메뉴 건너뛰기




Volumn 92, Issue 5, 2014, Pages 390-396

Interaction between 2 extracellular loops influences the activity of the cystic fibrosis transmembrane conductance regulator chloride channel

Author keywords

CFTR; Disulfide crosslinking; Electrophysiology; Extracellular loop; Substituted cysteine accessibility mutagenesis

Indexed keywords

CHEMICAL REACTIONS; CHLORINE COMPOUNDS; ELECTROPHYSIOLOGY;

EID: 84911061873     PISSN: 08298211     EISSN: 12086002     Source Type: Journal    
DOI: 10.1139/bcb-2014-0066     Document Type: Article
Times cited : (7)

References (29)
  • 1
    • 34250792303 scopus 로고    scopus 로고
    • Use of site-directed cysteine and disulfide chemistry to probe protein structure and dynamics: Applications to soluble and transmembrane receptors of bacterial chemotaxis
    • Bass R.B. Butler S.L. Chervitz S.A. Gloor S.L. Falke J.J. 2007. Use of site-directed cysteine and disulfide chemistry to probe protein structure and dynamics: applications to soluble and transmembrane receptors of bacterial chemotaxis. Methods Enzymol. 423: 25-51. 10.1016/S0076-6879(07)23002-2. 17609126.
    • (2007) Methods Enzymol. , vol.423 , pp. 25-51
    • Bass, R.B.1    Butler, S.L.2    Chervitz, S.A.3    Gloor, S.L.4    Falke, J.J.5
  • 2
    • 0026639440 scopus 로고
    • Structure and dynamics of Escherichia coli chemosensory receptors
    • Careaga C.L. Falke J.J. 1992. Structure and dynamics of Escherichia coli chemosensory receptors. Engineered sulfhydryl studies. Biophys. J. 62 (1): 209-219. 10.1016/S0006-3495(92)81806-4. 1318100.
    • (1992) Engineered Sulfhydryl Studies. Biophys. J. , vol.62 , Issue.1 , pp. 209-219
    • Careaga, C.L.1    Falke, J.J.2
  • 4
    • 84882242517 scopus 로고    scopus 로고
    • Dynamics intrinsic to cystic fibrosis transmembrane conductance regulator function and stability
    • Chong P.A. Kota P. Dokholyan N.V. Forman-Kay J.D. 2013. Dynamics intrinsic to cystic fibrosis transmembrane conductance regulator function and stability. Cold Spring Harb. Perspect. Med. 3 (1): a009522. 10.1101/cshperspect.a009522. 23457292.
    • (2013) Cold Spring Harb. Perspect. Med. , vol.3 , Issue.1 , pp. 009522
    • Chong, P.A.1    Kota, P.2    Dokholyan, N.V.3    Forman-Kay, J.D.4
  • 5
    • 33645533055 scopus 로고    scopus 로고
    • The role of cystic fibrosis transmembrane conductance regulator phenylalanine 508 side chain in ion channel gating
    • Cui L. Aleksandrov L. Hou Y.-X. Gentzsch M. Chen J.H. Riordan J.R. Aleksandrov A.A. 2006. The role of cystic fibrosis transmembrane conductance regulator phenylalanine 508 side chain in ion channel gating. J. Physiol. 572 (2): 347-358. 10.1113/jphysiol.2005.099457. 16484308.
    • (2006) J. Physiol. , vol.572 , Issue.2 , pp. 347-358
    • Cui, L.1    Aleksandrov, L.2    Hou, Y.-X.3    Gentzsch, M.4    Chen, J.H.5    Riordan, J.R.6    Aleksandrov, A.A.7
  • 6
    • 84864258150 scopus 로고    scopus 로고
    • New model of cystic fibrosis transmembrane conductance regulator proposes active channel-like conformation
    • Dalton J. Kalid O. Schushan M. Ben-Tal N. Villà-Freixa J. 2012. New model of cystic fibrosis transmembrane conductance regulator proposes active channel-like conformation. J. Chem. Inf. Model. 52 (7): 1842-1853. 10.1021/ci2005884. 22747419.
    • (2012) J. Chem. Inf. Model. , vol.52 , Issue.7 , pp. 1842-1853
    • Dalton, J.1    Kalid, O.2    Schushan, M.3    Ben-Tal, N.4    Villà-Freixa, J.5
  • 7
    • 84874150515 scopus 로고    scopus 로고
    • Cysteine scanning of CFTRs first transmembrane segment reveals its plausible roles in gating and permeation
    • Gao X. Bai Y. Hwang T.-C. 2013. Cysteine scanning of CFTRs first transmembrane segment reveals its plausible roles in gating and permeation. Biophys. J. 104 (4): 786-797. 10.1016/j.bpj.2012.12.048. 23442957.
    • (2013) Biophys. J. , vol.104 , Issue.4 , pp. 786-797
    • Gao, X.1    Bai, Y.2    Hwang, T.-C.3
  • 8
    • 64049096002 scopus 로고    scopus 로고
    • N-glycans are direct determinants of CFTR folding and stability in secretory and endocytic membrane traffic
    • Glozman R. Okiyoneda T. Mulvihill C.M. Rini J.M. Barriere H. Lucaks G.L. 2009. N-glycans are direct determinants of CFTR folding and stability in secretory and endocytic membrane traffic. J. Cell Biol. 184 (6): 847-862. 10.1083/jcb.200808124. 19307599.
    • (2009) J. Cell Biol. , vol.184 , Issue.6 , pp. 847-862
    • Glozman, R.1    Okiyoneda, T.2    Mulvihill, C.M.3    Rini, J.M.4    Barriere, H.5    Lucaks, G.L.6
  • 9
    • 0036554702 scopus 로고    scopus 로고
    • Molecular determinants of Au(CN)2- binding and permeability within the cystic fibrosis transmembrane conductance regulator Cl- channel pore
    • Gong X. Burbridge S.M. Cowley E.A. Linsdell P. 2002. Molecular determinants of Au(CN)2- binding and permeability within the cystic fibrosis transmembrane conductance regulator Cl- channel pore. J. Physiol. 540 (1): 39-47. 10.1113/jphysiol.2001.013235. 11927667.
    • (2002) J. Physiol. , vol.540 , Issue.1 , pp. 39-47
    • Gong, X.1    Burbridge, S.M.2    Cowley, E.A.3    Linsdell, P.4
  • 10
    • 0035805490 scopus 로고    scopus 로고
    • Disease-associated mutations in the extracytoplasmic loops of cystic fibrosis transmembrane conductance regulator do not impede biosynthetic processing but impair chloride channel stability
    • 11278813
    • Hämmerle M.M. Aleksandrov A.A. Riordan J.R. 2001. Disease-associated mutations in the extracytoplasmic loops of cystic fibrosis transmembrane conductance regulator do not impede biosynthetic processing but impair chloride channel stability. J. Biol. Chem. 276 (18): 14848-14854. 10.1074/jbc.M011017200. 11278813.
    • (2001) J. Biol. Chem. , vol.276 , Issue.18 , pp. 14848-14854
    • Hämmerle, M.M.1    Aleksandrov, A.A.2    Riordan, J.R.3
  • 11
    • 80755139374 scopus 로고    scopus 로고
    • Functional differences in pore properties between wild-type and cysteine-less forms of the CFTR chloride channel
    • Holstead R.G. Li M.-S. Linsdell P. 2011. Functional differences in pore properties between wild-type and cysteine-less forms of the CFTR chloride channel. J. Membr. Biol. 243 (1-3): 15-23. 10.1007/s00232-011-9388-0. 21796426.
    • (2011) J. Membr. Biol. , vol.243 , Issue.13 , pp. 15-23
    • Holstead, R.G.1    Li, M.-S.2    Linsdell, P.3
  • 12
    • 84874710058 scopus 로고    scopus 로고
    • Cystic fibrosis transmembrane conductance regulator (ABCC7) structure
    • Hunt J.F. Wang C. Ford R.C. 2013. Cystic fibrosis transmembrane conductance regulator (ABCC7) structure. Cold Spring Harb. Perspect. Med. 3 (1): a009514. 10.1101/cshperspect.a009514. 23378596.
    • (2013) Cold Spring Harb. Perspect. Med. , vol.3 , Issue.1 , pp. 009514
    • Hunt, J.F.1    Wang, C.2    Ford, R.C.3
  • 13
    • 84874669588 scopus 로고    scopus 로고
    • The CFTR ion channel: Gating, regulation, and anion permeation
    • Hwang T.-C. Kirk K.L. 2013. The CFTR ion channel: gating, regulation, and anion permeation. Cold Spring Harb. Perspect. Med. 3 (1): a009498. 10.1101/cshperspect.a009498. 23284076.
    • (2013) Cold Spring Harb. Perspect. Med. , vol.3 , Issue.1 , pp. 009498
    • Hwang, T.-C.1    Kirk, K.L.2
  • 14
    • 79953853890 scopus 로고    scopus 로고
    • A unified view of cystic fibrosis transmembrane conductance regulator (CFTR) gating: Combining the allosterism of a ligand-gated channel with the enzymatic activity of an ATP-binding cassette (ABC) transporter
    • Kirk K.L. Wang W. 2011. A unified view of cystic fibrosis transmembrane conductance regulator (CFTR) gating: combining the allosterism of a ligand-gated channel with the enzymatic activity of an ATP-binding cassette (ABC) transporter. J. Biol. Chem. 286 (15): 12813-12819. 10.1074/jbc.R111.219634. 21296873.
    • (2011) J. Biol. Chem. , vol.286 , Issue.15 , pp. 12813-12819
    • Kirk, K.L.1    Wang, W.2
  • 15
    • 70350336877 scopus 로고    scopus 로고
    • Cysteine-independent inhibition of the CFTR chloride channel by the cysteine-reactive reagent sodium (2-sulphonatoethyl) methanethiosulphonate (MTSES)
    • Li M.-S. Demsey A.F.A. Qi J. Linsdell P. 2009. Cysteine-independent inhibition of the CFTR chloride channel by the cysteine-reactive reagent sodium (2-sulphonatoethyl) methanethiosulphonate (MTSES). Br. J. Pharmacol. 157 (6): 1065-1071. 10.1111/j.1476-5381.2009.00258.x. 19466983.
    • (2009) Br. J. Pharmacol. , vol.157 , Issue.6 , pp. 1065-1071
    • Li, M.-S.1    Demsey, A.F.A.2    Qi, J.3    Linsdell, P.4
  • 16
    • 78651347918 scopus 로고    scopus 로고
    • Regulation of CFTR chloride channel macroscopic conductance by extracellular bicarbonate
    • Li M.-S. Holstead R.G. Wang W. Linsdell P. 2011. Regulation of CFTR chloride channel macroscopic conductance by extracellular bicarbonate. Am. J. Physiol. 300 (1): C65-C74. 10.1152/ajpcell.00290.2010. 20926782.
    • (2011) Am. J. Physiol. , vol.300 , Issue.1 , pp. 65-C74
    • Li, M.-S.1    Holstead, R.G.2    Wang, W.3    Linsdell, P.4
  • 17
    • 84867292821 scopus 로고    scopus 로고
    • Pseudohalide anions reveal a novel extracellular site for potentiators to increase CFTR function
    • Li M.-S. Cowley E.A. Linsdell P. 2012. Pseudohalide anions reveal a novel extracellular site for potentiators to increase CFTR function. Br. J. Pharmacol. 167 (5): 1062-1075. 10.1111/j.1476-5381.2012.02041.x. 22612315.
    • (2012) Br. J. Pharmacol. , vol.167 , Issue.5 , pp. 1062-1075
    • Li, M.-S.1    Cowley, E.A.2    Linsdell, P.3
  • 18
    • 84893088864 scopus 로고    scopus 로고
    • Functional architecture of the CFTR chloride channel
    • 24341413
    • Linsdell P. 2014 a. Functional architecture of the CFTR chloride channel. Mol. Membr. Biol. 31 (1): 1-16. 10.3109/09687688.2013.868055. 24341413.
    • (2014) Mol. Membr. Biol. , vol.31 , Issue.1 , pp. 1-16
    • Linsdell, P.1
  • 19
    • 84907902317 scopus 로고    scopus 로고
    • Cystic fibrosis transmembrane conductance regulator chloride channel blockers: Pharmacological, biophysical and physiological relevance
    • 24600512
    • Linsdell P. 2014 b. Cystic fibrosis transmembrane conductance regulator chloride channel blockers: pharmacological, biophysical and physiological relevance. World J. Biol. Chem. 5 (1): 26-39. 10.4331/wjbc.v5.i1.26. 24600512.
    • (2014) World J. Biol. Chem. , vol.5 , Issue.1 , pp. 26-39
    • Linsdell, P.1
  • 20
    • 33645518601 scopus 로고    scopus 로고
    • Using a cysteine-less mutant to provide insight into the structure and mechanism of CFTR
    • Loo T.W. Clarke D.M. 2006. Using a cysteine-less mutant to provide insight into the structure and mechanism of CFTR. J. Physiol. 572 (2): 312. 10.1113/jphysiol.2006.108159. 16497707.
    • (2006) J. Physiol. , vol.572 , Issue.2 , pp. 312
    • Loo, T.W.1    Clarke, D.M.2
  • 21
    • 33750222000 scopus 로고    scopus 로고
    • In vivo phosphorylation of CFTR promotes formation of a nucleotide-binding domain heterodimer
    • Mense M. Vergani P. White D.M. Altberg G. Nairn A.C. Gadsby D.C. 2006. In vivo phosphorylation of CFTR promotes formation of a nucleotide-binding domain heterodimer. EMBO J. 25 (20): 4728-4739. 10.1038/sj.emboj.7601373. 17036051.
    • (2006) EMBO J. , vol.25 , Issue.20 , pp. 4728-4739
    • Mense, M.1    Vergani, P.2    White, D.M.3    Altberg, G.4    Nairn, A.C.5    Gadsby, D.C.6
  • 22
    • 0024424270 scopus 로고
    • Identification of the cystic fibrosis gene: Cloning and characterization of complementary DNA
    • Riordan J.R. Rommens J.M. Kerem B. Alon N. Rozmahel R. Grzelczak Z. et al 1989. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science, 245 (4922): 1066-1073. 10.1126/science.2475911. 2475911.
    • (1989) Science , vol.245 , Issue.4922 , pp. 1066-1073
    • Riordan, J.R.1    Rommens, J.M.2    Kerem, B.3    Alon, N.4    Rozmahel, R.5    Grzelczak, Z.6
  • 23
    • 84858968426 scopus 로고    scopus 로고
    • Alternating access to the transmembrane domain of the ATP-binding cassette protein cystic fibrosis transmembrane conductance regulator (ABCC7)
    • 22303012
    • Wang W. Linsdell P. 2012 a. Alternating access to the transmembrane domain of the ATP-binding cassette protein cystic fibrosis transmembrane conductance regulator (ABCC7). J. Biol. Chem. 287 (13): 10156-10165. 10.1074/jbc.M112.342972. 22303012.
    • (2012) J. Biol. Chem. , vol.287 , Issue.13 , pp. 10156-10165
    • Wang, W.1    Linsdell, P.2
  • 24
    • 84866429140 scopus 로고    scopus 로고
    • Relative movements of transmembrane regions at the outer mouth of the cystic fibrosis transmembrane conductance regulator channel pore during channel gating
    • 22843683
    • Wang W. Linsdell P. 2012 b. Relative movements of transmembrane regions at the outer mouth of the cystic fibrosis transmembrane conductance regulator channel pore during channel gating. J. Biol. Chem. 287 (38): 32136-32146. 10.1074/jbc.M112.385096. 22843683.
    • (2012) J. Biol. Chem. , vol.287 , Issue.38 , pp. 32136-32146
    • Wang, W.1    Linsdell, P.2
  • 25
    • 36348989763 scopus 로고    scopus 로고
    • Correctors promote maturation of cystic fibrosis transmembrane conductance regulator (CFTR)-processing mutants by binding to the protein
    • Wang Y. Loo T.W. Bartlett M.C. Clarke D.M. 2007. Correctors promote maturation of cystic fibrosis transmembrane conductance regulator (CFTR)-processing mutants by binding to the protein. J. Biol. Chem. 282 (46): 33247-33251. 10.1074/jbc.C700175200. 17911111.
    • (2007) J. Biol. Chem. , vol.282 , Issue.46 , pp. 33247-33251
    • Wang, Y.1    Loo, T.W.2    Bartlett, M.C.3    Clarke, D.M.4
  • 26
    • 4744345374 scopus 로고    scopus 로고
    • Novel regulation of cystic fibrosis transmembrane conductance regulator (CFTR) channel gating by extracellular chloride
    • Wright A.M. Gong X. Verdon B. Linsdell P. Mehta A. Riordan J.R. et al 2004. Novel regulation of cystic fibrosis transmembrane conductance regulator (CFTR) channel gating by extracellular chloride. J. Biol. Chem. 279 (40): 41658-41663. 10.1074/jbc.M405517200. 15286085.
    • (2004) J. Biol. Chem. , vol.279 , Issue.40 , pp. 41658-41663
    • Wright, A.M.1    Gong, X.2    Verdon, B.3    Linsdell, P.4    Mehta, A.5    Riordan, J.R.6
  • 27
    • 65949124445 scopus 로고    scopus 로고
    • Evidence that extracellular anions interact with a site outside the CFTR chloride channel pore to modify channel properties
    • Zhou J.-J. Linsdell P. 2009. Evidence that extracellular anions interact with a site outside the CFTR chloride channel pore to modify channel properties. Can. J. Physiol. Pharmacol. 87 (5): 387-395. 10.1139/Y09-023. 19448737.
    • (2009) Can. J. Physiol. Pharmacol. , vol.87 , Issue.5 , pp. 387-395
    • Zhou, J.-J.1    Linsdell, P.2
  • 28
    • 56649092932 scopus 로고    scopus 로고
    • Identification of positive charges situated at the outer mouth of the CFTR chloride channel pore
    • Zhou J.-J. Fatehi M. Linsdell P. 2008. Identification of positive charges situated at the outer mouth of the CFTR chloride channel pore. Pflügers Arch. 457 (2): 351-360. 10.1007/s00424-008-0521-6. 18449561.
    • (2008) Pflügers Arch. , vol.457 , Issue.2 , pp. 351-360
    • Zhou, J.-J.1    Fatehi, M.2    Linsdell, P.3
  • 29
    • 77649161249 scopus 로고    scopus 로고
    • Regulation of conductance by the number of fixed positive charges in the intracellular vestibule of the CFTR chloride channel pore
    • Zhou J.-J. Li M.-S. Qi J. Linsdell P. 2010. Regulation of conductance by the number of fixed positive charges in the intracellular vestibule of the CFTR chloride channel pore. J. Gen. Physiol. 135 (3): 229-245. 10.1085/jgp.200910327. 20142516.
    • (2010) J. Gen. Physiol. , vol.135 , Issue.3 , pp. 229-245
    • Zhou, J.-J.1    Li, M.-S.2    Qi, J.3    Linsdell, P.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.