-
1
-
-
34250792303
-
Use of site-directed cysteine and disulfide chemistry to probe protein structure and dynamics: Applications to soluble and transmembrane receptors of bacterial chemotaxis
-
Bass R.B. Butler S.L. Chervitz S.A. Gloor S.L. Falke J.J. 2007. Use of site-directed cysteine and disulfide chemistry to probe protein structure and dynamics: applications to soluble and transmembrane receptors of bacterial chemotaxis. Methods Enzymol. 423: 25-51. 10.1016/S0076-6879(07)23002-2. 17609126.
-
(2007)
Methods Enzymol.
, vol.423
, pp. 25-51
-
-
Bass, R.B.1
Butler, S.L.2
Chervitz, S.A.3
Gloor, S.L.4
Falke, J.J.5
-
2
-
-
0026639440
-
Structure and dynamics of Escherichia coli chemosensory receptors
-
Careaga C.L. Falke J.J. 1992. Structure and dynamics of Escherichia coli chemosensory receptors. Engineered sulfhydryl studies. Biophys. J. 62 (1): 209-219. 10.1016/S0006-3495(92)81806-4. 1318100.
-
(1992)
Engineered Sulfhydryl Studies. Biophys. J.
, vol.62
, Issue.1
, pp. 209-219
-
-
Careaga, C.L.1
Falke, J.J.2
-
4
-
-
84882242517
-
Dynamics intrinsic to cystic fibrosis transmembrane conductance regulator function and stability
-
Chong P.A. Kota P. Dokholyan N.V. Forman-Kay J.D. 2013. Dynamics intrinsic to cystic fibrosis transmembrane conductance regulator function and stability. Cold Spring Harb. Perspect. Med. 3 (1): a009522. 10.1101/cshperspect.a009522. 23457292.
-
(2013)
Cold Spring Harb. Perspect. Med.
, vol.3
, Issue.1
, pp. 009522
-
-
Chong, P.A.1
Kota, P.2
Dokholyan, N.V.3
Forman-Kay, J.D.4
-
5
-
-
33645533055
-
The role of cystic fibrosis transmembrane conductance regulator phenylalanine 508 side chain in ion channel gating
-
Cui L. Aleksandrov L. Hou Y.-X. Gentzsch M. Chen J.H. Riordan J.R. Aleksandrov A.A. 2006. The role of cystic fibrosis transmembrane conductance regulator phenylalanine 508 side chain in ion channel gating. J. Physiol. 572 (2): 347-358. 10.1113/jphysiol.2005.099457. 16484308.
-
(2006)
J. Physiol.
, vol.572
, Issue.2
, pp. 347-358
-
-
Cui, L.1
Aleksandrov, L.2
Hou, Y.-X.3
Gentzsch, M.4
Chen, J.H.5
Riordan, J.R.6
Aleksandrov, A.A.7
-
6
-
-
84864258150
-
New model of cystic fibrosis transmembrane conductance regulator proposes active channel-like conformation
-
Dalton J. Kalid O. Schushan M. Ben-Tal N. Villà-Freixa J. 2012. New model of cystic fibrosis transmembrane conductance regulator proposes active channel-like conformation. J. Chem. Inf. Model. 52 (7): 1842-1853. 10.1021/ci2005884. 22747419.
-
(2012)
J. Chem. Inf. Model.
, vol.52
, Issue.7
, pp. 1842-1853
-
-
Dalton, J.1
Kalid, O.2
Schushan, M.3
Ben-Tal, N.4
Villà-Freixa, J.5
-
7
-
-
84874150515
-
Cysteine scanning of CFTRs first transmembrane segment reveals its plausible roles in gating and permeation
-
Gao X. Bai Y. Hwang T.-C. 2013. Cysteine scanning of CFTRs first transmembrane segment reveals its plausible roles in gating and permeation. Biophys. J. 104 (4): 786-797. 10.1016/j.bpj.2012.12.048. 23442957.
-
(2013)
Biophys. J.
, vol.104
, Issue.4
, pp. 786-797
-
-
Gao, X.1
Bai, Y.2
Hwang, T.-C.3
-
8
-
-
64049096002
-
N-glycans are direct determinants of CFTR folding and stability in secretory and endocytic membrane traffic
-
Glozman R. Okiyoneda T. Mulvihill C.M. Rini J.M. Barriere H. Lucaks G.L. 2009. N-glycans are direct determinants of CFTR folding and stability in secretory and endocytic membrane traffic. J. Cell Biol. 184 (6): 847-862. 10.1083/jcb.200808124. 19307599.
-
(2009)
J. Cell Biol.
, vol.184
, Issue.6
, pp. 847-862
-
-
Glozman, R.1
Okiyoneda, T.2
Mulvihill, C.M.3
Rini, J.M.4
Barriere, H.5
Lucaks, G.L.6
-
9
-
-
0036554702
-
Molecular determinants of Au(CN)2- binding and permeability within the cystic fibrosis transmembrane conductance regulator Cl- channel pore
-
Gong X. Burbridge S.M. Cowley E.A. Linsdell P. 2002. Molecular determinants of Au(CN)2- binding and permeability within the cystic fibrosis transmembrane conductance regulator Cl- channel pore. J. Physiol. 540 (1): 39-47. 10.1113/jphysiol.2001.013235. 11927667.
-
(2002)
J. Physiol.
, vol.540
, Issue.1
, pp. 39-47
-
-
Gong, X.1
Burbridge, S.M.2
Cowley, E.A.3
Linsdell, P.4
-
10
-
-
0035805490
-
Disease-associated mutations in the extracytoplasmic loops of cystic fibrosis transmembrane conductance regulator do not impede biosynthetic processing but impair chloride channel stability
-
11278813
-
Hämmerle M.M. Aleksandrov A.A. Riordan J.R. 2001. Disease-associated mutations in the extracytoplasmic loops of cystic fibrosis transmembrane conductance regulator do not impede biosynthetic processing but impair chloride channel stability. J. Biol. Chem. 276 (18): 14848-14854. 10.1074/jbc.M011017200. 11278813.
-
(2001)
J. Biol. Chem.
, vol.276
, Issue.18
, pp. 14848-14854
-
-
Hämmerle, M.M.1
Aleksandrov, A.A.2
Riordan, J.R.3
-
11
-
-
80755139374
-
Functional differences in pore properties between wild-type and cysteine-less forms of the CFTR chloride channel
-
Holstead R.G. Li M.-S. Linsdell P. 2011. Functional differences in pore properties between wild-type and cysteine-less forms of the CFTR chloride channel. J. Membr. Biol. 243 (1-3): 15-23. 10.1007/s00232-011-9388-0. 21796426.
-
(2011)
J. Membr. Biol.
, vol.243
, Issue.13
, pp. 15-23
-
-
Holstead, R.G.1
Li, M.-S.2
Linsdell, P.3
-
12
-
-
84874710058
-
Cystic fibrosis transmembrane conductance regulator (ABCC7) structure
-
Hunt J.F. Wang C. Ford R.C. 2013. Cystic fibrosis transmembrane conductance regulator (ABCC7) structure. Cold Spring Harb. Perspect. Med. 3 (1): a009514. 10.1101/cshperspect.a009514. 23378596.
-
(2013)
Cold Spring Harb. Perspect. Med.
, vol.3
, Issue.1
, pp. 009514
-
-
Hunt, J.F.1
Wang, C.2
Ford, R.C.3
-
13
-
-
84874669588
-
The CFTR ion channel: Gating, regulation, and anion permeation
-
Hwang T.-C. Kirk K.L. 2013. The CFTR ion channel: gating, regulation, and anion permeation. Cold Spring Harb. Perspect. Med. 3 (1): a009498. 10.1101/cshperspect.a009498. 23284076.
-
(2013)
Cold Spring Harb. Perspect. Med.
, vol.3
, Issue.1
, pp. 009498
-
-
Hwang, T.-C.1
Kirk, K.L.2
-
14
-
-
79953853890
-
A unified view of cystic fibrosis transmembrane conductance regulator (CFTR) gating: Combining the allosterism of a ligand-gated channel with the enzymatic activity of an ATP-binding cassette (ABC) transporter
-
Kirk K.L. Wang W. 2011. A unified view of cystic fibrosis transmembrane conductance regulator (CFTR) gating: combining the allosterism of a ligand-gated channel with the enzymatic activity of an ATP-binding cassette (ABC) transporter. J. Biol. Chem. 286 (15): 12813-12819. 10.1074/jbc.R111.219634. 21296873.
-
(2011)
J. Biol. Chem.
, vol.286
, Issue.15
, pp. 12813-12819
-
-
Kirk, K.L.1
Wang, W.2
-
15
-
-
70350336877
-
Cysteine-independent inhibition of the CFTR chloride channel by the cysteine-reactive reagent sodium (2-sulphonatoethyl) methanethiosulphonate (MTSES)
-
Li M.-S. Demsey A.F.A. Qi J. Linsdell P. 2009. Cysteine-independent inhibition of the CFTR chloride channel by the cysteine-reactive reagent sodium (2-sulphonatoethyl) methanethiosulphonate (MTSES). Br. J. Pharmacol. 157 (6): 1065-1071. 10.1111/j.1476-5381.2009.00258.x. 19466983.
-
(2009)
Br. J. Pharmacol.
, vol.157
, Issue.6
, pp. 1065-1071
-
-
Li, M.-S.1
Demsey, A.F.A.2
Qi, J.3
Linsdell, P.4
-
16
-
-
78651347918
-
Regulation of CFTR chloride channel macroscopic conductance by extracellular bicarbonate
-
Li M.-S. Holstead R.G. Wang W. Linsdell P. 2011. Regulation of CFTR chloride channel macroscopic conductance by extracellular bicarbonate. Am. J. Physiol. 300 (1): C65-C74. 10.1152/ajpcell.00290.2010. 20926782.
-
(2011)
Am. J. Physiol.
, vol.300
, Issue.1
, pp. 65-C74
-
-
Li, M.-S.1
Holstead, R.G.2
Wang, W.3
Linsdell, P.4
-
17
-
-
84867292821
-
Pseudohalide anions reveal a novel extracellular site for potentiators to increase CFTR function
-
Li M.-S. Cowley E.A. Linsdell P. 2012. Pseudohalide anions reveal a novel extracellular site for potentiators to increase CFTR function. Br. J. Pharmacol. 167 (5): 1062-1075. 10.1111/j.1476-5381.2012.02041.x. 22612315.
-
(2012)
Br. J. Pharmacol.
, vol.167
, Issue.5
, pp. 1062-1075
-
-
Li, M.-S.1
Cowley, E.A.2
Linsdell, P.3
-
18
-
-
84893088864
-
Functional architecture of the CFTR chloride channel
-
24341413
-
Linsdell P. 2014 a. Functional architecture of the CFTR chloride channel. Mol. Membr. Biol. 31 (1): 1-16. 10.3109/09687688.2013.868055. 24341413.
-
(2014)
Mol. Membr. Biol.
, vol.31
, Issue.1
, pp. 1-16
-
-
Linsdell, P.1
-
19
-
-
84907902317
-
Cystic fibrosis transmembrane conductance regulator chloride channel blockers: Pharmacological, biophysical and physiological relevance
-
24600512
-
Linsdell P. 2014 b. Cystic fibrosis transmembrane conductance regulator chloride channel blockers: pharmacological, biophysical and physiological relevance. World J. Biol. Chem. 5 (1): 26-39. 10.4331/wjbc.v5.i1.26. 24600512.
-
(2014)
World J. Biol. Chem.
, vol.5
, Issue.1
, pp. 26-39
-
-
Linsdell, P.1
-
20
-
-
33645518601
-
Using a cysteine-less mutant to provide insight into the structure and mechanism of CFTR
-
Loo T.W. Clarke D.M. 2006. Using a cysteine-less mutant to provide insight into the structure and mechanism of CFTR. J. Physiol. 572 (2): 312. 10.1113/jphysiol.2006.108159. 16497707.
-
(2006)
J. Physiol.
, vol.572
, Issue.2
, pp. 312
-
-
Loo, T.W.1
Clarke, D.M.2
-
21
-
-
33750222000
-
In vivo phosphorylation of CFTR promotes formation of a nucleotide-binding domain heterodimer
-
Mense M. Vergani P. White D.M. Altberg G. Nairn A.C. Gadsby D.C. 2006. In vivo phosphorylation of CFTR promotes formation of a nucleotide-binding domain heterodimer. EMBO J. 25 (20): 4728-4739. 10.1038/sj.emboj.7601373. 17036051.
-
(2006)
EMBO J.
, vol.25
, Issue.20
, pp. 4728-4739
-
-
Mense, M.1
Vergani, P.2
White, D.M.3
Altberg, G.4
Nairn, A.C.5
Gadsby, D.C.6
-
22
-
-
0024424270
-
Identification of the cystic fibrosis gene: Cloning and characterization of complementary DNA
-
Riordan J.R. Rommens J.M. Kerem B. Alon N. Rozmahel R. Grzelczak Z. et al 1989. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science, 245 (4922): 1066-1073. 10.1126/science.2475911. 2475911.
-
(1989)
Science
, vol.245
, Issue.4922
, pp. 1066-1073
-
-
Riordan, J.R.1
Rommens, J.M.2
Kerem, B.3
Alon, N.4
Rozmahel, R.5
Grzelczak, Z.6
-
23
-
-
84858968426
-
Alternating access to the transmembrane domain of the ATP-binding cassette protein cystic fibrosis transmembrane conductance regulator (ABCC7)
-
22303012
-
Wang W. Linsdell P. 2012 a. Alternating access to the transmembrane domain of the ATP-binding cassette protein cystic fibrosis transmembrane conductance regulator (ABCC7). J. Biol. Chem. 287 (13): 10156-10165. 10.1074/jbc.M112.342972. 22303012.
-
(2012)
J. Biol. Chem.
, vol.287
, Issue.13
, pp. 10156-10165
-
-
Wang, W.1
Linsdell, P.2
-
24
-
-
84866429140
-
Relative movements of transmembrane regions at the outer mouth of the cystic fibrosis transmembrane conductance regulator channel pore during channel gating
-
22843683
-
Wang W. Linsdell P. 2012 b. Relative movements of transmembrane regions at the outer mouth of the cystic fibrosis transmembrane conductance regulator channel pore during channel gating. J. Biol. Chem. 287 (38): 32136-32146. 10.1074/jbc.M112.385096. 22843683.
-
(2012)
J. Biol. Chem.
, vol.287
, Issue.38
, pp. 32136-32146
-
-
Wang, W.1
Linsdell, P.2
-
25
-
-
36348989763
-
Correctors promote maturation of cystic fibrosis transmembrane conductance regulator (CFTR)-processing mutants by binding to the protein
-
Wang Y. Loo T.W. Bartlett M.C. Clarke D.M. 2007. Correctors promote maturation of cystic fibrosis transmembrane conductance regulator (CFTR)-processing mutants by binding to the protein. J. Biol. Chem. 282 (46): 33247-33251. 10.1074/jbc.C700175200. 17911111.
-
(2007)
J. Biol. Chem.
, vol.282
, Issue.46
, pp. 33247-33251
-
-
Wang, Y.1
Loo, T.W.2
Bartlett, M.C.3
Clarke, D.M.4
-
26
-
-
4744345374
-
Novel regulation of cystic fibrosis transmembrane conductance regulator (CFTR) channel gating by extracellular chloride
-
Wright A.M. Gong X. Verdon B. Linsdell P. Mehta A. Riordan J.R. et al 2004. Novel regulation of cystic fibrosis transmembrane conductance regulator (CFTR) channel gating by extracellular chloride. J. Biol. Chem. 279 (40): 41658-41663. 10.1074/jbc.M405517200. 15286085.
-
(2004)
J. Biol. Chem.
, vol.279
, Issue.40
, pp. 41658-41663
-
-
Wright, A.M.1
Gong, X.2
Verdon, B.3
Linsdell, P.4
Mehta, A.5
Riordan, J.R.6
-
27
-
-
65949124445
-
Evidence that extracellular anions interact with a site outside the CFTR chloride channel pore to modify channel properties
-
Zhou J.-J. Linsdell P. 2009. Evidence that extracellular anions interact with a site outside the CFTR chloride channel pore to modify channel properties. Can. J. Physiol. Pharmacol. 87 (5): 387-395. 10.1139/Y09-023. 19448737.
-
(2009)
Can. J. Physiol. Pharmacol.
, vol.87
, Issue.5
, pp. 387-395
-
-
Zhou, J.-J.1
Linsdell, P.2
-
28
-
-
56649092932
-
Identification of positive charges situated at the outer mouth of the CFTR chloride channel pore
-
Zhou J.-J. Fatehi M. Linsdell P. 2008. Identification of positive charges situated at the outer mouth of the CFTR chloride channel pore. Pflügers Arch. 457 (2): 351-360. 10.1007/s00424-008-0521-6. 18449561.
-
(2008)
Pflügers Arch.
, vol.457
, Issue.2
, pp. 351-360
-
-
Zhou, J.-J.1
Fatehi, M.2
Linsdell, P.3
-
29
-
-
77649161249
-
Regulation of conductance by the number of fixed positive charges in the intracellular vestibule of the CFTR chloride channel pore
-
Zhou J.-J. Li M.-S. Qi J. Linsdell P. 2010. Regulation of conductance by the number of fixed positive charges in the intracellular vestibule of the CFTR chloride channel pore. J. Gen. Physiol. 135 (3): 229-245. 10.1085/jgp.200910327. 20142516.
-
(2010)
J. Gen. Physiol.
, vol.135
, Issue.3
, pp. 229-245
-
-
Zhou, J.-J.1
Li, M.-S.2
Qi, J.3
Linsdell, P.4
|