메뉴 건너뛰기




Volumn 220, Issue , 2013, Pages 72-80

Cobalt leaching from lithium cobalt oxide in microbial electrolysis cells

Author keywords

Apparent activation energy; Cobalt leaching; Energy efficiency; Microbial electrolysis cell

Indexed keywords

ACIDIC PH; APPARENT ACTIVATION ENERGY; APPLIED VOLTAGES; CATHODIC COMPONENTS; CHEMICAL PROCESS; COBALT RECOVERY; COST-EFFECTIVE METHODS; ELECTROLYSIS CELL; ENERGY EFFICIENT; IN-CONTROL; LI-ION BATTERIES; LITHIUM COBALT OXIDES; MICROBIAL ELECTROLYSIS CELL (MECS); MICROBIAL ELECTROLYSIS CELLS; OPEN CIRCUIT CONDITIONS; SOLUTION CONDUCTIVITY; SUSTAINABLE SOCIETY; SYNERGETIC INTERACTIONS;

EID: 84873896517     PISSN: 13858947     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cej.2012.12.092     Document Type: Article
Times cited : (22)

References (49)
  • 1
    • 56449110783 scopus 로고    scopus 로고
    • Spent hydroprocessing catalyst management: a review Part II. Advances in metal recovery and safe disposal methods
    • Marafi M., Stanislaus A. Spent hydroprocessing catalyst management: a review Part II. Advances in metal recovery and safe disposal methods. Resour. Conserv. Recy. 2008, 53:1-26.
    • (2008) Resour. Conserv. Recy. , vol.53 , pp. 1-26
    • Marafi, M.1    Stanislaus, A.2
  • 2
    • 38749105433 scopus 로고    scopus 로고
    • A review of processes and technologies for the recycling of lithium-ion secondary batteries
    • Xu J., Thomas H.R., Francis R.W., Lum K.R., Wang J., Liang B. A review of processes and technologies for the recycling of lithium-ion secondary batteries. J. Power Sources 2008, 177:512-527.
    • (2008) J. Power Sources , vol.177 , pp. 512-527
    • Xu, J.1    Thomas, H.R.2    Francis, R.W.3    Lum, K.R.4    Wang, J.5    Liang, B.6
  • 3
    • 74149093043 scopus 로고    scopus 로고
    • Electrochemical recovery of cobalt and copper from spent Li-ion batteries as multilayer deposits
    • Freitas M.B.J.G., Celante V.G., Pietre M.K. Electrochemical recovery of cobalt and copper from spent Li-ion batteries as multilayer deposits. J. Power Sources 2010, 195:3309-3315.
    • (2010) J. Power Sources , vol.195 , pp. 3309-3315
    • Freitas, M.B.J.G.1    Celante, V.G.2    Pietre, M.K.3
  • 4
    • 41549085940 scopus 로고    scopus 로고
    • A kinetic study of the electro-assisted reduction of chalcopyrite
    • Fuentes-Aceituno J.C., Lapidus G.T., Doyle F.M. A kinetic study of the electro-assisted reduction of chalcopyrite. Hydrometallurgy 2008, 92:26-33.
    • (2008) Hydrometallurgy , vol.92 , pp. 26-33
    • Fuentes-Aceituno, J.C.1    Lapidus, G.T.2    Doyle, F.M.3
  • 5
    • 80053925223 scopus 로고    scopus 로고
    • Vacuum pyrolysis and hydrometallurgical process for the recovery of valuable metals from spent lithium-ion batteries
    • Sun L., Qiu K. Vacuum pyrolysis and hydrometallurgical process for the recovery of valuable metals from spent lithium-ion batteries. J. Hazard. Mater. 2011, 194:378-384.
    • (2011) J. Hazard. Mater. , vol.194 , pp. 378-384
    • Sun, L.1    Qiu, K.2
  • 6
    • 36549038110 scopus 로고    scopus 로고
    • Bioleaching of metals from spent lithium ion secondary batteries using Acidithiobacillus ferrooxidans
    • Mishra D., Kim D.J., Ralph D.E., Ahn J.G., Rhee Y.H. Bioleaching of metals from spent lithium ion secondary batteries using Acidithiobacillus ferrooxidans. Waste Manage. 2008, 28:333-338.
    • (2008) Waste Manage. , vol.28 , pp. 333-338
    • Mishra, D.1    Kim, D.J.2    Ralph, D.E.3    Ahn, J.G.4    Rhee, Y.H.5
  • 7
    • 69049093672 scopus 로고    scopus 로고
    • Bioleaching mechanism of Co and Li from spent lithium-ion battery by the mixed culture of acidophilic sulfur-oxidizing and iron-oxidizing bacteria
    • Xin B., Zhang D., Zhang X., Xia Y., Wu F., Chen S., Li L. Bioleaching mechanism of Co and Li from spent lithium-ion battery by the mixed culture of acidophilic sulfur-oxidizing and iron-oxidizing bacteria. Bioresource Technol. 2009, 100:6163-6169.
    • (2009) Bioresource Technol. , vol.100 , pp. 6163-6169
    • Xin, B.1    Zhang, D.2    Zhang, X.3    Xia, Y.4    Wu, F.5    Chen, S.6    Li, L.7
  • 8
    • 36448964865 scopus 로고    scopus 로고
    • Comparison of bio-dissolution of spent Ni-Cd batteries by sewage sludge using ferrous ions and elemental sulfur as substrate
    • Zhao L., Zhu N., Wang X. Comparison of bio-dissolution of spent Ni-Cd batteries by sewage sludge using ferrous ions and elemental sulfur as substrate. Chemosphere 2008, 70:974-981.
    • (2008) Chemosphere , vol.70 , pp. 974-981
    • Zhao, L.1    Zhu, N.2    Wang, X.3
  • 9
    • 84865570014 scopus 로고    scopus 로고
    • Bioleaching of chalcopyrite by defined mixed moderately thermophilic consortium including a marine acidophilic halotolerant bacterium
    • Wang Y., Su L., Zhang L., Zeng W., Wu J., Wan L., Qiu G., Chen X., Zhou H. Bioleaching of chalcopyrite by defined mixed moderately thermophilic consortium including a marine acidophilic halotolerant bacterium. Bioresource Technol. 2012, 121:348-354.
    • (2012) Bioresource Technol. , vol.121 , pp. 348-354
    • Wang, Y.1    Su, L.2    Zhang, L.3    Zeng, W.4    Wu, J.5    Wan, L.6    Qiu, G.7    Chen, X.8    Zhou, H.9
  • 10
    • 0037457499 scopus 로고    scopus 로고
    • Effect of yeast extract on speciation and bioavailability of nickel and cobalt in anaerobic bioreactors
    • Gonzalez-Gil G., Jansen S., Zandvoort M.H., van Leeuwen H.P. Effect of yeast extract on speciation and bioavailability of nickel and cobalt in anaerobic bioreactors. Biotechnol. Bioeng. 2003, 82:134-142.
    • (2003) Biotechnol. Bioeng. , vol.82 , pp. 134-142
    • Gonzalez-Gil, G.1    Jansen, S.2    Zandvoort, M.H.3    van Leeuwen, H.P.4
  • 11
    • 37549034666 scopus 로고    scopus 로고
    • Cobalt limitation of growth and mercury methylation in sulfate-reducing bacteria
    • Ekstrom E.B., Morel F.M.M. Cobalt limitation of growth and mercury methylation in sulfate-reducing bacteria. Environ. Sci. Technol. 2008, 42:93-99.
    • (2008) Environ. Sci. Technol. , vol.42 , pp. 93-99
    • Ekstrom, E.B.1    Morel, F.M.M.2
  • 12
    • 77957979919 scopus 로고    scopus 로고
    • Inhibitory effects of the divalent metal ions on biomethanation by isolated mesophilic methanogen in AC21 medium in presence or absence of juices from water hyacinth
    • Chakraborty N., Chatterjee M., Sarkar G.M., Lahiri S.C. Inhibitory effects of the divalent metal ions on biomethanation by isolated mesophilic methanogen in AC21 medium in presence or absence of juices from water hyacinth. Bioenergy Res. 2010, 3:314-320.
    • (2010) Bioenergy Res. , vol.3 , pp. 314-320
    • Chakraborty, N.1    Chatterjee, M.2    Sarkar, G.M.3    Lahiri, S.C.4
  • 13
    • 84861477767 scopus 로고    scopus 로고
    • The impact of metal transport processes on bioavailability of free and complex metal ions in methanogenic granular sludge
    • Bartacek J., Fermoso F.G., Vergeldt F., Gerkema E., Maca J., van As H., Lens P.N.L. The impact of metal transport processes on bioavailability of free and complex metal ions in methanogenic granular sludge. Water Sci. Technol. 2012, 65:1875-1881.
    • (2012) Water Sci. Technol. , vol.65 , pp. 1875-1881
    • Bartacek, J.1    Fermoso, F.G.2    Vergeldt, F.3    Gerkema, E.4    Maca, J.5    van As, H.6    Lens, P.N.L.7
  • 14
    • 77955278900 scopus 로고    scopus 로고
    • Electrochemical bioleaching of high grade chalcopyrite flotation concentrates in a stirred bioreactor
    • Ahmadi A., Schaffie M., Manafi Z., Ranjbar M. Electrochemical bioleaching of high grade chalcopyrite flotation concentrates in a stirred bioreactor. Hydrometallurgy 2010, 104:99-105.
    • (2010) Hydrometallurgy , vol.104 , pp. 99-105
    • Ahmadi, A.1    Schaffie, M.2    Manafi, Z.3    Ranjbar, M.4
  • 15
    • 84864831407 scopus 로고    scopus 로고
    • Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies
    • Logan B.E., Rabaey K. Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science 2012, 337:686-690.
    • (2012) Science , vol.337 , pp. 686-690
    • Logan, B.E.1    Rabaey, K.2
  • 16
    • 80054688008 scopus 로고    scopus 로고
    • Enhanced hydrogen generation using a saline catholyte in a two chamber microbial electrolysis cell
    • Nam J.Y., Logan B.E. Enhanced hydrogen generation using a saline catholyte in a two chamber microbial electrolysis cell. Int. J. Hydrogen Energy 2011, 36:15105-15110.
    • (2011) Int. J. Hydrogen Energy , vol.36 , pp. 15105-15110
    • Nam, J.Y.1    Logan, B.E.2
  • 18
    • 79951575887 scopus 로고    scopus 로고
    • A new cathodic electrode deposit with palladium nanoparticles for cost-effective hydrogen production in a microbial electrolysis cell
    • Huang Y., Liu X., Sun X., Sheng G., Zhang Y., Yan G., Wang S., Xu A., Yu H. A new cathodic electrode deposit with palladium nanoparticles for cost-effective hydrogen production in a microbial electrolysis cell. Int. J. Hydrogen Energy 2011, 36:2773-2776.
    • (2011) Int. J. Hydrogen Energy , vol.36 , pp. 2773-2776
    • Huang, Y.1    Liu, X.2    Sun, X.3    Sheng, G.4    Zhang, Y.5    Yan, G.6    Wang, S.7    Xu, A.8    Yu, H.9
  • 19
    • 43049109495 scopus 로고    scopus 로고
    • Kinetics of trichloroethene dechlorination and methane formation by a mixed anaerobic culture in a bio-electrochemical system
    • Aulenta F., Reale P., Catervi A., Panero S., Majone M. Kinetics of trichloroethene dechlorination and methane formation by a mixed anaerobic culture in a bio-electrochemical system. Electrochim. Acta 2008, 53:5300-5305.
    • (2008) Electrochim. Acta , vol.53 , pp. 5300-5305
    • Aulenta, F.1    Reale, P.2    Catervi, A.3    Panero, S.4    Majone, M.5
  • 24
    • 69549109859 scopus 로고    scopus 로고
    • Efficient hydrogen peroxide generation from organic matter in a bioelectrochemical system
    • Rozendal R.A., Leone E., Keller J., Rabaey K. Efficient hydrogen peroxide generation from organic matter in a bioelectrochemical system. Electrochem. Commun. 2009, 11:1752-1755.
    • (2009) Electrochem. Commun. , vol.11 , pp. 1752-1755
    • Rozendal, R.A.1    Leone, E.2    Keller, J.3    Rabaey, K.4
  • 25
    • 77952899135 scopus 로고    scopus 로고
    • High current generation coupled to caustic production using a lamellar bioelectrochemical, system
    • K. Rabaey, S. Bützer, S. Brown, J. Keller, R.A. Rozendal, High current generation coupled to caustic production using a lamellar bioelectrochemical, system, 44 (2010) 4315-4321.
    • (2010) , vol.44 , pp. 4315-4321
    • Rabaey, K.1    Bützer, S.2    Brown, S.3    Keller, J.4    Rozendal, R.A.5
  • 26
    • 66249100237 scopus 로고    scopus 로고
    • Direct biological conversion of electrical current into methane by electromethanogenesis
    • Cheng S., Xing D., Call D.F., Logan B.E. Direct biological conversion of electrical current into methane by electromethanogenesis. Environ. Sci. Technol. 2009, 43:3953-3958.
    • (2009) Environ. Sci. Technol. , vol.43 , pp. 3953-3958
    • Cheng, S.1    Xing, D.2    Call, D.F.3    Logan, B.E.4
  • 27
    • 78650173757 scopus 로고    scopus 로고
    • Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds
    • Nevin K.P., Woodard T.L., Franks A.E., Summers Z.M., Lovley D.R. Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. mBio 2010, 1:e00103-e00110.
    • (2010) mBio , vol.1
    • Nevin, K.P.1    Woodard, T.L.2    Franks, A.E.3    Summers, Z.M.4    Lovley, D.R.5
  • 28
    • 45049088797 scopus 로고    scopus 로고
    • Leaching of chalcopyrite with ferric ion. Part IV: The role of redox potential in the presence of mesophilic and thermophilic bacteria
    • Cordoba E.M., Munoz J.A., Blázquez M.L., González F., Ballester A. Leaching of chalcopyrite with ferric ion. Part IV: The role of redox potential in the presence of mesophilic and thermophilic bacteria. Hydrometallurgy 2008, 93:106-115.
    • (2008) Hydrometallurgy , vol.93 , pp. 106-115
    • Cordoba, E.M.1    Munoz, J.A.2    Blázquez, M.L.3    González, F.4    Ballester, A.5
  • 29
    • 22344440310 scopus 로고    scopus 로고
    • Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration
    • Liu H., Cheng S., Logan B.E. Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environ. Sci. Technol. 2005, 39:5488-5493.
    • (2005) Environ. Sci. Technol. , vol.39 , pp. 5488-5493
    • Liu, H.1    Cheng, S.2    Logan, B.E.3
  • 30
    • 50849085152 scopus 로고    scopus 로고
    • Electricity production from xylose in fed-batch and continuous-flow microbial fuel cells
    • Huang L., Logan B.E. Electricity production from xylose in fed-batch and continuous-flow microbial fuel cells. Appl. Microbiol. Biotechnol. 2008, 80:655-664.
    • (2008) Appl. Microbiol. Biotechnol. , vol.80 , pp. 655-664
    • Huang, L.1    Logan, B.E.2
  • 31
    • 84861840908 scopus 로고    scopus 로고
    • Essential data and techniques for conducting microbial fuel cell and other types of bioelectrochemical system experiments
    • Logan B.E. Essential data and techniques for conducting microbial fuel cell and other types of bioelectrochemical system experiments. ChemSusChem 2012, 15:988-994.
    • (2012) ChemSusChem , vol.15 , pp. 988-994
    • Logan, B.E.1
  • 32
    • 80051596636 scopus 로고    scopus 로고
    • Comparison of microbial electrolysis cells operated with added voltage or by setting the anode potential
    • Nam J.Y., Tokash J.C., Logan B.E. Comparison of microbial electrolysis cells operated with added voltage or by setting the anode potential. Int. J. Hydrogen Energ. 2011, 36:10550-10556.
    • (2011) Int. J. Hydrogen Energ. , vol.36 , pp. 10550-10556
    • Nam, J.Y.1    Tokash, J.C.2    Logan, B.E.3
  • 33
    • 77955518655 scopus 로고    scopus 로고
    • Influence of catholyte pH and temperature on hydrogen production from acetate using a two chamber concentric tubular microbial electrolysis cell
    • Kyazze G., Popov A., Dinsdale R., Esteves S., Hawkes F., Premier G., Guwy A. Influence of catholyte pH and temperature on hydrogen production from acetate using a two chamber concentric tubular microbial electrolysis cell. Int. J. Hydrogen Energy 2011, 35:7716-7722.
    • (2011) Int. J. Hydrogen Energy , vol.35 , pp. 7716-7722
    • Kyazze, G.1    Popov, A.2    Dinsdale, R.3    Esteves, S.4    Hawkes, F.5    Premier, G.6    Guwy, A.7
  • 35
    • 78650512558 scopus 로고    scopus 로고
    • Evaluation of carbon-based materials in tubular biocathode microbial fuel cells in terms of hexavalent chromium reduction and electricity generation
    • Huang L., Chai X., Cheng S., Chen G. Evaluation of carbon-based materials in tubular biocathode microbial fuel cells in terms of hexavalent chromium reduction and electricity generation. Chem. Eng. J. 2011, 166:652-661.
    • (2011) Chem. Eng. J. , vol.166 , pp. 652-661
    • Huang, L.1    Chai, X.2    Cheng, S.3    Chen, G.4
  • 36
    • 80355129152 scopus 로고    scopus 로고
    • Electricity generation and microbial community changes in microbial fuel cells packed with different anodic materials
    • Sun Y., Wei J., Liang P., Huang X. Electricity generation and microbial community changes in microbial fuel cells packed with different anodic materials. Bioresource Technol. 2011, 102:10886-10891.
    • (2011) Bioresource Technol. , vol.102 , pp. 10886-10891
    • Sun, Y.1    Wei, J.2    Liang, P.3    Huang, X.4
  • 37
    • 84864296293 scopus 로고    scopus 로고
    • Mineralization of pentachlorophenol with enhanced degradation and power generation from air cathode microbial fuel cells
    • Huang L., Gan L., Wang N., Quan X., Logan B.E., Chen G. Mineralization of pentachlorophenol with enhanced degradation and power generation from air cathode microbial fuel cells. Biotechnol. Bioeng. 2012, 109:2211-2221.
    • (2012) Biotechnol. Bioeng. , vol.109 , pp. 2211-2221
    • Huang, L.1    Gan, L.2    Wang, N.3    Quan, X.4    Logan, B.E.5    Chen, G.6
  • 38
    • 84858752481 scopus 로고    scopus 로고
    • Reductive dechlorination and mineralization of pentachlorophenol in biocathode microbial fuel cells
    • Huang L., Chai X., Quan X., Logan B.E., Chen G. Reductive dechlorination and mineralization of pentachlorophenol in biocathode microbial fuel cells. Bioresource Technol. 2012, 111:167-174.
    • (2012) Bioresource Technol. , vol.111 , pp. 167-174
    • Huang, L.1    Chai, X.2    Quan, X.3    Logan, B.E.4    Chen, G.5
  • 39
    • 64549127249 scopus 로고    scopus 로고
    • High surface area stainless steel brushes as cathodes in microbial electrolysis cells
    • Call D.F., Merrill M.D., Logan B.E. High surface area stainless steel brushes as cathodes in microbial electrolysis cells. Environ. Sci. Technol. 2009, 43:2179-2183.
    • (2009) Environ. Sci. Technol. , vol.43 , pp. 2179-2183
    • Call, D.F.1    Merrill, M.D.2    Logan, B.E.3
  • 40
    • 73749083417 scopus 로고    scopus 로고
    • Hydrogen production with nickel powder cathode catalysts in microbial electrolysis cells
    • Selembo P.A., Merrill M.D., Logan B.E. Hydrogen production with nickel powder cathode catalysts in microbial electrolysis cells. Int. J. Hydrogen Energy 2010, 35:428-437.
    • (2010) Int. J. Hydrogen Energy , vol.35 , pp. 428-437
    • Selembo, P.A.1    Merrill, M.D.2    Logan, B.E.3
  • 41
    • 79960918223 scopus 로고    scopus 로고
    • Electrochemical evaluation of molybdenum disulfide as a catalyst for hydrogen evolution in microbial electrolysis cells
    • Tokash J.C., Logan B.E. Electrochemical evaluation of molybdenum disulfide as a catalyst for hydrogen evolution in microbial electrolysis cells. Int. J. Hydrogen Energy 2011, 36:9439-9445.
    • (2011) Int. J. Hydrogen Energy , vol.36 , pp. 9439-9445
    • Tokash, J.C.1    Logan, B.E.2
  • 42
    • 47049116935 scopus 로고    scopus 로고
    • Proton transport inside the biofilm limits electrical current generation by anode-respiring bacteria
    • Torres C.I., Marcus A.K., Rittmann B.E. Proton transport inside the biofilm limits electrical current generation by anode-respiring bacteria. Biotechnol. Bioeng. 2008, 100:872-881.
    • (2008) Biotechnol. Bioeng. , vol.100 , pp. 872-881
    • Torres, C.I.1    Marcus, A.K.2    Rittmann, B.E.3
  • 43
    • 77957348875 scopus 로고    scopus 로고
    • Electron transfer mechanisms, new applications, and performance of biocathode microbial fuel cells
    • Huang L., Regan J.M., Quan X. Electron transfer mechanisms, new applications, and performance of biocathode microbial fuel cells. Bioresource Technol. 2011, 102:316-323.
    • (2011) Bioresource Technol. , vol.102 , pp. 316-323
    • Huang, L.1    Regan, J.M.2    Quan, X.3
  • 44
    • 77955251022 scopus 로고    scopus 로고
    • Catalytic reduction of hexaminecobalt(III) by pitch-based spherical activated carbon (PBSAC)
    • Chen Y., Mao Y., Zhu H., Cheng J., Long X., Yuan W. Catalytic reduction of hexaminecobalt(III) by pitch-based spherical activated carbon (PBSAC). Clean Soil Air Water 2010, 38:601-607.
    • (2010) Clean Soil Air Water , vol.38 , pp. 601-607
    • Chen, Y.1    Mao, Y.2    Zhu, H.3    Cheng, J.4    Long, X.5    Yuan, W.6
  • 45
    • 83555173509 scopus 로고    scopus 로고
    • The effect of aluminium oxide on the reduction of cobalt oxide and thermostabillity of cobalt and cobalt oxide
    • Lendzion-Bielun Z., Jedrzejewski R., Arabczyk W. The effect of aluminium oxide on the reduction of cobalt oxide and thermostabillity of cobalt and cobalt oxide. Cent. Eur. J. Chem. 2011, 9:834-839.
    • (2011) Cent. Eur. J. Chem. , vol.9 , pp. 834-839
    • Lendzion-Bielun, Z.1    Jedrzejewski, R.2    Arabczyk, W.3
  • 46
    • 77949625264 scopus 로고    scopus 로고
    • Reduction of hexamminecobalt (III) catalyzed by coconut activated carbon
    • Long X., Cheng H., Yuan W. Reduction of hexamminecobalt (III) catalyzed by coconut activated carbon. Environ. Prog. Sustain. Energy 2010, 29:85-92.
    • (2010) Environ. Prog. Sustain. Energy , vol.29 , pp. 85-92
    • Long, X.1    Cheng, H.2    Yuan, W.3
  • 47
    • 80052069962 scopus 로고    scopus 로고
    • In situ controllable growth of noble metal nanodot on grapheme sheet
    • Zhang H., Chen S., Quan X., Yu H., Zhao H. In situ controllable growth of noble metal nanodot on grapheme sheet. J. Mater. Chem. 2011, 21:12986-12990.
    • (2011) J. Mater. Chem. , vol.21 , pp. 12986-12990
    • Zhang, H.1    Chen, S.2    Quan, X.3    Yu, H.4    Zhao, H.5
  • 48
    • 84873909635 scopus 로고    scopus 로고
    • (Ed.), Section 8: Electrolyte, Electromotive Force, and Chemical Equilibrium, Lange's Handbook of Chemistry, 15th ed., McGraw-Hill Professional, October
    • J.A. Dean (Ed.), Section 8: Electrolyte, Electromotive Force, and Chemical Equilibrium, Lange's Handbook of Chemistry, 15th ed., McGraw-Hill Professional, October 1998.
    • , vol.1998
    • Dean, J.A.1
  • 49
    • 84865746608 scopus 로고    scopus 로고
    • Bioelectrochemical recovery of Cu, Pb, Cd, and Zn from dilute solutions
    • Modin O., Wang X., Wu X., Rauch S., Fedje K.K. Bioelectrochemical recovery of Cu, Pb, Cd, and Zn from dilute solutions. J. Mater. Chem. 2012, 235-236:291-297.
    • (2012) J. Mater. Chem. , pp. 291-297
    • Modin, O.1    Wang, X.2    Wu, X.3    Rauch, S.4    Fedje, K.K.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.