    • Buyse, M.1    Loi, S.2    Van'T Veer, L.3
  • 39
    • 76649125420 scopus 로고    scopus 로고
    • Over-optimism in bioinformatics research
    • in press
    • Over-optimism in bioinformatics research. AL Boulesteix, Bioinformatics 2010 in press
    • (2010) Bioinformatics
    • Boulesteix, A.L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.