메뉴 건너뛰기




Volumn 74, Issue 6, 2014, Pages 950-974

Automated Scoring of Teachers’ Open-Ended Responses to Video Prompts: Bringing the Classroom-Video-Analysis Assessment to Scale

Author keywords

automated scoring; classroom video analysis assessment; na ve Bayes; short answer items; teacher knowledge; text classification

Indexed keywords


EID: 84911415972     PISSN: 00131644     EISSN: 15523888     Source Type: Journal    
DOI: 10.1177/0013164414521634     Document Type: Article
Times cited : (21)

References (31)
  • 4
    • 0029546874 scopus 로고
    • Using linear algebra for intelligent information retrieval
    • Berry M. W.,Dumais S. T.,O’Brien G. W.Using linear algebra for intelligent information retrieval.SIAM Review. 1995;37:573-595
    • (1995) SIAM Review , vol.37 , pp. 573-595
    • Berry, M.W.1    Dumais, S.T.2    O’Brien, G.W.3
  • 10
    • 0346925742 scopus 로고    scopus 로고
    • Supporting content-based feedback in on-line writing evaluation with LSA
    • Foltz P. W.,Gilliam S.,Kendall S.Supporting content-based feedback in on-line writing evaluation with LSA.Interactive Learning Environments. 2000;8:111-127
    • (2000) Interactive Learning Environments , vol.8 , pp. 111-127
    • Foltz, P.W.1    Gilliam, S.2    Kendall, S.3
  • 11
    • 0038105092 scopus 로고    scopus 로고
    • The intelligent essay assessor: Applications to educational technology. Interactive Multimedia Electronic Journal of Computer-Enhanced Learning, 1(2)
    • FoltzP. W.LahamD.LandauerT
    • FoltzP. W.LahamD.LandauerT. (1999). The intelligent essay assessor: Applications to educational technology. Interactive Multimedia Electronic Journal of Computer-Enhanced Learning, 1(2). Retrieved from imej.wfu.edu/articles/1999/2/04/index.asp
    • (1999) Retrieved from imej.wfu.edu/articles/1999/2/04/index.asp
  • 12
    • 8644231607 scopus 로고    scopus 로고
    • Learning mathematics for teaching: Results from California’s Mathematics Professional Development Institutes
    • Hill H. C.,Ball D. L.Learning mathematics for teaching: Results from California’s Mathematics Professional Development Institutes.Journal of Research in Mathematics Education. 2004;35:330-351
    • (2004) Journal of Research in Mathematics Education , vol.35 , pp. 330-351
    • Hill, H.C.1    Ball, D.L.2
  • 13
    • 38949184033 scopus 로고    scopus 로고
    • Assessing teachers’ mathematical knowledge: What knowledge matters and what evidence counts? In LesterF. (Ed.), Handbook for research on mathematics education (2nd ed., pp. 111-155). Charlotte, NC: Information Age.Lester F., ed. Charlotte, NC: Information Age
    • Hill H. C.,Ball D. L.,Sleep L.,Lewis J. M.Handbook for research on mathematics education. 2007. Assessing teachers’ mathematical knowledge: What knowledge matters and what evidence counts? In LesterF. (Ed.), Handbook for research on mathematics education (2nd ed., pp. 111-155). Charlotte, NC: Information Age.Lester F., ed. Charlotte, NC: Information Age; 2007:111-155.
    • (2007) Handbook for research on mathematics education , pp. 111-155
    • Hill, H.C.1    Ball, D.L.2    Sleep, L.3    Lewis, J.M.4
  • 14
    • 7044286358 scopus 로고    scopus 로고
    • Developing measures of teachers’ mathematics knowledge for teaching
    • Hill H. C.,Schilling S. G.,Ball D. L.Developing measures of teachers’ mathematics knowledge for teaching.Elementary School Journal. 2004;105:11-30
    • (2004) Elementary School Journal , vol.105 , pp. 11-30
    • Hill, H.C.1    Schilling, S.G.2    Ball, D.L.3
  • 15
    • 51049093600 scopus 로고    scopus 로고
    • Using Video Clips as Item Prompts to Measure Teachers’ Knowledge of Teaching Mathematics
    • Kersting N.Using Video Clips as Item Prompts to Measure Teachers’ Knowledge of Teaching Mathematics.Educational and Psychological Measurement. 2008;68 (5): 845-861
    • (2008) Educational and Psychological Measurement , vol.68 , Issue.5 , pp. 845-861
    • Kersting, N.1
  • 16
    • 73949141801 scopus 로고    scopus 로고
    • Teacher’s Analysis of Classroom Video Predicts Student Learning of Mathematics: Further Explorations of a Novel Measure of Teacher Knowledge
    • Kersting N. B.,Givvin K.,Sotelo F.,Stigler J. W.Teacher’s Analysis of Classroom Video Predicts Student Learning of Mathematics: Further Explorations of a Novel Measure of Teacher Knowledge.Journal of Teacher Education. 2010;61 (1-2): 172-181
    • (2010) Journal of Teacher Education , vol.61 , Issue.1-2 , pp. 172-181
    • Kersting, N.B.1    Givvin, K.2    Sotelo, F.3    Stigler, J.W.4
  • 17
    • 84861797788 scopus 로고    scopus 로고
    • Developing Measures of Usable Knowledge: Teachers’ Analyses of Mathematics Classroom Videos Predict Teaching Quality and Student Learning
    • Kersting N. B.,Givvin K. B.,Thompson B.,Santagata R.,Stigler J.Developing Measures of Usable Knowledge: Teachers’ Analyses of Mathematics Classroom Videos Predict Teaching Quality and Student Learning.American Educational Research Journal. 2012;49 (3): 568-590
    • (2012) American Educational Research Journal , vol.49 , Issue.3 , pp. 568-590
    • Kersting, N.B.1    Givvin, K.B.2    Thompson, B.3    Santagata, R.4    Stigler, J.5
  • 18
    • 84911394140 scopus 로고    scopus 로고
    • KohaviR, A decision-tree hybrid, Retrieved from:
    • KohaviR. (1996). Scaling up the accuracy of naive-Bayes classifiers: A decision-tree hybrid. Retrieved from http://www.sc.ehu.es/ccwbayes/docencia/mmcc/docs/lecturas-clasificacion/NBTree.pdf
    • (1996) Scaling up the accuracy of naive-Bayes classifiers
  • 20
    • 0017360990 scopus 로고
    • The measurement of observer agreement for categorical data
    • Landis J.R.,Koch G.G.The measurement of observer agreement for categorical data.Biometrics. 1977;33 (1): 159-174
    • (1977) Biometrics , vol.33 , Issue.1 , pp. 159-174
    • Landis, J.R.1    Koch, G.G.2
  • 21
    • 84911410645 scopus 로고    scopus 로고
    • Berlin, Germany: Springer-Verlag
    • Lewis D. D.Multiple values selected. Berlin, Germany: Springer-Verlag; 1998:4-15.
    • (1998) Multiple values selected , pp. 4-15
    • Lewis, D.D.1
  • 22
    • 59549087165 scopus 로고    scopus 로고
    • On discriminative vs. generative classifiers: A comparison of logistic regression and naive Bayes
    • Ng A. Y.,Jordan M. I.On discriminative vs. generative classifiers: A comparison of logistic regression and naive Bayes.Advances in NIPS. 2002;14:841-848
    • (2002) Advances in NIPS , vol.14 , pp. 841-848
    • Ng, A.Y.1    Jordan, M.I.2
  • 24
    • 0002442796 scopus 로고    scopus 로고
    • Machine learning in automated text categorization
    • Sebastiani F.Machine learning in automated text categorization.ACM computing surveys (CSUR). 2002;34 (1): 1-47
    • (2002) ACM computing surveys (CSUR) , vol.34 , Issue.1 , pp. 1-47
    • Sebastiani, F.1
  • 27
    • 84872409048 scopus 로고    scopus 로고
    • ShermisM. D.HammerB, Analysis, Retrieved from:
    • ShermisM. D.HammerB. (2012). Contrasting state-of-the-art automated scoring of essays: Analysis. Retrieved from http://dl.dropboxusercontent.com/u/44416236/NCME%202012%20Paper3_29_12.pdf
    • (2012) Contrasting state-of-the-art automated scoring of essays
  • 28
    • 84911427319 scopus 로고    scopus 로고
    • StreeterL.BernsteinJ.FoltzP.DeLandD, White Paper, Retrieved from:
    • StreeterL.BernsteinJ.FoltzP.DeLandD. (2011). Pearson’s automated scoring of writing, speaking, and mathematics (White Paper). Retrieved from http://kt.pearsonassessments.com/download/PearsonAutomatedScoring-WritingSpeakingMath-051911.pdf
    • (2011) aPearson’s automated scoring of writing, speaking
  • 30
    • 10044283198 scopus 로고    scopus 로고
    • The optimality of naive Bayes. In BarrV.MarkovZ. (Eds.), Proceedings of the 17th International FLAIRS conference (FLAIRS2004) (pp. 568-573)
    • ZhangH
    • ZhangH. (2004). The optimality of naive Bayes. In BarrV.MarkovZ. (Eds.), Proceedings of the 17th International FLAIRS conference (FLAIRS2004) (pp. 568-573). Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.61.5794&rep=rep1&type=pdf
    • (2004) Retrieved from
  • 31
    • 84905104774 scopus 로고    scopus 로고
    • Contrasting automated and human scoring (ETS Research Report No
    • ZhangM, Princeton, NJ: ETS. Retrieved from
    • ZhangM. (2013). Contrasting automated and human scoring (ETS Research Report No. RDC-21). Princeton, NJ: ETS. Retrieved from http://www.ets.org/Media/Research/pdf/RD_Connections_21.pdf
    • (2013) RDC-21)


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.