-
2
-
-
34547972314
-
A dependence maximization view of clustering
-
Corvallis, OR, Jun
-
L. Song, A. Smola, A. Gretton, and K. M. Borgwardt, "A dependence maximization view of clustering", in Proc. 24th Int. Conf. Mach. Learn., Corvallis, OR, Jun. 2007, pp. 815-822.
-
(2007)
Proc. 24th Int. Conf. Mach. Learn.
, pp. 815-822
-
-
Song, L.1
Smola, A.2
Gretton, A.3
Borgwardt, K.M.4
-
3
-
-
0001457509
-
Some methods of classification and analysis of multivariate observations
-
J. MacQueen, "Some methods of classification and analysis of multivariate observations", in Proc. 5th Berkeley Symp. Math., Statist. Probability, 1967, pp. 281-297.
-
(1967)
Proc. 5th Berkeley Symp. Math., Statist. Probability
, pp. 281-297
-
-
MacQueen, J.1
-
4
-
-
84899009523
-
Maximum likelihood and the information bottleneck
-
S. Becker, S. Thrun, and K. Obermayer, Eds. Cambridge, MA: MIT Press
-
N. Slonim and Y. Weiss, "Maximum likelihood and the information bottleneck", in Advances in Neural Information Processing Systems 15, S. Becker, S. Thrun, and K. Obermayer, Eds. Cambridge, MA: MIT Press, 2003, pp. 351-358.
-
(2003)
Advances in Neural. Information Processing Systems 15
, pp. 351-358
-
-
Slonim, N.1
Weiss, Y.2
-
6
-
-
84899013108
-
On spectral clustering: Analysis and an algorithm
-
T. G. Dietterich, S. Becker, and Z. Ghahramani, Eds. Cambridge, MA: MIT Press
-
A. Y. Ng, M. I. Jordan, and Y. Weiss, "On spectral clustering: Analysis and an algorithm", in Advances in Neural Information Processing Systems 14, T. G. Dietterich, S. Becker, and Z. Ghahramani, Eds. Cambridge, MA: MIT Press, 2002, pp. 849-856.
-
(2002)
Advances in Neural. Information Processing Systems
, vol.14
, pp. 849-856
-
-
Ng, A.Y.1
Jordan, M.I.2
Weiss, Y.3
-
7
-
-
33646528415
-
Measuring statistical dependence with Hilbert-Schmidt norms
-
Oct
-
A. Gretton, O. Bousquet, A. Smola, and B. Schölkopf, "Measuring statistical dependence with Hilbert-Schmidt norms", in Proc. Int. Conf. Algorithmic Learn. Theory, Singapore, Oct. 2005, pp. 63-77.
-
(2005)
Proc. Int. Conf. Algorithmic Learn. Theory, Singapore
, pp. 63-77
-
-
Gretton, A.1
Bousquet, O.2
Smola, A.3
Schölkopf, B.4
-
8
-
-
4444231365
-
A survey of kernels for structured data
-
Jul
-
T. Gärtner, "A survey of kernels for structured data", ACM SIGKDD Explorations Newslett., vol. 5, no. 1, pp. 49-58, Jul. 2003.
-
(2003)
ACM SIGKDD Explorations Newslett.
, vol.5
, Issue.1
, pp. 49-58
-
-
Gärtner, T.1
-
9
-
-
0001089823
-
Support vector clustering
-
Dec
-
A. Ben-Hur, D. Horn, H. T. Siegelmann, and V. Vapnik, "Support vector clustering", J. Mach. Learn. Res., vol. 2, pp. 125-137, Dec. 2001.
-
(2001)
J. Mach. Learn. Res.
, vol.2
, pp. 125-137
-
-
Ben-Hur, A.1
Horn, D.2
Siegelmann, H.T.3
Vapnik, V.4
-
10
-
-
0036565280
-
Mercer kernel-based clustering in feature space
-
May
-
M. Girolami, "Mercer kernel-based clustering in feature space", IEEE Trans. Neural Netw., vol. 13, no. 3, pp. 780-784, May 2002.
-
(2002)
IEEE Trans. Neural. Netw.
, vol.13
, Issue.3
, pp. 780-784
-
-
Girolami, M.1
-
11
-
-
33749242077
-
Discriminative unsupervised learning of structured predictors
-
Pittsburgh, PA, Jun
-
L. Xu, D. Wilkinson, F. Southey, and D. Schuurmans, "Discriminative unsupervised learning of structured predictors", in Proc. 23rd Int. Conf. Mach. Learn., Pittsburgh, PA, Jun. 2006, pp. 1057-1064.
-
(2006)
Proc. 23rd Int. Conf. Mach. Learn.
, pp. 1057-1064
-
-
Xu, L.1
Wilkinson, D.2
Southey, F.3
Schuurmans, D.4
-
12
-
-
84864041449
-
Generalized maximum margin clustering and unsupervised kernel learning
-
Cambridge, MA: MIT Press
-
H. Valizadegan and R. Jin, "Generalized maximum margin clustering and unsupervised kernel learning", in Advances in Neural Information Processing Systems 19. Cambridge, MA: MIT Press, 2007, pp. 1417-1424.
-
(2007)
Advances in Neural. Information Processing Systems
, vol.19
, pp. 1417-1424
-
-
Valizadegan, H.1
Jin, R.2
-
13
-
-
84898944155
-
Maximum margin clustering
-
Cambridge, MA: MIT Press
-
L. Xu, J. Neufeld, B. Larson, and D. Schuurmans, "Maximum margin clustering", in Advances in Neural Information Processing Systems 17. Cambridge, MA: MIT Press, 2005, pp. 1537-1544.
-
(2005)
Advances in Neural. Information Processing Systems
, vol.17
, pp. 1537-1544
-
-
Xu, L.1
Neufeld, J.2
Larson, B.3
Schuurmans, D.4
-
14
-
-
29344456217
-
Unsupervised and semi-supervised multiclass support vector machines
-
Pittsburgh, PA
-
L. Xu and D. Schuurmans, "Unsupervised and semi-supervised multiclass support vector machines", in Proc. 20th Nat. Conf. Artificial Intell., Pittsburgh, PA, 2005, pp. 904-910.
-
(2005)
Proc. 20th Nat. Conf. Artificial Intell.
, pp. 904-910
-
-
Xu, L.1
Schuurmans, D.2
-
15
-
-
85161978168
-
DIFFRAC: A discriminative and flexible framework for clustering
-
Cambridge, MA: MIT Press
-
F. Bach and Z. Harchaoui, "DIFFRAC: A discriminative and flexible framework for clustering", in Advances in Neural Information Processing Systems 20. Cambridge, MA: MIT Press, 2008, pp. 49-56.
-
(2008)
Advances in Neural. Information Processing Systems
, vol.20
, pp. 49-56
-
-
Bach, F.1
Harchaoui, Z.2
-
16
-
-
31844438834
-
-
Ph. D. thesis, Dept. Comput. Sci., Stanford Univ., Palo Alto, CA
-
B. Taskar, "Learning structured prediction models: A large margin approach", Ph. D. thesis, Dept. Comput. Sci., Stanford Univ., Palo Alto, CA, 2004.
-
(2004)
Learning Structured Prediction Models: A Large Margin Approach
-
-
Taskar, B.1
-
17
-
-
24944537843
-
Large margin methods for structured and interdependent output variables
-
Dec
-
I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun, "Large margin methods for structured and interdependent output variables", J. Mach. Learn. Res., vol. 6, pp. 1453-1484, Dec. 2005.
-
(2005)
J. Mach. Learn. Res.
, vol.6
, pp. 1453-1484
-
-
Tsochantaridis, I.1
Joachims, T.2
Hofmann, T.3
Altun, Y.4
-
18
-
-
4544371135
-
Dimensionality reduction for supervised learning with reproducing kernel Hilbert spaces
-
Dec
-
K. Fukumizu, F. R. Bach, and M. I. Jordan, "Dimensionality reduction for supervised learning with reproducing kernel Hilbert spaces", J. Mach. Learn. Res., vol. 5, pp. 73-99, Dec. 2004.
-
(2004)
J. Mach. Learn. Res.
, vol.5
, pp. 73-99
-
-
Fukumizu, K.1
Bach, F.R.2
Jordan, M.I.3
-
19
-
-
57749174819
-
-
Ph. D. thesis, School of Information Technologies, Univ. Sydney, NSW, Australia
-
L. Song, "Learning via Hilbert space embedding of distributions", Ph. D. thesis, School of Information Technologies, Univ. Sydney, NSW, Australia, 2008.
-
(2008)
Learning Via Hilbert Space Embedding of Distributions
-
-
Song, L.1
-
20
-
-
84898937175
-
Spectral relaxation for K-means clustering
-
Cambridge, MA: MIT Press
-
H. Zha, X. He, C. Ding, H. Simon, and M. Gu, "Spectral relaxation for K-means clustering", in Advances in Neural Information Processing Systems 14. Cambridge, MA: MIT Press, 2002.
-
(2002)
Advances in Neural. Information Processing Systems
, vol.14
-
-
Zha, H.1
He, X.2
Ding, C.3
Simon, H.4
Gu, M.5
-
21
-
-
84898964201
-
Algorithms for non-negative matrix factorization
-
T. Leen, T. Dietterich, and V. Tresp, Eds. Cambridge, MA: MIT Press
-
D. D. Lee and H. S. Seung, "Algorithms for non-negative matrix factorization", in Advances in Neural Information Processing Systems 13, T. Leen, T. Dietterich, and V. Tresp, Eds. Cambridge, MA: MIT Press, 2001, pp. 556-562.
-
(2001)
Advances in Neural. Information Processing Systems
, vol.13
, pp. 556-562
-
-
Lee, D.D.1
Seung, H.S.2
-
22
-
-
0002619965
-
Ridge regression learning algorithm in dual variables
-
San Francisco, CA
-
C. Saunders, A. Gammerman, and V. Vovk, "Ridge regression learning algorithm in dual variables", in Proc. 15th Int. Conf. Mach. Learn., San Francisco, CA, 1998, pp. 515-521.
-
(1998)
Proc. 15th Int. Conf. Mach. Learn.
, pp. 515-521
-
-
Saunders, C.1
Gammerman, A.2
Vovk, V.3
-
23
-
-
0032638628
-
Least squares support vector machine classifiers
-
Jun
-
J. A. K. Suykens and J. Vandewalle, "Least squares support vector machine classifiers", Neural Process. Lett., vol. 9, no. 3, pp. 293-300, Jun. 1999.
-
(1999)
Neural. Process. Lett.
, vol.9
, Issue.3
, pp. 293-300
-
-
Suykens, J.A.K.1
Vandewalle, J.2
-
24
-
-
0027629412
-
Rival penalized competitive learning for clustering analysis, RBF net, and curve detection
-
Jul
-
L. Xu, A. Krzyzak, and E. Oja, "Rival penalized competitive learning for clustering analysis, RBF net, and curve detection", IEEE Trans. Neural Netw., vol. 4, no. 4, pp. 636-649, Jul. 1993.
-
(1993)
IEEE Trans. Neural. Netw.
, vol.4
, Issue.4
, pp. 636-649
-
-
Xu, L.1
Krzyzak, A.2
Oja, E.3
-
25
-
-
0028961335
-
SCOP: A structural classification of proteins database for the investigation of sequences and structures
-
Apr
-
A. G. Murzin, S. E. Brenner, T. Hubbard, and C. Chothia, "SCOP: A structural classification of proteins database for the investigation of sequences and structures", J. Molecular Biol., vol. 247, no. 4, pp. 536-540, Apr. 1995.
-
(1995)
J. Molecular Biol.
, vol.247
, Issue.4
, pp. 536-540
-
-
Murzin, A.G.1
Brenner, S.E.2
Hubbard, T.3
Chothia, C.4
-
26
-
-
34547983099
-
Structural alignment based kernels for protein structure classification
-
Corvallis, OR, Jun
-
S. Bhattacharya, C. Bhattacharyya, and N. R. Chandra, "Structural alignment based kernels for protein structure classification", in Proc. 24th Int. Conf. Mach. Learn., Corvallis, OR, Jun. 2007, pp. 73-80.
-
(2007)
Proc. 24th Int. Conf. Mach. Learn.
, pp. 73-80
-
-
Bhattacharya, S.1
Bhattacharyya, C.2
Chandra, N.R.3
-
27
-
-
0004019973
-
Convolution kernels on discrete structures
-
Univ. California, Santa Cruz, CA, Tech. Rep. UCSC-CRL-99-10
-
D. Haussler, "Convolution kernels on discrete structures", Dept. Comput. Sci., Univ. California, Santa Cruz, CA, Tech. Rep. UCSC-CRL-99-10, 1999.
-
(1999)
Dept. Comput. Sci.
-
-
Haussler, D.1
-
28
-
-
18744367558
-
Hierarchical document categorization with support vector machines
-
Washington D. C., Nov
-
L. Cai and T. Hofmann, "Hierarchical document categorization with support vector machines", in Proc. ACM 13th Conf. Inf. Knowl. Manage., Washington D. C., Nov. 2004, pp. 78-87.
-
(2004)
Proc. ACM 13th Conf. Inf. Knowl. Manage.
, pp. 78-87
-
-
Cai, L.1
Hofmann, T.2
-
29
-
-
33745768424
-
Kernelbased learning of hierarchical multilabel classification models
-
Dec
-
J. Rousu, C. Saunders, S. Szedmak, and J. Shawe-Taylor, "Kernelbased learning of hierarchical multilabel classification models", J. Mach. Learn. Res., vol. 7, pp. 1601-1626, Dec. 2006.
-
(2006)
J. Mach. Learn. Res.
, vol.7
, pp. 1601-1626
-
-
Rousu, J.1
Saunders, C.2
Szedmak, S.3
Shawe-Taylor, J.4
-
31
-
-
84944178665
-
Hierarchical grouping to optimize an objective function
-
Mar
-
J. H. Ward, Jr., "Hierarchical grouping to optimize an objective function", J. Amer. Statist. Assoc., vol. 58, no. 301, pp. 236-244, Mar. 1963.
-
(1963)
J. Amer. Statist. Assoc.
, vol.58
, Issue.301
, pp. 236-244
-
-
Ward, J.H.J.1
-
32
-
-
33750743381
-
An introduction to nonlinear dimensionality reduction by maximum variance unfolding
-
Boston, MA, Jul
-
K. Q. Weinberger and L. K. Saul, "An introduction to nonlinear dimensionality reduction by maximum variance unfolding", in Proc. 21st Nat. Conf. Artificial Intell., Boston, MA, Jul. 2006, pp. 1683-1686.
-
(2006)
Proc. 21st Nat. Conf. Artificial Intell.
, pp. 1683-1686
-
-
Weinberger, K.Q.1
Saul, L.K.2
-
33
-
-
0004236492
-
-
3rd ed. Baltimore, MD: The Johns Hopkins Univ. Press
-
G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed. Baltimore, MD: The Johns Hopkins Univ. Press, 1996.
-
(1996)
Matrix Computations
-
-
Golub, G.H.1
Van Loan, C.F.2
|