메뉴 건너뛰기




Volumn 275, Issue , 2015, Pages 243-260

Behavior of metal ions in bioelectrochemical systems: A review

Author keywords

Anode behavior; Bioelectrochemical systems; Cathode behavior; Ion exchange membranes; Metal ions

Indexed keywords

ANODES; CATALYSIS; CHEMICALS REMOVAL (WATER TREATMENT); DESALINATION; DETOXIFICATION; ELECTROLYTES; HEAVY METALS; ION EXCHANGE; ION EXCHANGE MEMBRANES; METAL IONS; WASTEWATER TREATMENT;

EID: 84910631913     PISSN: 03787753     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jpowsour.2014.10.168     Document Type: Review
Times cited : (81)

References (231)
  • 1
    • 84861911299 scopus 로고    scopus 로고
    • Bioelectrochemical systems: An outlook for practical applications
    • T.H. Sleutels, A. Ter Heijne, C.J. Buisman, and H.V. Hamelers Bioelectrochemical systems: an outlook for practical applications ChemSusChem 5 6 2012 1012 1019
    • (2012) ChemSusChem , vol.5 , Issue.6 , pp. 1012-1019
    • Sleutels, T.H.1    Ter Heijne, A.2    Buisman, C.J.3    Hamelers, H.V.4
  • 2
    • 84906316930 scopus 로고    scopus 로고
    • Effect of anolyte pH and cathode Pt loading on electricity and hydrogen co-production performance of the bio-electrochemical system
    • Y.P. Liu, Y.H. Wang, B.S. Wang, and Q.Y. Chen Effect of anolyte pH and cathode Pt loading on electricity and hydrogen co-production performance of the bio-electrochemical system Int. J. Hydrog. Energ. 2014 10.1016/j.ijhydene.2014.02.127
    • (2014) Int. J. Hydrog. Energ.
    • Liu, Y.P.1    Wang, Y.H.2    Wang, B.S.3    Chen, Q.Y.4
  • 3
    • 84901198311 scopus 로고    scopus 로고
    • Performance of a microbial electrolysis cell (MEC) for hydrogen production with a new process for the biofilm formation
    • L. Verea, O. Savadogo, A. Verde, J. Campos, F. Ginez, and P.J. Sebastian Performance of a microbial electrolysis cell (MEC) for hydrogen production with a new process for the biofilm formation Int. J. Hydrog. Energ. 39 17 2014 8938 8946
    • (2014) Int. J. Hydrog. Energ. , vol.39 , Issue.17 , pp. 8938-8946
    • Verea, L.1    Savadogo, O.2    Verde, A.3    Campos, J.4    Ginez, F.5    Sebastian, P.J.6
  • 5
    • 84874707527 scopus 로고    scopus 로고
    • The modeling of gold recovery from tetrachloroaurate wastewater using a microbial fuel cell
    • C. Choi, and N. Hu The modeling of gold recovery from tetrachloroaurate wastewater using a microbial fuel cell Bioresour. Technol. 133 2013 589 598
    • (2013) Bioresour. Technol. , vol.133 , pp. 589-598
    • Choi, C.1    Hu, N.2
  • 7
    • 84856583214 scopus 로고    scopus 로고
    • Recovery of silver from wastewater coupled with power generation using a microbial fuel cell
    • C. Choi, and Y. Cui Recovery of silver from wastewater coupled with power generation using a microbial fuel cell Bioresour. Technol. 107 2012 522 525
    • (2012) Bioresour. Technol. , vol.107 , pp. 522-525
    • Choi, C.1    Cui, Y.2
  • 8
    • 84862795873 scopus 로고    scopus 로고
    • Recovery of silver from silver(I)-containing solutions in bioelectrochemical reactors
    • H.C. Tao, Z.Y. Gao, H. Ding, N. Xu, and W.M. Wu Recovery of silver from silver(I)-containing solutions in bioelectrochemical reactors Bioresour. Technol. 111 2012 92 97
    • (2012) Bioresour. Technol. , vol.111 , pp. 92-97
    • Tao, H.C.1    Gao, Z.Y.2    Ding, H.3    Xu, N.4    Wu, W.M.5
  • 9
    • 84884208184 scopus 로고    scopus 로고
    • Electricity production from a bio-electrochemical cell for silver recovery in alkaline media
    • Y.H. Wang, B.S. Wang, B. Pan, Q.Y. Chen, and W. Yan Electricity production from a bio-electrochemical cell for silver recovery in alkaline media Appl. Energ. 112 2013 1337 1341
    • (2013) Appl. Energ. , vol.112 , pp. 1337-1341
    • Wang, Y.H.1    Wang, B.S.2    Pan, B.3    Chen, Q.Y.4    Yan, W.5
  • 10
    • 84930538277 scopus 로고    scopus 로고
    • Recovery of silver metal and electric power generation using a microbial fuel cell
    • (ahead-of-print)
    • B.S. Lim, H. Lu, C. Choi, and Z.X. Liu Recovery of silver metal and electric power generation using a microbial fuel cell Desalin. Water Treat. 2014 1 7 (ahead-of-print)
    • (2014) Desalin. Water Treat. , pp. 1-7
    • Lim, B.S.1    Lu, H.2    Choi, C.3    Liu, Z.X.4
  • 12
    • 79951945873 scopus 로고    scopus 로고
    • A membrane-free baffled microbial fuel cell for cathodic reduction of Cu(II) with electricity generation
    • H.C. Tao, W. Li, M. Liang, N. Xu, J.R. Ni, and W.M. Wu A membrane-free baffled microbial fuel cell for cathodic reduction of Cu(II) with electricity generation Bioresour. Technol. 102 7 2011 4774 4778
    • (2011) Bioresour. Technol. , vol.102 , Issue.7 , pp. 4774-4778
    • Tao, H.C.1    Li, W.2    Liang, M.3    Xu, N.4    Ni, J.R.5    Wu, W.M.6
  • 15
    • 84875147230 scopus 로고    scopus 로고
    • Iron-oxide minerals affect extracellular electron-transfer paths of Geobacter spp
    • S. Kato, K. Hashimoto, and K. Watanabe Iron-oxide minerals affect extracellular electron-transfer paths of Geobacter spp Microbes Environ. 28 1 2013 141 148
    • (2013) Microbes Environ. , vol.28 , Issue.1 , pp. 141-148
    • Kato, S.1    Hashimoto, K.2    Watanabe, K.3
  • 17
    • 33745225414 scopus 로고    scopus 로고
    • Bug juice: Harvesting electricity with microorganisms
    • D.R. Lovley Bug juice: harvesting electricity with microorganisms Nat. Rev. Microbiol. 4 7 2006 497 508
    • (2006) Nat. Rev. Microbiol. , vol.4 , Issue.7 , pp. 497-508
    • Lovley, D.R.1
  • 19
    • 47149083475 scopus 로고    scopus 로고
    • Effects of heavy metal pollution on the soil microbial activity
    • C.O. Nwuche, and E.O. Ugoji Effects of heavy metal pollution on the soil microbial activity Int. J. Environ. Sci. Technol. 5 3 2008 409 414
    • (2008) Int. J. Environ. Sci. Technol. , vol.5 , Issue.3 , pp. 409-414
    • Nwuche, C.O.1    Ugoji, E.O.2
  • 20
    • 84874593070 scopus 로고    scopus 로고
    • Enzyme inhibition by metal complexes: Concepts, strategies and applications
    • K.J. Kilpin, and P.J. Dyson Enzyme inhibition by metal complexes: concepts, strategies and applications Chem. Sci. 4 4 2013 1410 1419
    • (2013) Chem. Sci. , vol.4 , Issue.4 , pp. 1410-1419
    • Kilpin, K.J.1    Dyson, P.J.2
  • 21
    • 84859218697 scopus 로고    scopus 로고
    • Effect of increasing anodic NaCl concentration on microbial fuel cell performance
    • O. Lefebvre, Z. Tan, S. Kharkwal, and H.Y. Ng Effect of increasing anodic NaCl concentration on microbial fuel cell performance Bioresour. Technol. 112 2012 336 340
    • (2012) Bioresour. Technol. , vol.112 , pp. 336-340
    • Lefebvre, O.1    Tan, Z.2    Kharkwal, S.3    Ng, H.Y.4
  • 22
    • 84877084652 scopus 로고    scopus 로고
    • Microbial bioanodes with high salinity tolerance for microbial fuel cells and microbial electrolysis cells
    • R. Rousseau, X. Dominguez-Benetton, M.L. Délia, and A. Bergel Microbial bioanodes with high salinity tolerance for microbial fuel cells and microbial electrolysis cells Electrochem. Commun. 33 2013 1 4
    • (2013) Electrochem. Commun. , vol.33 , pp. 1-4
    • Rousseau, R.1    Dominguez-Benetton, X.2    Délia, M.L.3    Bergel, A.4
  • 23
    • 78649904780 scopus 로고    scopus 로고
    • Effect of the electron-acceptors on the performance of a MFC
    • M.A. Rodrigo, P. Cañizares, and J. Lobato Effect of the electron-acceptors on the performance of a MFC Bioresour. Technol. 101 18 2010 7014 7018
    • (2010) Bioresour. Technol. , vol.101 , Issue.18 , pp. 7014-7018
    • Rodrigo, M.A.1    Cañizares, P.2    Lobato, J.3
  • 24
    • 84870526742 scopus 로고    scopus 로고
    • Synergetic interactions improve cobalt leaching from lithium cobalt oxide in microbial fuel cells
    • L. Huang, T. Li, C. Liu, X. Quan, L. Chen, A. Wang, and G. Chen Synergetic interactions improve cobalt leaching from lithium cobalt oxide in microbial fuel cells Bioresour. Technol. 128 2013 539 546
    • (2013) Bioresour. Technol. , vol.128 , pp. 539-546
    • Huang, L.1    Li, T.2    Liu, C.3    Quan, X.4    Chen, L.5    Wang, A.6    Chen, G.7
  • 25
    • 78650696698 scopus 로고    scopus 로고
    • Understanding the role of Fe(III)/Fe(II) couple in mediating reductive transformation of 2-nitrophenol in microbial fuel cells
    • C. Feng, F. Li, K. Sun, Y. Liu, L. Liu, X. Yue, and H. Tong Understanding the role of Fe(III)/Fe(II) couple in mediating reductive transformation of 2-nitrophenol in microbial fuel cells Bioresour. Technol. 102 2 2011 1131 1136
    • (2011) Bioresour. Technol. , vol.102 , Issue.2 , pp. 1131-1136
    • Feng, C.1    Li, F.2    Sun, K.3    Liu, Y.4    Liu, L.5    Yue, X.6    Tong, H.7
  • 26
    • 33748562194 scopus 로고    scopus 로고
    • A bipolar membrane combined with ferric iron reduction as an efficient cathode system in microbial fuel cells
    • A. Ter Heijne, H.V. Hamelers, V. De Wilde, R.A. Rozendal, and C.J. Buisman A bipolar membrane combined with ferric iron reduction as an efficient cathode system in microbial fuel cells Environ. Sci. Technol. 40 17 2006 5200 5205
    • (2006) Environ. Sci. Technol. , vol.40 , Issue.17 , pp. 5200-5205
    • Ter Heijne, A.1    Hamelers, H.V.2    De Wilde, V.3    Rozendal, R.A.4    Buisman, C.J.5
  • 27
    • 33748545968 scopus 로고    scopus 로고
    • Effects of membrane cation transport on pH and microbial fuel cell performance
    • R.A. Rozendal, H.V. Hamelers, and C.J. Buisman Effects of membrane cation transport on pH and microbial fuel cell performance Environ. Sci. Technol. 40 17 2006 5206 5211
    • (2006) Environ. Sci. Technol. , vol.40 , Issue.17 , pp. 5206-5211
    • Rozendal, R.A.1    Hamelers, H.V.2    Buisman, C.J.3
  • 28
    • 84883230179 scopus 로고    scopus 로고
    • Competitive migration behaviors of multiple ions and their impacts on ion-exchange resin packed microbial desalination cell
    • K. Zuo, L. Yuan, J. Wei, P. Liang, and X. Huang Competitive migration behaviors of multiple ions and their impacts on ion-exchange resin packed microbial desalination cell Bioresour. Technol. 146 2013 637 642
    • (2013) Bioresour. Technol. , vol.146 , pp. 637-642
    • Zuo, K.1    Yuan, L.2    Wei, J.3    Liang, P.4    Huang, X.5
  • 29
    • 84860551236 scopus 로고    scopus 로고
    • Ionic composition and transport mechanisms in microbial desalination cells
    • H. Luo, P. Xu, P.E. Jenkins, and Z. Ren Ionic composition and transport mechanisms in microbial desalination cells J. Membr. Sci. 409 2012 16 23
    • (2012) J. Membr. Sci. , vol.409 , pp. 16-23
    • Luo, H.1    Xu, P.2    Jenkins, P.E.3    Ren, Z.4
  • 31
    • 34547115010 scopus 로고    scopus 로고
    • Silver nanoparticles immobilized on thin film composite polyamide membrane: Characterization, nanofiltration, antifouling properties
    • S.Y. Lee, H.J. Kim, R. Patel, S.J. Im, J.H. Kim, and B.R. Min Silver nanoparticles immobilized on thin film composite polyamide membrane: characterization, nanofiltration, antifouling properties Polym. Adv. Technol. 18 7 2007 562 568
    • (2007) Polym. Adv. Technol. , vol.18 , Issue.7 , pp. 562-568
    • Lee, S.Y.1    Kim, H.J.2    Patel, R.3    Im, S.J.4    Kim, J.H.5    Min, B.R.6
  • 33
    • 77951022037 scopus 로고    scopus 로고
    • Preparation and characterization of mSA/mCS bipolar membranes modified by CuTsPc and CuTAPc
    • R.Y. Chen, Z. Chen, X. Zheng, X. Chen, and S.Y. Wu Preparation and characterization of mSA/mCS bipolar membranes modified by CuTsPc and CuTAPc J. Membr. Sci. 355 1 2010 1 6
    • (2010) J. Membr. Sci. , vol.355 , Issue.1 , pp. 1-6
    • Chen, R.Y.1    Chen, Z.2    Zheng, X.3    Chen, X.4    Wu, S.Y.5
  • 36
    • 84858151075 scopus 로고    scopus 로고
    • 2 on power generation from microbial fuel cells with non-catalyzed carbon electrodes and natural inocula
    • 2 on power generation from microbial fuel cells with non-catalyzed carbon electrodes and natural inocula Sol. Energy 86 4 2012 1099 1107
    • (2012) Sol. Energy , vol.86 , Issue.4 , pp. 1099-1107
    • Fuentes-Albarrán, C.1    Del Razo, A.2    Juarez, K.3    Alvarez-Gallegos, A.4
  • 38
    • 79251628890 scopus 로고    scopus 로고
    • A pilot-scale study on utilizing multi-anode/cathode microbial fuel cells (MAC MFCs) to enhance the power production in wastewater treatment
    • D. Jiang, M. Curtis, E. Troop, K. Scheible, J. McGrath, B. Hu, S. Suib, D. Raymond, and B. Li A pilot-scale study on utilizing multi-anode/cathode microbial fuel cells (MAC MFCs) to enhance the power production in wastewater treatment Int. J. Hydrog. Energ. 36 1 2011 876 884
    • (2011) Int. J. Hydrog. Energ. , vol.36 , Issue.1 , pp. 876-884
    • Jiang, D.1    Curtis, M.2    Troop, E.3    Scheible, K.4    McGrath, J.5    Hu, B.6    Suib, S.7    Raymond, D.8    Li, B.9
  • 39
  • 40
    • 77957361045 scopus 로고    scopus 로고
    • Effects of biofouling on ion transport through cation exchange membranes and microbial fuel cell performance
    • M.J. Choi, K.J. Chae, F.F. Ajayi, K.Y. Kim, H.W. Yu, C.W. Kim, and I.S. Kim Effects of biofouling on ion transport through cation exchange membranes and microbial fuel cell performance Bioresour. Technol. 102 1 2011 298 303
    • (2011) Bioresour. Technol. , vol.102 , Issue.1 , pp. 298-303
    • Choi, M.J.1    Chae, K.J.2    Ajayi, F.F.3    Kim, K.Y.4    Yu, H.W.5    Kim, C.W.6    Kim, I.S.7
  • 45
    • 84897610234 scopus 로고    scopus 로고
    • The role of electrode material in capturing power generated in Pseudomonas catalysed fuel cells
    • J. Jayapriya, and V. Ramamurthy The role of electrode material in capturing power generated in Pseudomonas catalysed fuel cells Can. J. Chem. Eng. 92 4 2014 610 614
    • (2014) Can. J. Chem. Eng. , vol.92 , Issue.4 , pp. 610-614
    • Jayapriya, J.1    Ramamurthy, V.2
  • 46
  • 47
    • 84879246892 scopus 로고    scopus 로고
    • Increase of power output by change of ion transport direction in a plant microbial fuel cell
    • R.A. Timmers, D.P. Strik, H.V. Hamelers, and C.J. Buisman Increase of power output by change of ion transport direction in a plant microbial fuel cell Int. J. Energ. Res. 37 9 2013 1103 1111
    • (2013) Int. J. Energ. Res. , vol.37 , Issue.9 , pp. 1103-1111
    • Timmers, R.A.1    Strik, D.P.2    Hamelers, H.V.3    Buisman, C.J.4
  • 49
    • 84862791550 scopus 로고    scopus 로고
    • Capacitive deionization coupled with microbial fuel cells to desalinate low-concentration salt water
    • L. Yuan, X. Yang, P. Liang, L. Wang, Z.H. Huang, J. Wei, and X. Huang Capacitive deionization coupled with microbial fuel cells to desalinate low-concentration salt water Bioresour. Technol. 110 2012 735 738
    • (2012) Bioresour. Technol. , vol.110 , pp. 735-738
    • Yuan, L.1    Yang, X.2    Liang, P.3    Wang, L.4    Huang, Z.H.5    Wei, J.6    Huang, X.7
  • 51
    • 84870746015 scopus 로고    scopus 로고
    • Microbial desalination cells for energy production and desalination
    • Y. Kim, and B.E. Logan Microbial desalination cells for energy production and desalination Desalination 308 2013 122 130
    • (2013) Desalination , vol.308 , pp. 122-130
    • Kim, Y.1    Logan, B.E.2
  • 52
    • 84877353684 scopus 로고    scopus 로고
    • Improving water desalination by hydraulically coupling an osmotic microbial fuel cell with a microbial desalination cell
    • B. Zhang, and Z. He Improving water desalination by hydraulically coupling an osmotic microbial fuel cell with a microbial desalination cell J. Membr. Sci. 441 2013 18 24
    • (2013) J. Membr. Sci. , vol.441 , pp. 18-24
    • Zhang, B.1    He, Z.2
  • 53
    • 84864566697 scopus 로고    scopus 로고
    • Microbial desalination cell with capacitive adsorption for ion migration control
    • C. Forrestal, P. Xu, P.E. Jenkins, and Z. Ren Microbial desalination cell with capacitive adsorption for ion migration control Bioresour. Technol. 120 2012 332 336
    • (2012) Bioresour. Technol. , vol.120 , pp. 332-336
    • Forrestal, C.1    Xu, P.2    Jenkins, P.E.3    Ren, Z.4
  • 54
    • 84860352367 scopus 로고    scopus 로고
    • Sustainable desalination using a microbial capacitive desalination cell
    • C. Forrestal, P. Xu, and Z. Ren Sustainable desalination using a microbial capacitive desalination cell Energ. Environ. Sci. 5 5 2012 7161 7167
    • (2012) Energ. Environ. Sci. , vol.5 , Issue.5 , pp. 7161-7167
    • Forrestal, C.1    Xu, P.2    Ren, Z.3
  • 55
    • 84870916681 scopus 로고    scopus 로고
    • Water softening using microbial desalination cell technology
    • K.S. Brastad, and Z. He Water softening using microbial desalination cell technology Desalination 309 2013 32 37
    • (2013) Desalination , vol.309 , pp. 32-37
    • Brastad, K.S.1    He, Z.2
  • 57
    • 84863229525 scopus 로고    scopus 로고
    • Development of the microbial electrolysis desalination and chemical-production cell for desalination as well as acid and alkali productions
    • S. Chen, G. Liu, R. Zhang, B. Qin, and Y. Luo Development of the microbial electrolysis desalination and chemical-production cell for desalination as well as acid and alkali productions Environ. Sci. Technol. 46 4 2012 2467 2472
    • (2012) Environ. Sci. Technol. , vol.46 , Issue.4 , pp. 2467-2472
    • Chen, S.1    Liu, G.2    Zhang, R.3    Qin, B.4    Luo, Y.5
  • 58
    • 78650700266 scopus 로고    scopus 로고
    • Concurrent desalination and hydrogen generation using microbial electrolysis and desalination cells
    • H. Luo, P.E. Jenkins, and Z. Ren Concurrent desalination and hydrogen generation using microbial electrolysis and desalination cells Environ. Sci. Technol. 45 1 2010 340 344
    • (2010) Environ. Sci. Technol. , vol.45 , Issue.1 , pp. 340-344
    • Luo, H.1    Jenkins, P.E.2    Ren, Z.3
  • 59
    • 84861672229 scopus 로고    scopus 로고
    • Improved performance of the microbial electrolysis desalination and chemical-production cell using the stack structure
    • S. Chen, G. Liu, R. Zhang, B. Qin, Y. Luo, and Y. Hou Improved performance of the microbial electrolysis desalination and chemical-production cell using the stack structure Bioresour. Technol. 116 2012 507 511
    • (2012) Bioresour. Technol. , vol.116 , pp. 507-511
    • Chen, S.1    Liu, G.2    Zhang, R.3    Qin, B.4    Luo, Y.5    Hou, Y.6
  • 60
    • 77957068564 scopus 로고    scopus 로고
    • Using microbial desalination cells to reduce water salinity prior to reverse osmosis
    • M. Mehanna, T. Saito, J. Yan, M. Hickner, X. Cao, X. Huang, and B.E. Logan Using microbial desalination cells to reduce water salinity prior to reverse osmosis Energ. Environ. Sci. 3 8 2010 1114 1120
    • (2010) Energ. Environ. Sci. , vol.3 , Issue.8 , pp. 1114-1120
    • Mehanna, M.1    Saito, T.2    Yan, J.3    Hickner, M.4    Cao, X.5    Huang, X.6    Logan, B.E.7
  • 61
    • 79953848195 scopus 로고    scopus 로고
    • Stacked microbial desalination cells to enhance water desalination efficiency
    • X. Chen, X. Xia, P. Liang, X. Cao, H. Sun, and X. Huang Stacked microbial desalination cells to enhance water desalination efficiency Environ. Sci. Technol. 45 6 2011 2465 2470
    • (2011) Environ. Sci. Technol. , vol.45 , Issue.6 , pp. 2465-2470
    • Chen, X.1    Xia, X.2    Liang, P.3    Cao, X.4    Sun, H.5    Huang, X.6
  • 62
    • 84890486844 scopus 로고    scopus 로고
    • Eco-affectionate face of microbial fuel cells
    • A.S. Mathuriya Eco-affectionate face of microbial fuel cells Crit. Rev. Environ. Sci. Technol. 44 2 2014 97 153
    • (2014) Crit. Rev. Environ. Sci. Technol. , vol.44 , Issue.2 , pp. 97-153
    • Mathuriya, A.S.1
  • 63
    • 79956041957 scopus 로고    scopus 로고
    • Use of a liter-scale microbial desalination cell as a platform to study bioelectrochemical desalination with salt solution or artificial seawater
    • K.S. Jacobson, D.M. Drew, and Z. He Use of a liter-scale microbial desalination cell as a platform to study bioelectrochemical desalination with salt solution or artificial seawater Environ. Sci. Technol. 45 10 2011 4652 4657
    • (2011) Environ. Sci. Technol. , vol.45 , Issue.10 , pp. 4652-4657
    • Jacobson, K.S.1    Drew, D.M.2    He, Z.3
  • 64
    • 84888015677 scopus 로고    scopus 로고
    • A comprehensive review of microbial electrochemical systems as a platform technology
    • H. Wang, and Z.J. Ren A comprehensive review of microbial electrochemical systems as a platform technology Biotechnol. Adv. 31 8 2013 1796 1807
    • (2013) Biotechnol. Adv. , vol.31 , Issue.8 , pp. 1796-1807
    • Wang, H.1    Ren, Z.J.2
  • 66
    • 77957762105 scopus 로고    scopus 로고
    • Gold/mesoporous silica-fiber core-shell hybrid nanostructure: A potential electron transfer mediator in a bio-electrochemical system
    • H. Kang, Y. Zhu, X. Yang, J. Shen, C. Chen, and C. Li Gold/mesoporous silica-fiber core-shell hybrid nanostructure: a potential electron transfer mediator in a bio-electrochemical system New J. Chem. 34 10 2010 2166 2175
    • (2010) New J. Chem. , vol.34 , Issue.10 , pp. 2166-2175
    • Kang, H.1    Zhu, Y.2    Yang, X.3    Shen, J.4    Chen, C.5    Li, C.6
  • 67
    • 33750196473 scopus 로고    scopus 로고
    • Interfacing electrocatalysis and biocatalysis with tungsten carbide: A high-performance, noble-metal-free microbial fuel cell
    • M. Rosenbaum, F. Zhao, U. Schröder, and F. Scholz Interfacing electrocatalysis and biocatalysis with tungsten carbide: a high-performance, noble-metal-free microbial fuel cell Angew. Chem. Int. Ed. 45 40 2006 6658 6661
    • (2006) Angew. Chem. Int. Ed. , vol.45 , Issue.40 , pp. 6658-6661
    • Rosenbaum, M.1    Zhao, F.2    Schröder, U.3    Scholz, F.4
  • 68
    • 82355163554 scopus 로고    scopus 로고
    • Negative faradaic resistance in extracellular electron transfer by anode-respiring Geobacter sulfurreducens cells
    • S. Matsuda, H. Liu, S. Kato, K. Hashimoto, and S. Nakanishi Negative faradaic resistance in extracellular electron transfer by anode-respiring Geobacter sulfurreducens cells Environ. Sci. Technol. 45 23 2011 10163 10169
    • (2011) Environ. Sci. Technol. , vol.45 , Issue.23 , pp. 10163-10169
    • Matsuda, S.1    Liu, H.2    Kato, S.3    Hashimoto, K.4    Nakanishi, S.5
  • 70
    • 0347954539 scopus 로고
    • Solvent dynamical effects in electron transfer: Evaluation of electronic matrix coupling elements for metallocene self-exchange reactions
    • G.E. McManis, R.M. Nielson, A. Gochev, and M.J. Weaver Solvent dynamical effects in electron transfer: evaluation of electronic matrix coupling elements for metallocene self-exchange reactions J. Am. Chem. Soc. 111 15 1989 5533 5541
    • (1989) J. Am. Chem. Soc. , vol.111 , Issue.15 , pp. 5533-5541
    • McManis, G.E.1    Nielson, R.M.2    Gochev, A.3    Weaver, M.J.4
  • 71
    • 0037419899 scopus 로고    scopus 로고
    • Charge transport effects in ferrocene-streptavidin multilayers immobilized on electrode surfaces
    • B. Steiger, C. Padeste, A. Grubelnik, and L. Tiefenauer Charge transport effects in ferrocene-streptavidin multilayers immobilized on electrode surfaces Electrochim. Acta 48 6 2003 761 769
    • (2003) Electrochim. Acta , vol.48 , Issue.6 , pp. 761-769
    • Steiger, B.1    Padeste, C.2    Grubelnik, A.3    Tiefenauer, L.4
  • 72
    • 4043132978 scopus 로고    scopus 로고
    • 3- interface for the design of a NAD-dependent reagentless biosensor
    • 3- interface for the design of a NAD-dependent reagentless biosensor Biosens. Bioelectron. 20 2 2004 204 210
    • (2004) Biosens. Bioelectron. , vol.20 , Issue.2 , pp. 204-210
    • Gros, P.1    Comtat, M.2
  • 73
    • 0035155842 scopus 로고    scopus 로고
    • 3- as pseudo-reference electrode: Application for amperometric biosensors
    • 3- as pseudo-reference electrode: application for amperometric biosensors Electrochim. Acta 46 5 2001 643 650
    • (2001) Electrochim. Acta , vol.46 , Issue.5 , pp. 643-650
    • Gros, P.1    Durliat, H.2    Comtat, M.3
  • 74
    • 84863554625 scopus 로고    scopus 로고
    • Anodic Fenton process assisted by a microbial fuel cell for enhanced degradation of organic pollutants
    • X.W. Liu, X.F. Sun, D.B. Li, W.W. Li, Y.X. Huang, G.P. Sheng, and H.Q. Yu Anodic Fenton process assisted by a microbial fuel cell for enhanced degradation of organic pollutants Water Res. 46 14 2012 4371 4378
    • (2012) Water Res. , vol.46 , Issue.14 , pp. 4371-4378
    • Liu, X.W.1    Sun, X.F.2    Li, D.B.3    Li, W.W.4    Huang, Y.X.5    Sheng, G.P.6    Yu, H.Q.7
  • 75
    • 36849065283 scopus 로고    scopus 로고
    • Electricity generation from synthetic acid-mine drainage (AMD) water using fuel cell technologies
    • S. Cheng, B.A. Dempsey, and B.E. Logan Electricity generation from synthetic acid-mine drainage (AMD) water using fuel cell technologies Environ. Sci. Technol. 41 23 2007 8149 8153
    • (2007) Environ. Sci. Technol. , vol.41 , Issue.23 , pp. 8149-8153
    • Cheng, S.1    Dempsey, B.A.2    Logan, B.E.3
  • 78
    • 84876483413 scopus 로고    scopus 로고
    • Ferric iron enhances electricity generation by Shewanella oneidensis MR-1 in MFCs
    • D. Wu, D. Xing, L. Lu, M. Wei, B. Liu, and N. Ren Ferric iron enhances electricity generation by Shewanella oneidensis MR-1 in MFCs Bioresour. Technol. 135 2013 630 634
    • (2013) Bioresour. Technol. , vol.135 , pp. 630-634
    • Wu, D.1    Xing, D.2    Lu, L.3    Wei, M.4    Liu, B.5    Ren, N.6
  • 79
    • 84884415669 scopus 로고    scopus 로고
    • Effects of ferric iron on the anaerobic treatment and microbial biodiversity in a coupled microbial electrolysis cell (MEC) - Anaerobic reactor
    • J. Zhang, Y. Zhang, X. Quan, and S. Chen Effects of ferric iron on the anaerobic treatment and microbial biodiversity in a coupled microbial electrolysis cell (MEC) - anaerobic reactor Water Res. 47 15 2013 5719 5728
    • (2013) Water Res. , vol.47 , Issue.15 , pp. 5719-5728
    • Zhang, J.1    Zhang, Y.2    Quan, X.3    Chen, S.4
  • 82
    • 84876566480 scopus 로고    scopus 로고
    • Mechanisms of long-distance extracellular electron transfer of metal-reducing bacteria mediated by nanocolloidal semiconductive iron oxides
    • R. Nakamura, F. Kai, A. Okamoto, and K. Hashimoto Mechanisms of long-distance extracellular electron transfer of metal-reducing bacteria mediated by nanocolloidal semiconductive iron oxides J. Mater. Chem. 1 16 2013 5148
    • (2013) J. Mater. Chem. , vol.1 , Issue.16 , pp. 5148
    • Nakamura, R.1    Kai, F.2    Okamoto, A.3    Hashimoto, K.4
  • 84
    • 80855156803 scopus 로고    scopus 로고
    • 3 nanorod-based composite multilayer film on ITO anode in microbial fuel cell
    • 3 nanorod-based composite multilayer film on ITO anode in microbial fuel cell Colloids Surf. A 390 1-3 2011 56 61
    • (2011) Colloids Surf. A , vol.390 , Issue.13 , pp. 56-61
    • Ji, J.1    Jia, Y.2    Wu, W.3    Bai, L.4    Ge, L.5    Gu, Z.6
  • 86
  • 87
    • 84856284205 scopus 로고    scopus 로고
    • Enhanced performance and mechanism study of microbial electrolysis cells using Fe nanoparticle-decorated anodes
    • S. Xu, H. Liu, Y. Fan, R. Schaller, J. Jiao, and F. Chaplen Enhanced performance and mechanism study of microbial electrolysis cells using Fe nanoparticle-decorated anodes Appl. Microbiol. Biotechnol. 93 2 2012 871 880
    • (2012) Appl. Microbiol. Biotechnol. , vol.93 , Issue.2 , pp. 871-880
    • Xu, S.1    Liu, H.2    Fan, Y.3    Schaller, R.4    Jiao, J.5    Chaplen, F.6
  • 90
    • 0037401672 scopus 로고    scopus 로고
    • Biological and medicinal aspects of vanadium
    • D. Rehder Biological and medicinal aspects of vanadium Inorg. Chem. Commun. 6 5 2003 604 617
    • (2003) Inorg. Chem. Commun. , vol.6 , Issue.5 , pp. 604-617
    • Rehder, D.1
  • 91
    • 1842688143 scopus 로고    scopus 로고
    • Vanadium(V) adsorption onto goethite (α-FeOOH) at pH 1.5 to 12: A surface complexation model based on ab initio molecular geometries and EXAFS spectroscopy
    • C.L. Peacock, and D.M. Sherman Vanadium(V) adsorption onto goethite (α-FeOOH) at pH 1.5 to 12: a surface complexation model based on ab initio molecular geometries and EXAFS spectroscopy Geochim. Cosmochim. Acta 68 8 2004 1723 1733
    • (2004) Geochim. Cosmochim. Acta , vol.68 , Issue.8 , pp. 1723-1733
    • Peacock, C.L.1    Sherman, D.M.2
  • 92
    • 2442638056 scopus 로고    scopus 로고
    • Vanadium respiration by Geobacter metallireducens: Novel strategy for in situ removal of vanadium from groundwater
    • I. Ortiz-Bernad, R.T. Anderson, H.A. Vrionis, and D.R. Lovley Vanadium respiration by Geobacter metallireducens: novel strategy for in situ removal of vanadium from groundwater Appl. Environ. Microb. 70 5 2004 3091 3095
    • (2004) Appl. Environ. Microb. , vol.70 , Issue.5 , pp. 3091-3095
    • Ortiz-Bernad, I.1    Anderson, R.T.2    Vrionis, H.A.3    Lovley, D.R.4
  • 94
    • 70449099193 scopus 로고    scopus 로고
    • Dissimilatory reduction process of vanadium (V) in metallurgical wastewater by Rhodoferax ferrireducens
    • H.R. Li, Y.L. Feng, X.Y. Zou, and X.B. Luo Dissimilatory reduction process of vanadium (V) in metallurgical wastewater by Rhodoferax ferrireducens Chin. J. Nonferrous Metals 9 2009 030
    • (2009) Chin. J. Nonferrous Metals , vol.9 , pp. 030
    • Li, H.R.1    Feng, Y.L.2    Zou, X.Y.3    Luo, X.B.4
  • 95
    • 34447305170 scopus 로고    scopus 로고
    • Catalytic Efficiency of vanadyl compound in a microbial fuel cell constructed with Rhodoferax ferrireducens
    • S.H. Li, Z.W. Du, X.Y. Zhu, W. Liu, D.X. Fu, and H.R. Li Catalytic Efficiency of vanadyl compound in a microbial fuel cell constructed with Rhodoferax ferrireducens Chin. J. Prog. Eng. 7 3 2007 593
    • (2007) Chin. J. Prog. Eng. , vol.7 , Issue.3 , pp. 593
    • Li, S.H.1    Du, Z.W.2    Zhu, X.Y.3    Liu, W.4    Fu, D.X.5    Li, H.R.6
  • 96
    • 79958204020 scopus 로고    scopus 로고
    • Sulfonated polyaniline/vanadate composite as anode material and its electrochemical property in microbial fuel cells on ocean floor
    • Y. Fu, Z. Zhao, J. Liu, K. Li, Q. Xu, and S. Zhang Sulfonated polyaniline/vanadate composite as anode material and its electrochemical property in microbial fuel cells on ocean floor Sci. China Chem. 54 5 2011 844 849
    • (2011) Sci. China Chem. , vol.54 , Issue.5 , pp. 844-849
    • Fu, Y.1    Zhao, Z.2    Liu, J.3    Li, K.4    Xu, Q.5    Zhang, S.6
  • 98
    • 0025366526 scopus 로고
    • Cross-linked redox gels containing glucose oxidase for amperometric biosensor applications
    • B.A. Gregg, and A. Heller Cross-linked redox gels containing glucose oxidase for amperometric biosensor applications Anal. Chem. 62 3 1990 258 263
    • (1990) Anal. Chem. , vol.62 , Issue.3 , pp. 258-263
    • Gregg, B.A.1    Heller, A.2
  • 99
    • 0002390657 scopus 로고
    • Effect of composition of polymer backbone on spectroscopic and electrochemical properties of ruthenium (II) bis (2, 2′-bipyridyl) containing 4-vinylpyridine/styrene copolymers
    • D. Leech, R.J. Forster, M.R. Smyth, and J.G. Vos Effect of composition of polymer backbone on spectroscopic and electrochemical properties of ruthenium (II) bis (2, 2′-bipyridyl) containing 4-vinylpyridine/styrene copolymers J. Mater. Chem. 1 4 1991 629 635
    • (1991) J. Mater. Chem. , vol.1 , Issue.4 , pp. 629-635
    • Leech, D.1    Forster, R.J.2    Smyth, M.R.3    Vos, J.G.4
  • 100
    • 1142309583 scopus 로고    scopus 로고
    • Targetting redox polymers as mediators for laccase oxygen reduction in a membrane-less biofuel cell
    • F. Barrière, Y. Ferry, D. Rochefort, and D. Leech Targetting redox polymers as mediators for laccase oxygen reduction in a membrane-less biofuel cell Electrochem. Commun. 6 3 2004 237 241
    • (2004) Electrochem. Commun. , vol.6 , Issue.3 , pp. 237-241
    • Barrière, F.1    Ferry, Y.2    Rochefort, D.3    Leech, D.4
  • 103
    • 0037059177 scopus 로고    scopus 로고
    • Redox driven swelling of layer-by-layer enzyme-polyelectrolyte multilayers
    • E.S. Forzani, M.A. Pérez, M. López Teijelo, and E.J. Calvo Redox driven swelling of layer-by-layer enzyme-polyelectrolyte multilayers Langmuir 18 25 2002 9867 9873
    • (2002) Langmuir , vol.18 , Issue.25 , pp. 9867-9873
    • Forzani, E.S.1    Pérez, M.A.2    López Teijelo, M.3    Calvo, E.J.4
  • 104
    • 0037462122 scopus 로고    scopus 로고
    • Long tethers binding redox centers to polymer backbones enhance electron transport in enzyme "wiring" hydrogels
    • F. Mao, N. Mano, and A. Heller Long tethers binding redox centers to polymer backbones enhance electron transport in enzyme "wiring" hydrogels J. Am. Chem. Soc. 125 16 2003 4951 4957
    • (2003) J. Am. Chem. Soc. , vol.125 , Issue.16 , pp. 4951-4957
    • Mao, F.1    Mano, N.2    Heller, A.3
  • 105
    • 0036495884 scopus 로고    scopus 로고
    • Electrodeposition of Redox Polymers and Co-Electrodeposition of Enzymes by Coordinative Crosslinking
    • Z. Gao, G. Binyamin, H.H. Kim, S.C. Barton, Y. Zhang, and A. Heller Electrodeposition of Redox Polymers and Co-Electrodeposition of Enzymes by Coordinative Crosslinking Angew. Chem. Int. Ed. 41 5 2002 810 813
    • (2002) Angew. Chem. Int. Ed. , vol.41 , Issue.5 , pp. 810-813
    • Gao, Z.1    Binyamin, G.2    Kim, H.H.3    Barton, S.C.4    Zhang, Y.5    Heller, A.6
  • 107
    • 7544227821 scopus 로고    scopus 로고
    • Enzymatic biofuel cells for implantable and microscale devices
    • S. Calabrese Barton, J. Gallaway, and P. Atanassov Enzymatic biofuel cells for implantable and microscale devices Chem. Rev. 104 10 2004 4867 4886
    • (2004) Chem. Rev. , vol.104 , Issue.10 , pp. 4867-4886
    • Calabrese Barton, S.1    Gallaway, J.2    Atanassov, P.3
  • 108
    • 84866657416 scopus 로고    scopus 로고
    • Improved microbial electrocatalysis with osmium polymer modified electrodes
    • S.A. Patil, K. Hasan, D. Leech, C. Hägerhäll, and L. Gorton Improved microbial electrocatalysis with osmium polymer modified electrodes Chem. Commun. 48 82 2012 10183 10185
    • (2012) Chem. Commun. , vol.48 , Issue.82 , pp. 10183-10185
    • Patil, S.A.1    Hasan, K.2    Leech, D.3    Hägerhäll, C.4    Gorton, L.5
  • 109
    • 0038281980 scopus 로고
    • A review of the immobilization of enzymes in electropolymerized films
    • P.N. Barlett, and J.M. Cooper A review of the immobilization of enzymes in electropolymerized films J. Electroanal. Chem. 362 1 1993 1 12
    • (1993) J. Electroanal. Chem. , vol.362 , Issue.1 , pp. 1-12
    • Barlett, P.N.1    Cooper, J.M.2
  • 111
    • 34548497886 scopus 로고    scopus 로고
    • Electrical wiring of Pseudomonas putida and Pseudomonas fluorescens with osmium redox polymers
    • S. Timur, B. Haghighi, J. Tkac, N. PazarlIoʇlu, A. Telefoncu, and L. Gorton Electrical wiring of Pseudomonas putida and Pseudomonas fluorescens with osmium redox polymers Bioelectrochemistry 71 1 2007 38 45
    • (2007) Bioelectrochemistry , vol.71 , Issue.1 , pp. 38-45
    • Timur, S.1    Haghighi, B.2    Tkac, J.3    Pazarlioʇlu, N.4    Telefoncu, A.5    Gorton, L.6
  • 112
    • 78650593044 scopus 로고    scopus 로고
    • Electron transfer from Proteus vulgaris to a covalently assembled, single walled carbon nanotube electrode functionalised with osmium bipyridine complex: Application to a whole cell biosensor
    • F.J. Rawson, D.J. Garrett, D. Leech, A.J. Downard, and K.H. Baronian Electron transfer from Proteus vulgaris to a covalently assembled, single walled carbon nanotube electrode functionalised with osmium bipyridine complex: Application to a whole cell biosensor Biosens. Bioelectron. 26 5 2011 2383 2389
    • (2011) Biosens. Bioelectron. , vol.26 , Issue.5 , pp. 2383-2389
    • Rawson, F.J.1    Garrett, D.J.2    Leech, D.3    Downard, A.J.4    Baronian, K.H.5
  • 113
    • 33344469475 scopus 로고    scopus 로고
    • Co-catalytic effect of nanostructured ruthenium oxide towards electro-oxidation of methanol and carbon monoxide
    • W. Sugimoto, T. Saida, and Y. Takasu Co-catalytic effect of nanostructured ruthenium oxide towards electro-oxidation of methanol and carbon monoxide Electrochem. Commun. 8 3 2006 411 415
    • (2006) Electrochem. Commun. , vol.8 , Issue.3 , pp. 411-415
    • Sugimoto, W.1    Saida, T.2    Takasu, Y.3
  • 114
    • 84860523790 scopus 로고    scopus 로고
    • Ruthenium oxide-coated carbon felt electrode: A highly active anode for microbial fuel cell applications
    • Z. Lv, D. Xie, X. Yue, C. Feng, and C. Wei Ruthenium oxide-coated carbon felt electrode: A highly active anode for microbial fuel cell applications J. Power Sources 210 2012 26 31
    • (2012) J. Power Sources , vol.210 , pp. 26-31
    • Lv, Z.1    Xie, D.2    Yue, X.3    Feng, C.4    Wei, C.5
  • 115
    • 84883332913 scopus 로고    scopus 로고
    • Microbial fuel cell as a biocapacitor by using pseudo-capacitive anode materials
    • Z. Lv, D. Xie, F. Li, Y. Hu, C. Wei, and C. Feng Microbial fuel cell as a biocapacitor by using pseudo-capacitive anode materials J. Power Sources 246 2014 642 649
    • (2014) J. Power Sources , vol.246 , pp. 642-649
    • Lv, Z.1    Xie, D.2    Li, F.3    Hu, Y.4    Wei, C.5    Feng, C.6
  • 116
    • 78650586403 scopus 로고    scopus 로고
    • Nanoparticle decorated anodes for enhanced current generation in microbial electrochemical cells
    • Y. Fan, S. Xu, R. Schaller, J. Jiao, F. Chaplen, and H. Liu Nanoparticle decorated anodes for enhanced current generation in microbial electrochemical cells Biosens. Bioelectron. 26 5 2011 1908 1912
    • (2011) Biosens. Bioelectron. , vol.26 , Issue.5 , pp. 1908-1912
    • Fan, Y.1    Xu, S.2    Schaller, R.3    Jiao, J.4    Chaplen, F.5    Liu, H.6
  • 117
    • 84880153442 scopus 로고    scopus 로고
    • Oleylamine-stabilized gold nanostructures for bioelectronic assembly. Direct electrochemistry of cytochrome c
    • E. Koposova, A. Kisner, G. Shumilova, Y. Ermolenko, A. Offenhaüsser, and Y. Mourzina Oleylamine-stabilized gold nanostructures for bioelectronic assembly. Direct electrochemistry of cytochrome c J. Phys. Chem. C 117 27 2013 13944 13951
    • (2013) J. Phys. Chem. C , vol.117 , Issue.27 , pp. 13944-13951
    • Koposova, E.1    Kisner, A.2    Shumilova, G.3    Ermolenko, Y.4    Offenhaüsser, A.5    Mourzina, Y.6
  • 118
    • 84885571702 scopus 로고    scopus 로고
    • High power density microbial fuel cell with flexible 3D graphene-nickel foam as anode
    • H. Wang, G. Wang, Y. Ling, F. Qian, Y. Song, X. Lu, S. Chen, Y. Tong, and Y. Li High power density microbial fuel cell with flexible 3D graphene-nickel foam as anode Nanoscale 5 21 2013 10283 10290
    • (2013) Nanoscale , vol.5 , Issue.21 , pp. 10283-10290
    • Wang, H.1    Wang, G.2    Ling, Y.3    Qian, F.4    Song, Y.5    Lu, X.6    Chen, S.7    Tong, Y.8    Li, Y.9
  • 119
    • 14644399273 scopus 로고    scopus 로고
    • Electricity generation from cysteine in a microbial fuel cell
    • B.E. Logan, C. Murano, K. Scott, N.D. Gray, and I.M. Head Electricity generation from cysteine in a microbial fuel cell Water Res. 39 5 2005 942 952
    • (2005) Water Res. , vol.39 , Issue.5 , pp. 942-952
    • Logan, B.E.1    Murano, C.2    Scott, K.3    Gray, N.D.4    Head, I.M.5
  • 121
    • 0012025444 scopus 로고
    • Thin-layer spectroelectrochemical study of the reversible reaction between nicotinamide adenine dinucleotide and flavin adenine dinucleotide
    • A. Bergel, and M. Comtat Thin-layer spectroelectrochemical study of the reversible reaction between nicotinamide adenine dinucleotide and flavin adenine dinucleotide J. Electroanal. Chem. Interface 302 1 1991 219 231
    • (1991) J. Electroanal. Chem. Interface , vol.302 , Issue.1 , pp. 219-231
    • Bergel, A.1    Comtat, M.2
  • 122
    • 84904437646 scopus 로고    scopus 로고
    • Electroanal. of microbial anodes for bioelectrochemical systems: Basics, progress and perspectives
    • M. Rimboud, D. Pocaznoi, B. Erable, and A. Bergel Electroanal. of microbial anodes for bioelectrochemical systems: basics, progress and perspectives Phys. Chem. Chem. Phys. 16 2014 16349 16366
    • (2014) Phys. Chem. Chem. Phys. , vol.16 , pp. 16349-16366
    • Rimboud, M.1    Pocaznoi, D.2    Erable, B.3    Bergel, A.4
  • 123
    • 77956928791 scopus 로고    scopus 로고
    • A gold-sputtered carbon paper as an anode for improved electricity generation from a microbial fuel cell inoculated with Shewanella oneidensis MR-1
    • M. Sun, F. Zhang, Z.H. Tong, G.P. Sheng, Y.Z. Chen, Y. Zhao, Y.P. Chen, S.Y. Zhou, G. Liu, Y.C. Tian, and H.Q. Yu A gold-sputtered carbon paper as an anode for improved electricity generation from a microbial fuel cell inoculated with Shewanella oneidensis MR-1 Biosens. Bioelectron. 26 2 2010 338 343
    • (2010) Biosens. Bioelectron. , vol.26 , Issue.2 , pp. 338-343
    • Sun, M.1    Zhang, F.2    Tong, Z.H.3    Sheng, G.P.4    Chen, Y.Z.5    Zhao, Y.6    Chen, Y.P.7    Zhou, S.Y.8    Liu, G.9    Tian, Y.C.10    Yu, H.Q.11
  • 124
    • 84870259814 scopus 로고    scopus 로고
    • Layer-by-layer assembled gold nanoparticles modified anode and its application in microbial fuel cells
    • W. Guo, Y. Pi, H. Song, W. Tang, and J. Sun Layer-by-layer assembled gold nanoparticles modified anode and its application in microbial fuel cells Colloids Surf. A. 415 2012 105 111
    • (2012) Colloids Surf. A. , vol.415 , pp. 105-111
    • Guo, W.1    Pi, Y.2    Song, H.3    Tang, W.4    Sun, J.5
  • 125
    • 0346220332 scopus 로고    scopus 로고
    • Biotechnological application of metal reducing microorganisms
    • D. Lovley, J.R. Lloyd, and L.E. Macaskie Biotechnological application of metal reducing microorganisms Appl. Microbiol. 53 2003 85 128
    • (2003) Appl. Microbiol. , vol.53 , pp. 85-128
    • Lovley, D.1    Lloyd, J.R.2    Macaskie, L.E.3
  • 127
    • 84888344171 scopus 로고    scopus 로고
    • Effects of bio-Au nanoparticles on electrochemical activity of Shewanella oneidensis wild type and Delta omcA/mtrC mutant
    • R. Wu, L. Cui, L. Chen, C. Wang, C. Cao, G. Sheng, H. Yu, and F. Zhao Effects of bio-Au nanoparticles on electrochemical activity of Shewanella oneidensis wild type and Delta omcA/mtrC mutant Sci. Rep. 3 2013 3307
    • (2013) Sci. Rep. , vol.3 , pp. 3307
    • Wu, R.1    Cui, L.2    Chen, L.3    Wang, C.4    Cao, C.5    Sheng, G.6    Yu, H.7    Zhao, F.8
  • 129
    • 4143130857 scopus 로고    scopus 로고
    • Exploiting complex carbohydrates for microbial electricity generation - A bacterial fuel cell operating on starch
    • J. Niessen, U. Schröder, and F. Scholz Exploiting complex carbohydrates for microbial electricity generation - a bacterial fuel cell operating on starch Electrochem. Commun. 6 9 2004 955 958
    • (2004) Electrochem. Commun. , vol.6 , Issue.9 , pp. 955-958
    • Niessen, J.1    Schröder, U.2    Scholz, F.3
  • 130
    • 17744405443 scopus 로고    scopus 로고
    • A generation of microbial fuel cells with current outputs boosted by more than one order of magnitude
    • U. Schröder, J. Nießen, and F. Scholz A generation of microbial fuel cells with current outputs boosted by more than one order of magnitude Angew. Chem. Int. Ed. 42 25 2003 2880 2883
    • (2003) Angew. Chem. Int. Ed. , vol.42 , Issue.25 , pp. 2880-2883
    • Schröder, U.1    Nießen, J.2    Scholz, F.3
  • 131
    • 43049095141 scopus 로고    scopus 로고
    • Performance of non-porous graphite and titanium-based anodes in microbial fuel cells
    • A. Ter Heijne, H.V. Hamelers, M. Saakes, and C.J. Buisman Performance of non-porous graphite and titanium-based anodes in microbial fuel cells Electrochim. Acta 53 18 2008 5697 5703
    • (2008) Electrochim. Acta , vol.53 , Issue.18 , pp. 5697-5703
    • Ter Heijne, A.1    Hamelers, H.V.2    Saakes, M.3    Buisman, C.J.4
  • 132
    • 34447523820 scopus 로고    scopus 로고
    • Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency
    • U. Schröder Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency Phys. Chem. Chem. Phys. 9 21 2007 2619 2629
    • (2007) Phys. Chem. Chem. Phys. , vol.9 , Issue.21 , pp. 2619-2629
    • Schröder, U.1
  • 133
    • 17444394516 scopus 로고    scopus 로고
    • Evidence for involvement of an electron shuttle in electricity generation by Geothrix fermentans
    • D.R. Bond, and D.R. Lovley Evidence for involvement of an electron shuttle in electricity generation by Geothrix fermentans Appl. Environ. Microb. 71 4 2005 2186 2189
    • (2005) Appl. Environ. Microb. , vol.71 , Issue.4 , pp. 2186-2189
    • Bond, D.R.1    Lovley, D.R.2
  • 134
    • 0036320302 scopus 로고    scopus 로고
    • Impact of electrode composition on electricity generation in a single-compartment fuel cell using Shewanella putrefaciens
    • D. Park, and J. Zeikus Impact of electrode composition on electricity generation in a single-compartment fuel cell using Shewanella putrefaciens Appl. Microbiol. Biotechnol. 59 1 2002 58 61
    • (2002) Appl. Microbiol. Biotechnol. , vol.59 , Issue.1 , pp. 58-61
    • Park, D.1    Zeikus, J.2
  • 135
    • 51149096954 scopus 로고    scopus 로고
    • Harvesting energy from the marine sediment-water interface: III. Kinetic activity of quinone-and antimony-based anode materials
    • D.A. Lowy, and L.M. Tender Harvesting energy from the marine sediment-water interface: III. Kinetic activity of quinone-and antimony-based anode materials J. Power Sources 185 1 2008 70 75
    • (2008) J. Power Sources , vol.185 , Issue.1 , pp. 70-75
    • Lowy, D.A.1    Tender, L.M.2
  • 136
    • 33645889973 scopus 로고    scopus 로고
    • Harvesting energy from the marine sediment-water interface II: Kinetic activity of anode materials
    • D.A. Lowy, L.M. Tender, J.G. Zeikus, D.H. Park, and D.R. Lovley Harvesting energy from the marine sediment-water interface II: kinetic activity of anode materials Biosens. Bioelectron. 21 11 2006 2058 2063
    • (2006) Biosens. Bioelectron. , vol.21 , Issue.11 , pp. 2058-2063
    • Lowy, D.A.1    Tender, L.M.2    Zeikus, J.G.3    Park, D.H.4    Lovley, D.R.5
  • 138
    • 84897068946 scopus 로고    scopus 로고
    • Dynamics of metal uptake by charged soft biointerphases: Impacts of depletion, internalisation, adsorption and excretion
    • J.F. Duval, and E. Rotureau Dynamics of metal uptake by charged soft biointerphases: impacts of depletion, internalisation, adsorption and excretion Phys. Chem. Chem. Phys. 16 16 2014 7401 7416
    • (2014) Phys. Chem. Chem. Phys. , vol.16 , Issue.16 , pp. 7401-7416
    • Duval, J.F.1    Rotureau, E.2
  • 139
    • 0017628882 scopus 로고
    • Microorganisms and heavy metal toxicity
    • G.M. Gadd, and A.J. Griffiths Microorganisms and heavy metal toxicity Microb. Ecol. 4 4 1977 303 317
    • (1977) Microb. Ecol. , vol.4 , Issue.4 , pp. 303-317
    • Gadd, G.M.1    Griffiths, A.J.2
  • 140
    • 84879332109 scopus 로고    scopus 로고
    • A decentralized wastewater treatment system using microbial fuel cell techniques and its response to a copper shock load
    • C. Feng, A. Hu, S. Chen, and C.P. Yu A decentralized wastewater treatment system using microbial fuel cell techniques and its response to a copper shock load Bioresour. Technol. 143 2013 76 82
    • (2013) Bioresour. Technol. , vol.143 , pp. 76-82
    • Feng, C.1    Hu, A.2    Chen, S.3    Yu, C.P.4
  • 141
    • 36749002207 scopus 로고    scopus 로고
    • A novel biomonitoring system using microbial fuel cells
    • M. Kim, M.S. Hyun, G.M. Gadd, and H.J. Kim A novel biomonitoring system using microbial fuel cells J. Environ. Monit. 9 12 2007 1323 1328
    • (2007) J. Environ. Monit. , vol.9 , Issue.12 , pp. 1323-1328
    • Kim, M.1    Hyun, M.S.2    Gadd, G.M.3    Kim, H.J.4
  • 142
    • 77956819000 scopus 로고    scopus 로고
    • Toxicity response of electroactive microbial biofilms - A decisive feature for potential biosensor and power source applications
    • S. Patil, F. Harnisch, and U. Schröder Toxicity response of electroactive microbial biofilms - a decisive feature for potential biosensor and power source applications ChemPhysChem 11 13 2010 2834 2837
    • (2010) ChemPhysChem , vol.11 , Issue.13 , pp. 2834-2837
    • Patil, S.1    Harnisch, F.2    Schröder, U.3
  • 144
    • 56449086528 scopus 로고    scopus 로고
    • Batteryless, wireless sensor powered by a sediment microbial fuel cell
    • C. Donovan, A. Dewan, D. Heo, and H. Beyenal Batteryless, wireless sensor powered by a sediment microbial fuel cell Environ. Sci. Technol. 42 22 2008 8591 8596
    • (2008) Environ. Sci. Technol. , vol.42 , Issue.22 , pp. 8591-8596
    • Donovan, C.1    Dewan, A.2    Heo, D.3    Beyenal, H.4
  • 145
    • 84857645931 scopus 로고    scopus 로고
    • Influence of membrane type, current and potential on the response to chemical toxicants of a microbial fuel cell based biosensor
    • N.E. Stein, H.V. Hamelers, and C.N. Buisman Influence of membrane type, current and potential on the response to chemical toxicants of a microbial fuel cell based biosensor Sens. Actuat. B: Chem. 163 1 2012 1 7
    • (2012) Sens. Actuat. B: Chem. , vol.163 , Issue.1 , pp. 1-7
    • Stein, N.E.1    Hamelers, H.V.2    Buisman, C.N.3
  • 146
    • 67649338423 scopus 로고    scopus 로고
    • Optimization of a Pt-free cathode suitable for practical applications of microbial fuel cells
    • O. Lefebvre, W.K. Ooi, Z. Tang, M. Abdullah-Al-Mamun, D.H. Chua, and H.Y. Ng Optimization of a Pt-free cathode suitable for practical applications of microbial fuel cells Bioresour. Technol. 100 20 2009 4907 4910
    • (2009) Bioresour. Technol. , vol.100 , Issue.20 , pp. 4907-4910
    • Lefebvre, O.1    Ooi, W.K.2    Tang, Z.3    Abdullah-Al-Mamun, M.4    Chua, D.H.5    Ng, H.Y.6
  • 147
    • 64949147260 scopus 로고    scopus 로고
    • Electrochemical reduction of oxygen with iron phthalocyanine in neutral media
    • E.H. Yu, S. Cheng, B.E. Logan, and K. Scott Electrochemical reduction of oxygen with iron phthalocyanine in neutral media J. Appl. Electrochem. 39 5 2009 705 711
    • (2009) J. Appl. Electrochem. , vol.39 , Issue.5 , pp. 705-711
    • Yu, E.H.1    Cheng, S.2    Logan, B.E.3    Scott, K.4
  • 148
    • 27844504697 scopus 로고    scopus 로고
    • Application of pyrolysed iron (II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells
    • F. Zhao, F. Harnisch, U. Schröder, F. Scholz, P. Bogdanoff, and I. Herrmann Application of pyrolysed iron (II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells Electrochem. Commun. 7 12 2005 1405 1410
    • (2005) Electrochem. Commun. , vol.7 , Issue.12 , pp. 1405-1410
    • Zhao, F.1    Harnisch, F.2    Schröder, U.3    Scholz, F.4    Bogdanoff, P.5    Herrmann, I.6
  • 149
    • 84868493751 scopus 로고    scopus 로고
    • Bioelectrochemical treatment of acid mine drainage dominated with iron
    • O. Lefebvre, C.M. Neculita, X. Yue, and H.Y. Ng Bioelectrochemical treatment of acid mine drainage dominated with iron J. Hazard Mater. 241 2012 411 417
    • (2012) J. Hazard Mater. , vol.241 , pp. 411-417
    • Lefebvre, O.1    Neculita, C.M.2    Yue, X.3    Ng, H.Y.4
  • 151
    • 84876881746 scopus 로고    scopus 로고
    • Electron transfer capacity dependence of quinone-mediated Fe(III) reduction and current generation by Klebsiella pneumoniae L17
    • X. Li, L. Liu, T. Liu, T. Yuan, W. Zhang, F. Li, S. Zhou, and Y. Li Electron transfer capacity dependence of quinone-mediated Fe(III) reduction and current generation by Klebsiella pneumoniae L17 Chemosphere 92 2 2013 218 224
    • (2013) Chemosphere , vol.92 , Issue.2 , pp. 218-224
    • Li, X.1    Liu, L.2    Liu, T.3    Yuan, T.4    Zhang, W.5    Li, F.6    Zhou, S.7    Li, Y.8
  • 152
    • 34548434623 scopus 로고    scopus 로고
    • Microbial fuel cell performance with non-Pt cathode catalysts
    • E. HaoYu, S. Cheng, K. Scott, and B.E. Logan Microbial fuel cell performance with non-Pt cathode catalysts J. Power Sources 171 2 2007 275 281
    • (2007) J. Power Sources , vol.171 , Issue.2 , pp. 275-281
    • Haoyu, E.1    Cheng, S.2    Scott, K.3    Logan, B.E.4
  • 153
    • 84896766759 scopus 로고    scopus 로고
    • A high-performance electrocatalytic air cathode derived from aniline and iron for use in microbial fuel cells
    • X. Tang, H. Li, W. Wang, Z. Du, and H.Y. Ng A high-performance electrocatalytic air cathode derived from aniline and iron for use in microbial fuel cells RSC Adv. 4 25 2014 12789 12794
    • (2014) RSC Adv. , vol.4 , Issue.25 , pp. 12789-12794
    • Tang, X.1    Li, H.2    Wang, W.3    Du, Z.4    Ng, H.Y.5
  • 155
    • 4644348209 scopus 로고    scopus 로고
    • Zeolite-Mediated advanced oxidation of model chlorinated phenolic aqueous waste: Part 1: Aqueous phase Fenton catalysis
    • D.J. Doocey, and P.N. Sharratt Zeolite-Mediated advanced oxidation of model chlorinated phenolic aqueous waste: Part 1: aqueous phase Fenton catalysis Process Saf. Environ. 82 5 2004 352 358
    • (2004) Process Saf. Environ. , vol.82 , Issue.5 , pp. 352-358
    • Doocey, D.J.1    Sharratt, P.N.2
  • 156
    • 48849114048 scopus 로고    scopus 로고
    • Phenol degradation by advanced electrochemical oxidation process electro-Fenton using a carbon felt cathode
    • M. Pimentel, N. Oturan, M. Dezotti, and M.A. Oturan Phenol degradation by advanced electrochemical oxidation process electro-Fenton using a carbon felt cathode Appl. Catal. B: Environ. 83 1 2008 140 149
    • (2008) Appl. Catal. B: Environ. , vol.83 , Issue.1 , pp. 140-149
    • Pimentel, M.1    Oturan, N.2    Dezotti, M.3    Oturan, M.A.4
  • 157
    • 77749260969 scopus 로고    scopus 로고
    • Bio-electro-Fenton process driven by microbial fuel cell for wastewater treatment
    • C.H. Feng, F.B. Li, H.J. Mai, and X.Z. Li Bio-electro-Fenton process driven by microbial fuel cell for wastewater treatment Environ. Sci. Technol. 44 5 2010 1875 1880
    • (2010) Environ. Sci. Technol. , vol.44 , Issue.5 , pp. 1875-1880
    • Feng, C.H.1    Li, F.B.2    Mai, H.J.3    Li, X.Z.4
  • 158
    • 84903531182 scopus 로고    scopus 로고
    • Application of benthonic microbial fuel cells and electro-Fenton process to dye decolourisation
    • M.A. Dios, O. Iglesias, E. Bocos, M. Pazos, and M.A. Sanromán Application of benthonic microbial fuel cells and electro-Fenton process to dye decolourisation J. Ind. Eng. Chem. 20 5 2014 3754 3760
    • (2014) J. Ind. Eng. Chem. , vol.20 , Issue.5 , pp. 3754-3760
    • Dios, M.A.1    Iglesias, O.2    Bocos, E.3    Pazos, M.4    Sanromán, M.A.5
  • 159
    • 77956268257 scopus 로고    scopus 로고
    • A novel bioelectro-Fenton system for coupling anodic COD removal with cathodic dye degradation
    • L. Zhuang, S. Zhou, Y. Yuan, M. Liu, and Y. Wang A novel bioelectro-Fenton system for coupling anodic COD removal with cathodic dye degradation Chem. Eng. J. 163 1 2010 160 163
    • (2010) Chem. Eng. J. , vol.163 , Issue.1 , pp. 160-163
    • Zhuang, L.1    Zhou, S.2    Yuan, Y.3    Liu, M.4    Wang, Y.5
  • 160
    • 71549117090 scopus 로고    scopus 로고
    • In situ Fenton-enhanced cathodic reaction for sustainable increased electricity generation in microbial fuel cells
    • L. Zhuang, S. Zhou, Y. Li, T. Liu, and D. Huang In situ Fenton-enhanced cathodic reaction for sustainable increased electricity generation in microbial fuel cells J. Power Sources 195 5 2010 1379 1382
    • (2010) J. Power Sources , vol.195 , Issue.5 , pp. 1379-1382
    • Zhuang, L.1    Zhou, S.2    Li, Y.3    Liu, T.4    Huang, D.5
  • 161
    • 33846883312 scopus 로고    scopus 로고
    • Comparative study of hydrogen peroxide electro-generation on gas-diffusion electrodes in undivided and membrane cells
    • G.R. Agladze, G.S. Tsurtsumia, B.I. Jung, J.S. Kim, and G. Gorelishvili Comparative study of hydrogen peroxide electro-generation on gas-diffusion electrodes in undivided and membrane cells J. Appl. Electrochem. 37 3 2007 375 383
    • (2007) J. Appl. Electrochem. , vol.37 , Issue.3 , pp. 375-383
    • Agladze, G.R.1    Tsurtsumia, G.S.2    Jung, B.I.3    Kim, J.S.4    Gorelishvili, G.5
  • 162
    • 84876790794 scopus 로고    scopus 로고
    • Degradation of p-nitrophenol in a BES-Fenton system based on limonite
    • H.C. Tao, X.Y. Wei, L.J. Zhang, T. Lei, and N. Xu Degradation of p-nitrophenol in a BES-Fenton system based on limonite J. Hazard. Mater. 254 2013 236 241
    • (2013) J. Hazard. Mater. , vol.254 , pp. 236-241
    • Tao, H.C.1    Wei, X.Y.2    Zhang, L.J.3    Lei, T.4    Xu, N.5
  • 163
    • 33750443594 scopus 로고    scopus 로고
    • Application of bacterial biocathodes in microbial fuel cells
    • Z. He, and L.T. Angenent Application of bacterial biocathodes in microbial fuel cells Electroanalysis 18 19-20 2006 2009 2015
    • (2006) Electroanalysis , vol.18 , Issue.1920 , pp. 2009-2015
    • He, Z.1    Angenent, L.T.2
  • 164
    • 34250212127 scopus 로고    scopus 로고
    • Microbial fuel cell operation with continuous biological ferrous iron oxidation of the catholyte
    • A. Ter Heijne, H.V. Hamelers, and C.J. Buisman Microbial fuel cell operation with continuous biological ferrous iron oxidation of the catholyte Environ. Sci. Technol. 41 11 2007 4130 4134
    • (2007) Environ. Sci. Technol. , vol.41 , Issue.11 , pp. 4130-4134
    • Ter Heijne, A.1    Hamelers, H.V.2    Buisman, C.J.3
  • 165
    • 78650840818 scopus 로고    scopus 로고
    • Performance of electron acceptors in catholyte of a two-chambered microbial fuel cell using anion exchange membrane
    • S. Pandit, A. Sengupta, S. Kale, and D. Das Performance of electron acceptors in catholyte of a two-chambered microbial fuel cell using anion exchange membrane Bioresour. Technol. 102 3 2011 2736 2744
    • (2011) Bioresour. Technol. , vol.102 , Issue.3 , pp. 2736-2744
    • Pandit, S.1    Sengupta, A.2    Kale, S.3    Das, D.4
  • 166
    • 77957354595 scopus 로고    scopus 로고
    • Nano-structured manganese oxide as a cathodic catalyst for enhanced oxygen reduction in a microbial fuel cell fed with a synthetic wastewater
    • X.W. Liu, X.F. Sun, Y.X. Huang, G.P. Sheng, K. Zhou, R.J. Zeng, F. Dong, S.G. Wang, A.W. Xu, Z.H. Tong, and H.Q. Yu Nano-structured manganese oxide as a cathodic catalyst for enhanced oxygen reduction in a microbial fuel cell fed with a synthetic wastewater Water Res. 44 18 2010 5298 5305
    • (2010) Water Res. , vol.44 , Issue.18 , pp. 5298-5305
    • Liu, X.W.1    Sun, X.F.2    Huang, Y.X.3    Sheng, G.P.4    Zhou, K.5    Zeng, R.J.6    Dong, F.7    Wang, S.G.8    Xu, A.W.9    Tong, Z.H.10    Yu, H.Q.11
  • 167
    • 84877723211 scopus 로고    scopus 로고
    • 2 nanotubes as a cathode catalyst for improved power generation and wastewater treatment in single-chambered microbial fuel cells
    • 2 nanotubes as a cathode catalyst for improved power generation and wastewater treatment in single-chambered microbial fuel cells RSC Adv. 3 21 2013 7902 7911
    • (2013) RSC Adv. , vol.3 , Issue.21 , pp. 7902-7911
    • Khilari, S.1    Pandit, S.2    Ghangrekar, M.M.3    Das, D.4    Pradhan, D.5
  • 168
    • 73349121599 scopus 로고    scopus 로고
    • A microbial fuel cell using manganese oxide oxygen reduction catalysts
    • I. Roche, K. Katuri, and K. Scott A microbial fuel cell using manganese oxide oxygen reduction catalysts J. Appl. Electrochem. 40 1 2010 13 21
    • (2010) J. Appl. Electrochem. , vol.40 , Issue.1 , pp. 13-21
    • Roche, I.1    Katuri, K.2    Scott, K.3
  • 169
    • 84898887846 scopus 로고    scopus 로고
    • Hydrothermal synthesis of nanostructured manganese oxide as cathodic catalyst in a microbial fuel cell fed with leachate
    • Y. Haoran, D. Lifang, L. Tao, and C. Yong Hydrothermal synthesis of nanostructured manganese oxide as cathodic catalyst in a microbial fuel cell fed with leachate Sci. World J. 2014 2014 http://dx.doi.org/10.1155/2014/791672
    • (2014) Sci. World J. , vol.2014
    • Haoran, Y.1    Lifang, D.2    Tao, L.3    Yong, C.4
  • 170
    • 84887526540 scopus 로고    scopus 로고
    • 2 graphene oxide composites for the application of open air-breathing cathode microbial fuel cells
    • 2 graphene oxide composites for the application of open air-breathing cathode microbial fuel cells Biosens. Bioelectron. 53 2014 528 534
    • (2014) Biosens. Bioelectron. , vol.53 , pp. 528-534
    • Awan, Z.1    Suk Nahm, K.2    Stanley Xavier, J.3
  • 171
    • 84890384767 scopus 로고    scopus 로고
    • Manganese cobaltite/polypyrrole nanocomposite-based air-cathode for sustainable power generation in the single-chambered microbial fuel cells
    • S. Khilari, S. Pandit, D. Das, and D. Pradhan Manganese cobaltite/polypyrrole nanocomposite-based air-cathode for sustainable power generation in the single-chambered microbial fuel cells Biosens. Bioelectron. 54 2014 534 540
    • (2014) Biosens. Bioelectron. , vol.54 , pp. 534-540
    • Khilari, S.1    Pandit, S.2    Das, D.3    Pradhan, D.4
  • 172
    • 20744456285 scopus 로고    scopus 로고
    • Microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant
    • A. Rhoads, H. Beyenal, and Z. Lewandowski Microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant Environ. Sci. Technol. 39 12 2005 4666 4671
    • (2005) Environ. Sci. Technol. , vol.39 , Issue.12 , pp. 4666-4671
    • Rhoads, A.1    Beyenal, H.2    Lewandowski, Z.3
  • 173
    • 58549099649 scopus 로고    scopus 로고
    • Carbon-supported manganese oxide nanoparticles as electrocatalysts for oxygen reduction reaction (orr) in neutral solution
    • I. Roche, and K. Scott Carbon-supported manganese oxide nanoparticles as electrocatalysts for oxygen reduction reaction (orr) in neutral solution J. Appl. Electrochem. 39 2 2009 197 204
    • (2009) J. Appl. Electrochem. , vol.39 , Issue.2 , pp. 197-204
    • Roche, I.1    Scott, K.2
  • 174
    • 31944435660 scopus 로고    scopus 로고
    • Development of a membraneless ethanol/oxygen biofuel cell
    • S. Topcagic, and S.D. Minteer Development of a membraneless ethanol/oxygen biofuel cell Electrochim. Acta 51 11 2006 2168 2172
    • (2006) Electrochim. Acta , vol.51 , Issue.11 , pp. 2168-2172
    • Topcagic, S.1    Minteer, S.D.2
  • 175
    • 67449147907 scopus 로고    scopus 로고
    • An improved microbial fuel cell with laccase as the oxygen reduction catalyst
    • O. Schaetzle, F. Barrière, and U. Schröder An improved microbial fuel cell with laccase as the oxygen reduction catalyst Energ. Environ. Sci. 2 1 2009 96 99
    • (2009) Energ. Environ. Sci. , vol.2 , Issue.1 , pp. 96-99
    • Schaetzle, O.1    Barrière, F.2    Schröder, U.3
  • 176
    • 84896522153 scopus 로고    scopus 로고
    • Complete cobalt recovery from lithium cobalt oxide in self-driven microbial fuel cell-Microbial electrolysis cell systems
    • L. Huang, B. Yao, D. Wu, and X. Quan Complete cobalt recovery from lithium cobalt oxide in self-driven microbial fuel cell-Microbial electrolysis cell systems J. Power Sources 259 2014 54 64
    • (2014) J. Power Sources , vol.259 , pp. 54-64
    • Huang, L.1    Yao, B.2    Wu, D.3    Quan, X.4
  • 177
    • 84890429036 scopus 로고    scopus 로고
    • Recovery of flakey cobalt from aqueous Co (II) with simultaneous hydrogen production in microbial electrolysis cells
    • L. Jiang, L. Huang, and Y. Sun Recovery of flakey cobalt from aqueous Co (II) with simultaneous hydrogen production in microbial electrolysis cells Int. J. Hydrog. Energ. 39 2 2014 654 663
    • (2014) Int. J. Hydrog. Energ. , vol.39 , Issue.2 , pp. 654-663
    • Jiang, L.1    Huang, L.2    Sun, Y.3
  • 178
    • 84901927152 scopus 로고    scopus 로고
    • Cobalt recovery with simultaneous methane and acetate production in biocathode microbial electrolysis cells
    • L. Huang, L. Jiang, Q. Wang, X. Quan, J. Yang, and L. Chen Cobalt recovery with simultaneous methane and acetate production in biocathode microbial electrolysis cells Chem. Eng. J. 2014 281 290
    • (2014) Chem. Eng. J. , pp. 281-290
    • Huang, L.1    Jiang, L.2    Wang, Q.3    Quan, X.4    Yang, J.5    Chen, L.6
  • 179
    • 30344467807 scopus 로고    scopus 로고
    • Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells
    • S. Cheng, H. Liu, and B.E. Logan Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells Environ. Sci. Technol. 40 1 2006 364 369
    • (2006) Environ. Sci. Technol. , vol.40 , Issue.1 , pp. 364-369
    • Cheng, S.1    Liu, H.2    Logan, B.E.3
  • 180
    • 84860496026 scopus 로고    scopus 로고
    • Electrochemical reduction of carbon dioxide in an MFC-MEC system with a layer-by-layer self-assembly carbon nanotube/cobalt phthalocyanine modified electrode
    • H. Zhao, Y. Zhang, B. Zhao, Y. Chang, and Z. Li Electrochemical reduction of carbon dioxide in an MFC-MEC system with a layer-by-layer self-assembly carbon nanotube/cobalt phthalocyanine modified electrode Environ. Sci. Technol. 46 9 2012 5198 5204
    • (2012) Environ. Sci. Technol. , vol.46 , Issue.9 , pp. 5198-5204
    • Zhao, H.1    Zhang, Y.2    Zhao, B.3    Chang, Y.4    Li, Z.5
  • 181
    • 84894675520 scopus 로고    scopus 로고
    • Cobalt porphyrin-based material as methanol tolerant cathode in single chamber microbial fuel cells (SCMFCs)
    • B. Liu, C. Brückner, Y. Lei, Y. Cheng, C. Santoro, and B. Li Cobalt porphyrin-based material as methanol tolerant cathode in single chamber microbial fuel cells (SCMFCs) J. Power Sources 257 2014 246 253
    • (2014) J. Power Sources , vol.257 , pp. 246-253
    • Liu, B.1    Brückner, C.2    Lei, Y.3    Cheng, Y.4    Santoro, C.5    Li, B.6
  • 182
    • 84866378058 scopus 로고    scopus 로고
    • Bioelectrochemical recovery of ammonia-copper (II) complexes from wastewater using a dual chamber microbial fuel cell
    • L.J. Zhang, H.C. Tao, X.Y. Wei, T. Lei, J.B. Li, A.J. Wang, and W.M. Wu Bioelectrochemical recovery of ammonia-copper (II) complexes from wastewater using a dual chamber microbial fuel cell Chemosphere 89 10 2012 1177 1182
    • (2012) Chemosphere , vol.89 , Issue.10 , pp. 1177-1182
    • Zhang, L.J.1    Tao, H.C.2    Wei, X.Y.3    Lei, T.4    Li, J.B.5    Wang, A.J.6    Wu, W.M.7
  • 183
    • 84883428614 scopus 로고    scopus 로고
    • Copper catalysis for enhancement of cobalt leaching and acid utilization efficiency in microbial fuel cells
    • Y. Liu, J. Shen, L. Huang, and D. Wu Copper catalysis for enhancement of cobalt leaching and acid utilization efficiency in microbial fuel cells J. Hazard Mater. 262 2013 1 8
    • (2013) J. Hazard Mater. , vol.262 , pp. 1-8
    • Liu, Y.1    Shen, J.2    Huang, L.3    Wu, D.4
  • 184
    • 84865746608 scopus 로고    scopus 로고
    • Bioelectrochemical recovery of Cu, Pb, Cd, and Zn from dilute solutions
    • O. Modin, X. Wang, X. Wu, S. Rauch, and K.K. Fedje Bioelectrochemical recovery of Cu, Pb, Cd, and Zn from dilute solutions J. Hazard Mater. 235 2012 291 297
    • (2012) J. Hazard Mater. , vol.235 , pp. 291-297
    • Modin, O.1    Wang, X.2    Wu, X.3    Rauch, S.4    Fedje, K.K.5
  • 185
    • 0033983874 scopus 로고    scopus 로고
    • Chromium occurrence in the environment and methods of its speciation
    • J. Kotas̈, and Z. Stasicka Chromium occurrence in the environment and methods of its speciation Environ. Pollut. 107 3 2000 263 283
    • (2000) Environ. Pollut. , vol.107 , Issue.3 , pp. 263-283
    • Kotas̈, J.1    Stasicka, Z.2
  • 186
    • 52449101935 scopus 로고    scopus 로고
    • Cathodic reduction of hexavalent chromium [Cr(VI)] coupled with electricity generation in microbial fuel cells
    • G. Wang, L. Huang, and Y. Zhang Cathodic reduction of hexavalent chromium [Cr(VI)] coupled with electricity generation in microbial fuel cells Biotechnol. Lett. 30 11 2008 1959 1966
    • (2008) Biotechnol. Lett. , vol.30 , Issue.11 , pp. 1959-1966
    • Wang, G.1    Huang, L.2    Zhang, Y.3
  • 187
    • 78650839736 scopus 로고    scopus 로고
    • In-situ Cr(VI) reduction with electrogenerated hydrogen peroxide driven by iron-reducing bacteria
    • L. Liu, Y. Yuan, F.B. Li, and C.H. Feng In-situ Cr(VI) reduction with electrogenerated hydrogen peroxide driven by iron-reducing bacteria Bioresour. Technol. 102 3 2011 2468 2473
    • (2011) Bioresour. Technol. , vol.102 , Issue.3 , pp. 2468-2473
    • Liu, L.1    Yuan, Y.2    Li, F.B.3    Feng, C.H.4
  • 188
    • 84886399149 scopus 로고    scopus 로고
    • Conductive polymer-mediated Cr(VI) reduction in a dual-chamber microbial fuel cell under neutral conditions
    • Y. Pang, D. Xie, B. Wu, Z. Lv, X. Zeng, C. Wei, and C. Feng Conductive polymer-mediated Cr(VI) reduction in a dual-chamber microbial fuel cell under neutral conditions Synth. Metal 183 2013 57 62
    • (2013) Synth. Metal , vol.183 , pp. 57-62
    • Pang, Y.1    Xie, D.2    Wu, B.3    Lv, Z.4    Zeng, X.5    Wei, C.6    Feng, C.7
  • 189
    • 84877622906 scopus 로고    scopus 로고
    • Enhanced performance of hexavalent chromium reducing cathodes in the presence of Shewanella oneidensis MR-1 and lactate
    • N. Xafenias, Y. Zhang, and C.J. Banks Enhanced performance of hexavalent chromium reducing cathodes in the presence of Shewanella oneidensis MR-1 and lactate Environ. Sci. Technol. 47 9 2013 4512 4520
    • (2013) Environ. Sci. Technol. , vol.47 , Issue.9 , pp. 4512-4520
    • Xafenias, N.1    Zhang, Y.2    Banks, C.J.3
  • 190
    • 70350759941 scopus 로고    scopus 로고
    • Biological chromium (VI) reduction in the cathode of a microbial fuel cell
    • M. Tandukar, S.J. Huber, T. Onodera, and S.G. Pavlostathis Biological chromium (VI) reduction in the cathode of a microbial fuel cell Environ. Sci. Technol. 43 21 2009 8159 8165
    • (2009) Environ. Sci. Technol. , vol.43 , Issue.21 , pp. 8159-8165
    • Tandukar, M.1    Huber, S.J.2    Onodera, T.3    Pavlostathis, S.G.4
  • 191
    • 79959209732 scopus 로고    scopus 로고
    • Bifunctional silver nanoparticle cathode in microbial fuel cells for microbial growth inhibition with comparable oxygen reduction reaction activity
    • J. An, H. Jeon, J. Lee, and I.S. Chang Bifunctional silver nanoparticle cathode in microbial fuel cells for microbial growth inhibition with comparable oxygen reduction reaction activity Environ. Sci. Technol. 45 12 2011 5441 5446
    • (2011) Environ. Sci. Technol. , vol.45 , Issue.12 , pp. 5441-5446
    • An, J.1    Jeon, H.2    Lee, J.3    Chang, I.S.4
  • 192
    • 84876964144 scopus 로고    scopus 로고
    • Flow electrochemical biosensors based on enzymatic porous reactor and tubular detector of silver solid amalgam
    • B. Josypčuk, J. Barek, and O. Josypčuk Flow electrochemical biosensors based on enzymatic porous reactor and tubular detector of silver solid amalgam Anal. Chim. Acta 778 2013 24 30
    • (2013) Anal. Chim. Acta , vol.778 , pp. 24-30
    • Josypčuk, B.1    Barek, J.2    Josypčuk, O.3
  • 193
    • 84892778931 scopus 로고    scopus 로고
    • A method for determination of glucose by an amperometric bienzyme biosensor based on silver nanocubes modified Au electrode
    • P. Yang, L. Wang, Q. Wu, Z. Chen, and X. Lin A method for determination of glucose by an amperometric bienzyme biosensor based on silver nanocubes modified Au electrode Sens. Actuat. B: Chem. 194 2014 71 78
    • (2014) Sens. Actuat. B: Chem. , vol.194 , pp. 71-78
    • Yang, P.1    Wang, L.2    Wu, Q.3    Chen, Z.4    Lin, X.5
  • 195
    • 77957588675 scopus 로고    scopus 로고
    • Localized deposition of Au nanoparticles by direct electron transfer through cellobiose dehydrogenase
    • E. Malel, R. Ludwig, L. Gorton, and D. Mandler Localized deposition of Au nanoparticles by direct electron transfer through cellobiose dehydrogenase Chem. Eur. J. 16 38 2010 11697 11706
    • (2010) Chem. Eur. J. , vol.16 , Issue.38 , pp. 11697-11706
    • Malel, E.1    Ludwig, R.2    Gorton, L.3    Mandler, D.4
  • 196
    • 84865197407 scopus 로고    scopus 로고
    • A new synthesis route for Os-complex modified redox polymers for potential biofuel cell applications
    • S. Pöller, Y. Beyl, J. Vivekananthan, D.A. Guschin, and W. Schuhmann A new synthesis route for Os-complex modified redox polymers for potential biofuel cell applications Bioelectrochemistry 87 2012 178 184
    • (2012) Bioelectrochemistry , vol.87 , pp. 178-184
    • Pöller, S.1    Beyl, Y.2    Vivekananthan, J.3    Guschin, D.A.4    Schuhmann, W.5
  • 197
    • 77953293555 scopus 로고    scopus 로고
    • Design of a bioelectrocatalytic electrode interface for oxygen reduction in biofuel cells based on a specifically adapted Os-complex containing redox polymer with entrapped Trametes hirsuta laccase
    • Y. Ackermann, D.A. Guschin, K. Eckhard, S. Shleev, and W. Schuhmann Design of a bioelectrocatalytic electrode interface for oxygen reduction in biofuel cells based on a specifically adapted Os-complex containing redox polymer with entrapped Trametes hirsuta laccase Electrochem. Commun. 12 5 2010 640 643
    • (2010) Electrochem. Commun. , vol.12 , Issue.5 , pp. 640-643
    • Ackermann, Y.1    Guschin, D.A.2    Eckhard, K.3    Shleev, S.4    Schuhmann, W.5
  • 198
    • 84870685500 scopus 로고    scopus 로고
    • Oxygen reduction reaction activity of nitrogen-doped titanium oxide in acid media
    • M. Chisaka, A. Ishihara, K. Suito, K.I. Ota, and H. Muramoto Oxygen reduction reaction activity of nitrogen-doped titanium oxide in acid media Electrochim. Acta 88 2013 697 707
    • (2013) Electrochim. Acta , vol.88 , pp. 697-707
    • Chisaka, M.1    Ishihara, A.2    Suito, K.3    Ota, K.I.4    Muramoto, H.5
  • 199
    • 84890548802 scopus 로고    scopus 로고
    • Synthesis of carbon-supported titanium oxynitride nanoparticles as cathode catalyst for polymer electrolyte fuel cells
    • M. Chisaka, A. Ishihara, K.I. Ota, and H. Muramoto Synthesis of carbon-supported titanium oxynitride nanoparticles as cathode catalyst for polymer electrolyte fuel cells Electrochim. Acta 113 2013 735 740
    • (2013) Electrochim. Acta , vol.113 , pp. 735-740
    • Chisaka, M.1    Ishihara, A.2    Ota, K.I.3    Muramoto, H.4
  • 201
    • 34250212076 scopus 로고    scopus 로고
    • Lead dioxide as an alternative catalyst to platinum in microbial fuel cells
    • J.M. Morris, S. Jin, J. Wang, C. Zhu, and M.A. Urynowicz Lead dioxide as an alternative catalyst to platinum in microbial fuel cells Electrochem. Commun. 9 7 2007 1730 1734
    • (2007) Electrochem. Commun. , vol.9 , Issue.7 , pp. 1730-1734
    • Morris, J.M.1    Jin, S.2    Wang, J.3    Zhu, C.4    Urynowicz, M.A.5
  • 202
    • 79955016287 scopus 로고    scopus 로고
    • 2+ as an electron acceptor coupled with power generation using a microbial fuel cell
    • 2+ as an electron acceptor coupled with power generation using a microbial fuel cell Bioresour. Technol. 102 10 2011 6304 6307
    • (2011) Bioresour. Technol. , vol.102 , Issue.10 , pp. 6304-6307
    • Wang, Z.1    Lim, B.2    Choi, C.3
  • 206
    • 51949116825 scopus 로고    scopus 로고
    • Ion exchange membrane cathodes for scalable microbial fuel cells
    • Y. Zuo, S. Cheng, and B.E. Logan Ion exchange membrane cathodes for scalable microbial fuel cells Environ. Sci. Technol. 42 18 2008 6967 6972
    • (2008) Environ. Sci. Technol. , vol.42 , Issue.18 , pp. 6967-6972
    • Zuo, Y.1    Cheng, S.2    Logan, B.E.3
  • 207
    • 39049117489 scopus 로고    scopus 로고
    • Mass transport through a proton exchange membrane (nafion) in microbial fuel cells
    • K.J. Chae, M. Choi, F.F. Ajayi, W. Park, I.S. Chang, and I.S. Kim Mass transport through a proton exchange membrane (nafion) in microbial fuel cells Energ. Fuel 22 1 2007 169 176
    • (2007) Energ. Fuel , vol.22 , Issue.1 , pp. 169-176
    • Chae, K.J.1    Choi, M.2    Ajayi, F.F.3    Park, W.4    Chang, I.S.5    Kim, I.S.6
  • 208
    • 84857119892 scopus 로고    scopus 로고
    • Fouling of proton exchange membrane (PEM) deteriorates the performance of microbial fuel cell
    • J. Xu, G.P. Sheng, H.W. Luo, W.W. Li, L.F. Wang, and H.Q. Yu Fouling of proton exchange membrane (PEM) deteriorates the performance of microbial fuel cell Water Res. 46 6 2012 1817 1824
    • (2012) Water Res. , vol.46 , Issue.6 , pp. 1817-1824
    • Xu, J.1    Sheng, G.P.2    Luo, H.W.3    Li, W.W.4    Wang, L.F.5    Yu, H.Q.6
  • 209
    • 70449448319 scopus 로고    scopus 로고
    • Enhancing the stability of power generation of single-chamber microbial fuel cells using an anion exchange membrane
    • Y. Mo, P. Liang, X. Huang, H. Wang, and X. Cao Enhancing the stability of power generation of single-chamber microbial fuel cells using an anion exchange membrane J. Chem. Technol. Biotechnol. 84 12 2009 1767 1772
    • (2009) J. Chem. Technol. Biotechnol. , vol.84 , Issue.12 , pp. 1767-1772
    • Mo, Y.1    Liang, P.2    Huang, X.3    Wang, H.4    Cao, X.5
  • 210
    • 65649096023 scopus 로고    scopus 로고
    • Ion transport resistance in microbial electrolysis cells with anion and cation exchange membranes
    • T.H. Sleutels, H.V. Hamelers, R.A. Rozendal, and C.J. Buisman Ion transport resistance in microbial electrolysis cells with anion and cation exchange membranes Int. J. Hydrog. Energ. 34 9 2009 3612 3620
    • (2009) Int. J. Hydrog. Energ. , vol.34 , Issue.9 , pp. 3612-3620
    • Sleutels, T.H.1    Hamelers, H.V.2    Rozendal, R.A.3    Buisman, C.J.4
  • 211
    • 34047125848 scopus 로고    scopus 로고
    • Performance of single chamber biocatalyzed electrolysis with different types of ion exchange membranes
    • R.A. Rozendal, H.V. Hamelers, R.J. Molenkamp, and C.J. Buisman Performance of single chamber biocatalyzed electrolysis with different types of ion exchange membranes Water Res. 41 9 2007 1984 1994
    • (2007) Water Res. , vol.41 , Issue.9 , pp. 1984-1994
    • Rozendal, R.A.1    Hamelers, H.V.2    Molenkamp, R.J.3    Buisman, C.J.4
  • 212
    • 0041668169 scopus 로고    scopus 로고
    • Bipolar membrane prepared by grafting and plasma polymerization
    • C.L. Hsueh, Y.J. Peng, C.C. Wang, and C.Y. Chen Bipolar membrane prepared by grafting and plasma polymerization J. Membr. Sci. 219 1 2003 1 13
    • (2003) J. Membr. Sci. , vol.219 , Issue.1 , pp. 1-13
    • Hsueh, C.L.1    Peng, Y.J.2    Wang, C.C.3    Chen, C.Y.4
  • 213
    • 84896862114 scopus 로고    scopus 로고
    • Augmenting microbial fuel cell power by coupling with supported liquid membrane permeation for zinc recovery
    • K.R. Fradler, I. Michie, R.M. Dinsdale, A.J. Guwy, and G.C. Premier Augmenting microbial fuel cell power by coupling with supported liquid membrane permeation for zinc recovery Water Res. 55 2014 115 125
    • (2014) Water Res. , vol.55 , pp. 115-125
    • Fradler, K.R.1    Michie, I.2    Dinsdale, R.M.3    Guwy, A.J.4    Premier, G.C.5
  • 214
    • 84944450592 scopus 로고    scopus 로고
    • Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli
    • S. Pal, Y.K. Tak, and J.M. Song Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli Appl. Environ. Microb. 73 6 2007 1712 1720
    • (2007) Appl. Environ. Microb. , vol.73 , Issue.6 , pp. 1712-1720
    • Pal, S.1    Tak, Y.K.2    Song, J.M.3
  • 215
    • 57249095780 scopus 로고    scopus 로고
    • Silver nanoparticles as a new generation of antimicrobials
    • M. Rai, A. Yadav, and A. Gade Silver nanoparticles as a new generation of antimicrobials Biotechnol. Adv. 27 1 2009 76 83
    • (2009) Biotechnol. Adv. , vol.27 , Issue.1 , pp. 76-83
    • Rai, M.1    Yadav, A.2    Gade, A.3
  • 216
    • 84895073088 scopus 로고    scopus 로고
    • Efficacy of single-chamber microbial fuel cells for removal of cadmium and zinc with simultaneous electricity production
    • C. Abourached, T. Catal, and H. Liu Efficacy of single-chamber microbial fuel cells for removal of cadmium and zinc with simultaneous electricity production Water Res. 51 2014 228 233
    • (2014) Water Res. , vol.51 , pp. 228-233
    • Abourached, C.1    Catal, T.2    Liu, H.3
  • 217
    • 84897669375 scopus 로고    scopus 로고
    • 2 production from artificial acid mine drainage using the microbial electrolysis cell
    • 2 production from artificial acid mine drainage using the microbial electrolysis cell J. Hazard Mater. 270 2014 153 159
    • (2014) J. Hazard Mater. , vol.270 , pp. 153-159
    • Luo, H.1    Liu, G.2    Zhang, R.3    Bai, Y.4    Fu, S.5    Hou, Y.6
  • 218
    • 84865550608 scopus 로고    scopus 로고
    • Nickel ion removal from wastewater using the microbial electrolysis cell
    • B. Qin, H. Luo, G. Liu, R. Zhang, S. Chen, Y. Hou, and Y. Luo Nickel ion removal from wastewater using the microbial electrolysis cell Bioresour. Technol. 121 2012 458 461
    • (2012) Bioresour. Technol. , vol.121 , pp. 458-461
    • Qin, B.1    Luo, H.2    Liu, G.3    Zhang, R.4    Chen, S.5    Hou, Y.6    Luo, Y.7
  • 219
    • 84873896517 scopus 로고    scopus 로고
    • Cobalt leaching from lithium cobalt oxide in microbial electrolysis cells
    • L. Huang, R. Guo, L. Jiang, X. Quan, Y. Sun, and G. Chen Cobalt leaching from lithium cobalt oxide in microbial electrolysis cells Chem. Eng. J. 220 2013 72 80
    • (2013) Chem. Eng. J. , vol.220 , pp. 72-80
    • Huang, L.1    Guo, R.2    Jiang, L.3    Quan, X.4    Sun, Y.5    Chen, G.6
  • 220
    • 28444454896 scopus 로고    scopus 로고
    • Removal of mixed heavy metal ions in wastewater by zeolite 4A and residual products from recycled coal fly ash
    • K.S. Hui, C.Y.H. Chao, and S.C. Kot Removal of mixed heavy metal ions in wastewater by zeolite 4A and residual products from recycled coal fly ash J. Hazard Mater. 127 1 2005 89 101
    • (2005) J. Hazard Mater. , vol.127 , Issue.1 , pp. 89-101
    • Hui, K.S.1    Chao, C.Y.H.2    Kot, S.C.3
  • 221
    • 84888055100 scopus 로고    scopus 로고
    • Removal of heavy metals from fly ash leachate using combined bioelectrochemical systems and electrolysis
    • H.C. Tao, T. Lei, G. Shi, X.N. Sun, X.Y. Wei, L.J. Zhang, and W.M. Wu Removal of heavy metals from fly ash leachate using combined bioelectrochemical systems and electrolysis J. Hazard Mater. 264 2014 1 7
    • (2014) J. Hazard Mater. , vol.264 , pp. 1-7
    • Tao, H.C.1    Lei, T.2    Shi, G.3    Sun, X.N.4    Wei, X.Y.5    Zhang, L.J.6    Wu, W.M.7
  • 222
    • 84887096222 scopus 로고    scopus 로고
    • Biohydrometallurgy of secondary metal resources: A potential alternative approach for metal recovery
    • C. Erüst, A. Akcil, C.S. Gahan, A. Tuncuk, and H. Deveci Biohydrometallurgy of secondary metal resources: a potential alternative approach for metal recovery J. Chem. Technol. Biotechnol. 88 12 2013 2115 2132
    • (2013) J. Chem. Technol. Biotechnol. , vol.88 , Issue.12 , pp. 2115-2132
    • Erüst, C.1    Akcil, A.2    Gahan, C.S.3    Tuncuk, A.4    Deveci, H.5
  • 223
    • 3242749049 scopus 로고    scopus 로고
    • Present and future of bioleaching in developing countries
    • F. Acevedo Present and future of bioleaching in developing countries Electron. J. Biotechnol. 5 2 2002 18 19
    • (2002) Electron. J. Biotechnol. , vol.5 , Issue.2 , pp. 18-19
    • Acevedo, F.1
  • 224
    • 84858792681 scopus 로고    scopus 로고
    • Chemical and biological extraction of metals present in e waste: A hybrid technology
    • D. Pant, D. Joshi, M.K. Upreti, and R.K. Kotnala Chemical and biological extraction of metals present in E waste: a hybrid technology Waste Manag. 32 5 2012 979 990
    • (2012) Waste Manag. , vol.32 , Issue.5 , pp. 979-990
    • Pant, D.1    Joshi, D.2    Upreti, M.K.3    Kotnala, R.K.4
  • 225
    • 0029785823 scopus 로고    scopus 로고
    • Metal leaching of fly ash from municipal waste incineration by Aspergillus niger
    • P.P. Bosshard, R. Bachofen, and H. Brandl Metal leaching of fly ash from municipal waste incineration by Aspergillus niger Environ. Sci. Technol. 30 10 1996 3066 3070
    • (1996) Environ. Sci. Technol. , vol.30 , Issue.10 , pp. 3066-3070
    • Bosshard, P.P.1    Bachofen, R.2    Brandl, H.3
  • 226
    • 77955278900 scopus 로고    scopus 로고
    • Electrochemical bioleaching of high grade chalcopyrite flotation concentrates in a stirred bioreactor
    • A. Ahmadi, M. Schaffie, Z. Manafi, and M. Ranjbar Electrochemical bioleaching of high grade chalcopyrite flotation concentrates in a stirred bioreactor Hydrometallurgy 104 1 2010 99 105
    • (2010) Hydrometallurgy , vol.104 , Issue.1 , pp. 99-105
    • Ahmadi, A.1    Schaffie, M.2    Manafi, Z.3    Ranjbar, M.4
  • 228
    • 64449088423 scopus 로고    scopus 로고
    • Manganese dioxide as an alternative cathodic catalyst to platinum in microbial fuel cells
    • L. Zhang, C. Liu, L. Zhuang, W. Li, S. Zhou, and J. Zhang Manganese dioxide as an alternative cathodic catalyst to platinum in microbial fuel cells Biosens. Bioelectron. 24 9 2009 2825 2829
    • (2009) Biosens. Bioelectron. , vol.24 , Issue.9 , pp. 2825-2829
    • Zhang, L.1    Liu, C.2    Zhuang, L.3    Li, W.4    Zhou, S.5    Zhang, J.6
  • 229
    • 70350570447 scopus 로고    scopus 로고
    • Effects of substrate and metabolite crossover on the cathodic oxygen reduction reaction in microbial fuel cells: Platinum vs. Iron (II) phthalocyanine based electrodes
    • F. Harnisch, S. Wirth, and U. Schröder Effects of substrate and metabolite crossover on the cathodic oxygen reduction reaction in microbial fuel cells: platinum vs. iron (II) phthalocyanine based electrodes Electrochem. Commun. 11 11 2009 2253 2256
    • (2009) Electrochem. Commun. , vol.11 , Issue.11 , pp. 2253-2256
    • Harnisch, F.1    Wirth, S.2    Schröder, U.3
  • 230
    • 84889655072 scopus 로고    scopus 로고
    • Development and application of vanadium oxide/polyaniline composite as a novel cathode catalyst in microbial fuel cell
    • K.B. Ghoreishi, M. Ghasemi, M. Rahimnejad, M.A. Yarmo, W.R.W. Daud, N. Asim, and M. Ismail Development and application of vanadium oxide/polyaniline composite as a novel cathode catalyst in microbial fuel cell Int. J. Energ. Res. 38 1 2014 70 77
    • (2014) Int. J. Energ. Res. , vol.38 , Issue.1 , pp. 70-77
    • Ghoreishi, K.B.1    Ghasemi, M.2    Rahimnejad, M.3    Yarmo, M.A.4    Daud, W.R.W.5    Asim, N.6    Ismail, M.7
  • 231
    • 84876496559 scopus 로고    scopus 로고
    • Bio-electro-Fenton system for enhanced estrogens degradation
    • N. Xu, Y. Zhang, H. Tao, S. Zhou, and Y. Zeng Bio-electro-Fenton system for enhanced estrogens degradation Bioresour. Technol. 138 2013 136 140
    • (2013) Bioresour. Technol. , vol.138 , pp. 136-140
    • Xu, N.1    Zhang, Y.2    Tao, H.3    Zhou, S.4    Zeng, Y.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.