메뉴 건너뛰기




Volumn 21, Issue 10, 2010, Pages 1564-1575

Incorporating the loss function into discriminative clustering of structured outputs

Author keywords

Clustering methods; dependence maximization; Hilbert Schmidt independence criterion; loss; structured clustering

Indexed keywords

CLUSTERING ACCURACY; CLUSTERING METHODS; CLUSTERING PROCESS; DATA SETS; DEPENDENCE MAXIMIZATION; DISCRIMINATIVE CLUSTERING; HILBERT; HILBERT SCHMIDT INDEPENDENCE CRITERION; LOSS FUNCTIONS; MATRIX; OPTIMIZATION PROBLEMS; STRUCTURE INFORMATION; STRUCTURED CLUSTERING; ZERO-ONE;

EID: 77957819193     PISSN: 10459227     EISSN: None     Source Type: Journal    
DOI: 10.1109/TNN.2010.2064177     Document Type: Article
Times cited : (10)

References (33)
  • 3
    • 0001457509 scopus 로고
    • Some methods of classification and analysis of multivariate observations
    • J. MacQueen, "Some methods of classification and analysis of multivariate observations", in Proc. 5th Berkeley Symp. Math., Statist. Probability, 1967, pp. 281-297.
    • (1967) Proc. 5th Berkeley Symp. Math., Statist. Probability , pp. 281-297
    • MacQueen, J.1
  • 4
    • 84899009523 scopus 로고    scopus 로고
    • Maximum likelihood and the information bottleneck
    • S. Becker, S. Thrun, and K. Obermayer, Eds. Cambridge, MA: MIT Press
    • N. Slonim and Y. Weiss, "Maximum likelihood and the information bottleneck", in Advances in Neural Information Processing Systems 15, S. Becker, S. Thrun, and K. Obermayer, Eds. Cambridge, MA: MIT Press, 2003, pp. 351-358.
    • (2003) Advances in Neural. Information Processing Systems 15 , pp. 351-358
    • Slonim, N.1    Weiss, Y.2
  • 6
    • 84899013108 scopus 로고    scopus 로고
    • On spectral clustering: Analysis and an algorithm
    • T. G. Dietterich, S. Becker, and Z. Ghahramani, Eds. Cambridge, MA: MIT Press
    • A. Y. Ng, M. I. Jordan, and Y. Weiss, "On spectral clustering: Analysis and an algorithm", in Advances in Neural Information Processing Systems 14, T. G. Dietterich, S. Becker, and Z. Ghahramani, Eds. Cambridge, MA: MIT Press, 2002, pp. 849-856.
    • (2002) Advances in Neural. Information Processing Systems , vol.14 , pp. 849-856
    • Ng, A.Y.1    Jordan, M.I.2    Weiss, Y.3
  • 8
    • 4444231365 scopus 로고    scopus 로고
    • A survey of kernels for structured data
    • Jul
    • T. Gärtner, "A survey of kernels for structured data", ACM SIGKDD Explorations Newslett., vol. 5, no. 1, pp. 49-58, Jul. 2003.
    • (2003) ACM SIGKDD Explorations Newslett. , vol.5 , Issue.1 , pp. 49-58
    • Gärtner, T.1
  • 10
    • 0036565280 scopus 로고    scopus 로고
    • Mercer kernel-based clustering in feature space
    • May
    • M. Girolami, "Mercer kernel-based clustering in feature space", IEEE Trans. Neural Netw., vol. 13, no. 3, pp. 780-784, May 2002.
    • (2002) IEEE Trans. Neural. Netw. , vol.13 , Issue.3 , pp. 780-784
    • Girolami, M.1
  • 11
    • 33749242077 scopus 로고    scopus 로고
    • Discriminative unsupervised learning of structured predictors
    • Pittsburgh, PA, Jun
    • L. Xu, D. Wilkinson, F. Southey, and D. Schuurmans, "Discriminative unsupervised learning of structured predictors", in Proc. 23rd Int. Conf. Mach. Learn., Pittsburgh, PA, Jun. 2006, pp. 1057-1064.
    • (2006) Proc. 23rd Int. Conf. Mach. Learn. , pp. 1057-1064
    • Xu, L.1    Wilkinson, D.2    Southey, F.3    Schuurmans, D.4
  • 12
    • 84864041449 scopus 로고    scopus 로고
    • Generalized maximum margin clustering and unsupervised kernel learning
    • Cambridge, MA: MIT Press
    • H. Valizadegan and R. Jin, "Generalized maximum margin clustering and unsupervised kernel learning", in Advances in Neural Information Processing Systems 19. Cambridge, MA: MIT Press, 2007, pp. 1417-1424.
    • (2007) Advances in Neural. Information Processing Systems , vol.19 , pp. 1417-1424
    • Valizadegan, H.1    Jin, R.2
  • 14
    • 29344456217 scopus 로고    scopus 로고
    • Unsupervised and semi-supervised multiclass support vector machines
    • Pittsburgh, PA
    • L. Xu and D. Schuurmans, "Unsupervised and semi-supervised multiclass support vector machines", in Proc. 20th Nat. Conf. Artificial Intell., Pittsburgh, PA, 2005, pp. 904-910.
    • (2005) Proc. 20th Nat. Conf. Artificial Intell. , pp. 904-910
    • Xu, L.1    Schuurmans, D.2
  • 15
    • 85161978168 scopus 로고    scopus 로고
    • DIFFRAC: A discriminative and flexible framework for clustering
    • Cambridge, MA: MIT Press
    • F. Bach and Z. Harchaoui, "DIFFRAC: A discriminative and flexible framework for clustering", in Advances in Neural Information Processing Systems 20. Cambridge, MA: MIT Press, 2008, pp. 49-56.
    • (2008) Advances in Neural. Information Processing Systems , vol.20 , pp. 49-56
    • Bach, F.1    Harchaoui, Z.2
  • 17
    • 24944537843 scopus 로고    scopus 로고
    • Large margin methods for structured and interdependent output variables
    • Dec
    • I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun, "Large margin methods for structured and interdependent output variables", J. Mach. Learn. Res., vol. 6, pp. 1453-1484, Dec. 2005.
    • (2005) J. Mach. Learn. Res. , vol.6 , pp. 1453-1484
    • Tsochantaridis, I.1    Joachims, T.2    Hofmann, T.3    Altun, Y.4
  • 18
    • 4544371135 scopus 로고    scopus 로고
    • Dimensionality reduction for supervised learning with reproducing kernel Hilbert spaces
    • Dec
    • K. Fukumizu, F. R. Bach, and M. I. Jordan, "Dimensionality reduction for supervised learning with reproducing kernel Hilbert spaces", J. Mach. Learn. Res., vol. 5, pp. 73-99, Dec. 2004.
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 73-99
    • Fukumizu, K.1    Bach, F.R.2    Jordan, M.I.3
  • 19
    • 57749174819 scopus 로고    scopus 로고
    • Ph. D. thesis, School of Information Technologies, Univ. Sydney, NSW, Australia
    • L. Song, "Learning via Hilbert space embedding of distributions", Ph. D. thesis, School of Information Technologies, Univ. Sydney, NSW, Australia, 2008.
    • (2008) Learning Via Hilbert Space Embedding of Distributions
    • Song, L.1
  • 21
    • 84898964201 scopus 로고    scopus 로고
    • Algorithms for non-negative matrix factorization
    • T. Leen, T. Dietterich, and V. Tresp, Eds. Cambridge, MA: MIT Press
    • D. D. Lee and H. S. Seung, "Algorithms for non-negative matrix factorization", in Advances in Neural Information Processing Systems 13, T. Leen, T. Dietterich, and V. Tresp, Eds. Cambridge, MA: MIT Press, 2001, pp. 556-562.
    • (2001) Advances in Neural. Information Processing Systems , vol.13 , pp. 556-562
    • Lee, D.D.1    Seung, H.S.2
  • 22
    • 0002619965 scopus 로고    scopus 로고
    • Ridge regression learning algorithm in dual variables
    • San Francisco, CA
    • C. Saunders, A. Gammerman, and V. Vovk, "Ridge regression learning algorithm in dual variables", in Proc. 15th Int. Conf. Mach. Learn., San Francisco, CA, 1998, pp. 515-521.
    • (1998) Proc. 15th Int. Conf. Mach. Learn. , pp. 515-521
    • Saunders, C.1    Gammerman, A.2    Vovk, V.3
  • 23
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • Jun
    • J. A. K. Suykens and J. Vandewalle, "Least squares support vector machine classifiers", Neural Process. Lett., vol. 9, no. 3, pp. 293-300, Jun. 1999.
    • (1999) Neural. Process. Lett. , vol.9 , Issue.3 , pp. 293-300
    • Suykens, J.A.K.1    Vandewalle, J.2
  • 24
    • 0027629412 scopus 로고
    • Rival penalized competitive learning for clustering analysis, RBF net, and curve detection
    • Jul
    • L. Xu, A. Krzyzak, and E. Oja, "Rival penalized competitive learning for clustering analysis, RBF net, and curve detection", IEEE Trans. Neural Netw., vol. 4, no. 4, pp. 636-649, Jul. 1993.
    • (1993) IEEE Trans. Neural. Netw. , vol.4 , Issue.4 , pp. 636-649
    • Xu, L.1    Krzyzak, A.2    Oja, E.3
  • 25
    • 0028961335 scopus 로고
    • SCOP: A structural classification of proteins database for the investigation of sequences and structures
    • Apr
    • A. G. Murzin, S. E. Brenner, T. Hubbard, and C. Chothia, "SCOP: A structural classification of proteins database for the investigation of sequences and structures", J. Molecular Biol., vol. 247, no. 4, pp. 536-540, Apr. 1995.
    • (1995) J. Molecular Biol. , vol.247 , Issue.4 , pp. 536-540
    • Murzin, A.G.1    Brenner, S.E.2    Hubbard, T.3    Chothia, C.4
  • 26
    • 34547983099 scopus 로고    scopus 로고
    • Structural alignment based kernels for protein structure classification
    • Corvallis, OR, Jun
    • S. Bhattacharya, C. Bhattacharyya, and N. R. Chandra, "Structural alignment based kernels for protein structure classification", in Proc. 24th Int. Conf. Mach. Learn., Corvallis, OR, Jun. 2007, pp. 73-80.
    • (2007) Proc. 24th Int. Conf. Mach. Learn. , pp. 73-80
    • Bhattacharya, S.1    Bhattacharyya, C.2    Chandra, N.R.3
  • 27
    • 0004019973 scopus 로고    scopus 로고
    • Convolution kernels on discrete structures
    • Univ. California, Santa Cruz, CA, Tech. Rep. UCSC-CRL-99-10
    • D. Haussler, "Convolution kernels on discrete structures", Dept. Comput. Sci., Univ. California, Santa Cruz, CA, Tech. Rep. UCSC-CRL-99-10, 1999.
    • (1999) Dept. Comput. Sci.
    • Haussler, D.1
  • 28
    • 18744367558 scopus 로고    scopus 로고
    • Hierarchical document categorization with support vector machines
    • Washington D. C., Nov
    • L. Cai and T. Hofmann, "Hierarchical document categorization with support vector machines", in Proc. ACM 13th Conf. Inf. Knowl. Manage., Washington D. C., Nov. 2004, pp. 78-87.
    • (2004) Proc. ACM 13th Conf. Inf. Knowl. Manage. , pp. 78-87
    • Cai, L.1    Hofmann, T.2
  • 29
    • 33745768424 scopus 로고    scopus 로고
    • Kernelbased learning of hierarchical multilabel classification models
    • Dec
    • J. Rousu, C. Saunders, S. Szedmak, and J. Shawe-Taylor, "Kernelbased learning of hierarchical multilabel classification models", J. Mach. Learn. Res., vol. 7, pp. 1601-1626, Dec. 2006.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1601-1626
    • Rousu, J.1    Saunders, C.2    Szedmak, S.3    Shawe-Taylor, J.4
  • 31
    • 84944178665 scopus 로고
    • Hierarchical grouping to optimize an objective function
    • Mar
    • J. H. Ward, Jr., "Hierarchical grouping to optimize an objective function", J. Amer. Statist. Assoc., vol. 58, no. 301, pp. 236-244, Mar. 1963.
    • (1963) J. Amer. Statist. Assoc. , vol.58 , Issue.301 , pp. 236-244
    • Ward, J.H.J.1
  • 32
    • 33750743381 scopus 로고    scopus 로고
    • An introduction to nonlinear dimensionality reduction by maximum variance unfolding
    • Boston, MA, Jul
    • K. Q. Weinberger and L. K. Saul, "An introduction to nonlinear dimensionality reduction by maximum variance unfolding", in Proc. 21st Nat. Conf. Artificial Intell., Boston, MA, Jul. 2006, pp. 1683-1686.
    • (2006) Proc. 21st Nat. Conf. Artificial Intell. , pp. 1683-1686
    • Weinberger, K.Q.1    Saul, L.K.2
  • 33
    • 0004236492 scopus 로고    scopus 로고
    • 3rd ed. Baltimore, MD: The Johns Hopkins Univ. Press
    • G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed. Baltimore, MD: The Johns Hopkins Univ. Press, 1996.
    • (1996) Matrix Computations
    • Golub, G.H.1    Van Loan, C.F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.