메뉴 건너뛰기




Volumn 15, Issue 6, 2011, Pages 861-887

Adapting non-hierarchical multilabel classification methods for hierarchical multilabel classification

Author keywords

bioinformatics; Hierarchical classification; multilabel classification

Indexed keywords

BINARY CLASSIFICATION METHODS; CLASSIFICATION METHODS; DATA SETS; GLOBAL METHODS; HIERARCHICAL CLASSIFICATION; HIERARCHICAL LEVEL; LOCAL APPROACHES; MULTI-LABEL;

EID: 84856444732     PISSN: 1088467X     EISSN: 15714128     Source Type: Journal    
DOI: 10.3233/IDA-2011-0500     Document Type: Article
Times cited : (17)

References (49)
  • 1
    • 0025725905 scopus 로고
    • Instance-based learning algorithms
    • D.W. Aha, D. Kibler and M.K. Albert, Instance-based learning algorithms, Machine Learning 6(1) (1991), 37-66.
    • (1991) Machine Learning , vol.6 , Issue.1 , pp. 37-66
    • Aha, D.W.1    Kibler, D.2    Albert, M.K.3
  • 4
    • 33645323768 scopus 로고    scopus 로고
    • Hierarchical multi-label prediction of gene function
    • Z.Barutcuoglu, R.E. Schapire andO.G. Troyanskaya, Hierarchical multi-label prediction of gene function, Bioinformatics 22(7) (2006), 830-836.
    • (2006) Bioinformatics , vol.22 , Issue.7 , pp. 830-836
    • Barutcuoglu, Z.1    Schapire, R.E.2    Troyanskaya, O.G.3
  • 7
  • 10
    • 29644434908 scopus 로고    scopus 로고
    • Incremental algorithms for hierarchical classification
    • N. Cesa-Bianchi, C. Gentile and L. Zaniboni, Incremental algorithms for hierarchical classification, Machine Learning 7 (2006), 31-54.
    • (2006) Machine Learning , vol.7 , pp. 31-54
    • Cesa-Bianchi, N.1    Gentile, C.2    Zaniboni, L.3
  • 11
    • 6944251719 scopus 로고    scopus 로고
    • Predicting gene function in saccharomyces cerevisiae
    • A. Clare and R.D. King, Predicting gene function in saccharomyces cerevisiae, Bioinformatics 19 (2003), 42-49.
    • (2003) Bioinformatics , vol.19 , pp. 42-49
    • Clare, A.1    King, R.D.2
  • 15
    • 0010442827 scopus 로고    scopus 로고
    • On the algorithmic implementation of multiclass kernel-based vector machines
    • K. Crammer and Y. Singer, On the algorithmic implementation of multiclass kernel-based vector machines, Machine Learning 2 (2002), 265-292.
    • (2002) Machine Learning , vol.2 , pp. 265-292
    • Crammer, K.1    Singer, Y.2
  • 16
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • J. Demšar, Statistical comparisons of classifiers over multiple data sets, Journal of Machine Learning Research 7 (2006), 1-30.
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demšar, J.1
  • 19
    • 2542631648 scopus 로고    scopus 로고
    • Kernel methods for multi-labelled classification and categorical regression problems
    • MIT Press
    • A. Elisseeff and J. Weston, Kernel methods for multi-labelled classification and categorical regression problems, In In Advances in Neural Information Processing Systems 14, pages 681-687. MIT Press, 2001.
    • (2001) Advances in Neural Information Processing Systems , vol.14 , pp. 681-687
    • Elisseeff, A.1    Weston, J.2
  • 21
    • 43949121902 scopus 로고    scopus 로고
    • Boosting multi-label hierarchical text categorization
    • A. Esuli, T. Fagni and F. Sebastiani, Boosting multi-label hierarchical text categorization, Inf Retr 11(4) (2008), 287-313.
    • (2008) Inf Retr , vol.11 , Issue.4 , pp. 287-313
    • Esuli, A.1    Fagni, T.2    Sebastiani, F.3
  • 23
    • 84944811700 scopus 로고
    • The use of ranks to avoid the assumption of normality implicit in the analysis of variance
    • M. Friedman, The use of ranks to avoid the assumption of normality implicit in the analysis of variance, Journal of the American Statistical Association 32(200) (1937), 675-701.
    • (1937) Journal of the American Statistical Association , vol.32 , Issue.200 , pp. 675-701
    • Friedman, M.1
  • 24
    • 0031276011 scopus 로고    scopus 로고
    • Bayesian network classifiers
    • N. Friedman, D. Geiger and M. Goldszmidt, Bayesian network classifiers, Mach Learn 29(2-3) (1997), 131-163.
    • (1997) Mach Learn , vol.29 , Issue.2-3 , pp. 131-163
    • Friedman, N.1    Geiger, D.2    Goldszmidt, M.3
  • 26
    • 67349192921 scopus 로고    scopus 로고
    • Open-source machine learning: R meets Weka
    • K. Hornik, C. Buchta and A. Zeileis, Open-source machine learning: R meets Weka, Computational Statistics 24(2) (2009), 225-232.
    • (2009) Computational Statistics , vol.24 , Issue.2 , pp. 225-232
    • Hornik, K.1    Buchta, C.2    Zeileis, A.3
  • 29
  • 35
    • 5344244656 scopus 로고    scopus 로고
    • R. Development Core Team. R Foundation for Statistical Computing Vienna Austria
    • R Development Core Team, R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2008.
    • (2008) R: A Language and Environment for Statistical Computing
  • 37
    • 0033281701 scopus 로고    scopus 로고
    • Improved boosting algorithms using confidence-rated predictions
    • Hingham, MA, USA. Kluwer Academic Publishers
    • R.E. Schapire and Y. Singer, Improved boosting algorithms using confidence-rated predictions, In Machine Learning, volume 37, pages 297-336, Hingham, MA, USA, 1999. Kluwer Academic Publishers.
    • (1999) Machine Learning , vol.37 , pp. 297-336
    • Schapire, R.E.1    Singer, Y.2
  • 39
    • 78651375098 scopus 로고    scopus 로고
    • A survey of hierarchical classification across different application domains
    • C. Silla Jr and A. Freitas, A survey of hierarchical classification across different application domains, Data Mining and Knowledge Discovery 22(1-2) (2011), 31-72.
    • (2011) Data Mining and Knowledge Discovery , vol.22 , Issue.1-2 , pp. 31-72
    • Silla Jr., C.1    Freitas, A.2
  • 48
    • 84856499190 scopus 로고    scopus 로고
    • WIPO World Intellectual Property Organization
    • WIPO, World Intellectual Property Organization, 2001. http://www.wipo.int/portal/index.html.en.
    • (2001)


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.