메뉴 건너뛰기




Volumn 409-410, Issue , 2012, Pages 16-23

Ionic composition and transport mechanisms in microbial desalination cells

Author keywords

Bioelectrochemical system; Energy production; Ionic transport; Membrane fouling; Microbial desalination

Indexed keywords

ALKALINE PRECIPITATION; ANODE CATHODES; BIOELECTROCHEMICAL SYSTEMS; CATION EXCHANGE MEMBRANES; COUNTERIONS; ELECTRICAL POWER; ENERGY PRODUCTIONS; EXCHANGE MEMBRANES; HARVEST RATES; ION SPECIES; ION TRANSPORT MECHANISMS; IONIC COMPOSITION; IONIC TRANSPORTS; MEMBRANE CHARACTERIZATION; MEMBRANE SCALING; MICROBIAL ACTIVITIES; MICROBIAL DESALINATION CELLS; ORGANIC MATTER OXIDATION; PH CHANGE; RECIRCULATIONS; REMOVAL MECHANISM; TRANSPORT BEHAVIOR; TRANSPORT MECHANISM;

EID: 84860551236     PISSN: 03767388     EISSN: 18733123     Source Type: Journal    
DOI: 10.1016/j.memsci.2012.02.059     Document Type: Article
Times cited : (98)

References (25)
  • 2
    • 79956041957 scopus 로고    scopus 로고
    • Use of a liter-scale microbial desalination cell as a platform to study bioelectrochemical desalination with salt solution or artificial seawater
    • Jacobson K.S., Drew D.M., He Z. Use of a liter-scale microbial desalination cell as a platform to study bioelectrochemical desalination with salt solution or artificial seawater. Environ. Sci. Technol. 2011, 45:4652-4657.
    • (2011) Environ. Sci. Technol. , vol.45 , pp. 4652-4657
    • Jacobson, K.S.1    Drew, D.M.2    He, Z.3
  • 3
    • 78650259349 scopus 로고    scopus 로고
    • Microbial electrodialysis cell for simultaneous water desalination and hydrogen gas production
    • Mehanna M., Kiely P.D., Call D.F., Logan B.E. Microbial electrodialysis cell for simultaneous water desalination and hydrogen gas production. Environ. Sci. Technol. 2010, 44:9578-9583.
    • (2010) Environ. Sci. Technol. , vol.44 , pp. 9578-9583
    • Mehanna, M.1    Kiely, P.D.2    Call, D.F.3    Logan, B.E.4
  • 4
    • 78650700266 scopus 로고    scopus 로고
    • Concurrent desalination hydrogen generation using microbial electrolysis and desalination cells
    • Luo H.P., Jenkins P.E., Ren Z.Y. Concurrent desalination hydrogen generation using microbial electrolysis and desalination cells. Environ. Sci. Technol. 2011, 45:340-344.
    • (2011) Environ. Sci. Technol. , vol.45 , pp. 340-344
    • Luo, H.P.1    Jenkins, P.E.2    Ren, Z.Y.3
  • 5
    • 79959903351 scopus 로고    scopus 로고
    • Series assembly of microbial desalination cells containing stacked electrodialysis cells for partial or complete seawater desalination
    • Kim Y., Logan B.E. Series assembly of microbial desalination cells containing stacked electrodialysis cells for partial or complete seawater desalination. Environ. Sci. Technol. 2011, 45:5840-5845.
    • (2011) Environ. Sci. Technol. , vol.45 , pp. 5840-5845
    • Kim, Y.1    Logan, B.E.2
  • 6
    • 79953848195 scopus 로고    scopus 로고
    • Stacked microbial desalination cells to enhance water desalination efficiency
    • Chen X., Xia X., Liang P., Cao X.X., Sun H.T., Huang X. Stacked microbial desalination cells to enhance water desalination efficiency. Environ. Sci. Technol. 2011, 45:2465-2470.
    • (2011) Environ. Sci. Technol. , vol.45 , pp. 2465-2470
    • Chen, X.1    Xia, X.2    Liang, P.3    Cao, X.X.4    Sun, H.T.5    Huang, X.6
  • 7
    • 84855248755 scopus 로고    scopus 로고
    • Microbial desalination cells for improved performance in wastewater treatment, electricity production, and desalination
    • Luo H., Xu P., Roane T.M., Jenkins P.E., Ren Z. Microbial desalination cells for improved performance in wastewater treatment, electricity production, and desalination. Bioresour. Technol. 2012, 105:60-66.
    • (2012) Bioresour. Technol. , vol.105 , pp. 60-66
    • Luo, H.1    Xu, P.2    Roane, T.M.3    Jenkins, P.E.4    Ren, Z.5
  • 8
    • 84860352367 scopus 로고    scopus 로고
    • Sustainable desalination using a microbial capacitive desalination cell
    • Forrestal C., Xu P., Ren Z. Sustainable desalination using a microbial capacitive desalination cell. Energy Environ. Sci. 2012, 10.1039/c2ee21121a.
    • (2012) Energy Environ. Sci.
    • Forrestal, C.1    Xu, P.2    Ren, Z.3
  • 9
    • 34548842224 scopus 로고    scopus 로고
    • Effect of magnesium/calcium ratio in solutions subjected to electrodialysis: characterization of cation-exchange membrane fouling
    • Casademont C., Pourcelly G., Bazinet L. Effect of magnesium/calcium ratio in solutions subjected to electrodialysis: characterization of cation-exchange membrane fouling. J. Colloid Interface Sci. 2007, 315:544-554.
    • (2007) J. Colloid Interface Sci. , vol.315 , pp. 544-554
    • Casademont, C.1    Pourcelly, G.2    Bazinet, L.3
  • 10
    • 9644291594 scopus 로고    scopus 로고
    • Effect of calcium and carbonate concentrations on cationic membrane fouling during electrodialysis
    • Bazinet L., Araya-Farias M. Effect of calcium and carbonate concentrations on cationic membrane fouling during electrodialysis. J. Colloid Interface Sci. 2005, 281:188-196.
    • (2005) J. Colloid Interface Sci. , vol.281 , pp. 188-196
    • Bazinet, L.1    Araya-Farias, M.2
  • 11
    • 67651100423 scopus 로고    scopus 로고
    • Influence of NO(3) and SO(4) on power generation from microbial fuel cells
    • Morris J.M., Jin S. Influence of NO(3) and SO(4) on power generation from microbial fuel cells. Chem. Eng. J. 2009, 153:127-130.
    • (2009) Chem. Eng. J. , vol.153 , pp. 127-130
    • Morris, J.M.1    Jin, S.2
  • 12
    • 84855345089 scopus 로고    scopus 로고
    • Simultaneous water desalination and electricity generation in a microbial desalination cell with electrolyte recirculation for pH control
    • Qu Y., Feng Y., Wang X., Liu J., Lv J., He W., Logan B.E. Simultaneous water desalination and electricity generation in a microbial desalination cell with electrolyte recirculation for pH control. Bioresour. Technol. 2012, 106:89-94.
    • (2012) Bioresour. Technol. , vol.106 , pp. 89-94
    • Qu, Y.1    Feng, Y.2    Wang, X.3    Liu, J.4    Lv, J.5    He, W.6    Logan, B.E.7
  • 13
    • 77956131444 scopus 로고    scopus 로고
    • Effects of anolyte recirculation rates and catholytes on electricity generation in a liter-scale upflow microbial fuel cell
    • Zhang F., Jacobson K., Torres P., He Z. Effects of anolyte recirculation rates and catholytes on electricity generation in a liter-scale upflow microbial fuel cell. Energy Environ. Sci. 2010, 1347-1352.
    • (2010) Energy Environ. Sci. , pp. 1347-1352
    • Zhang, F.1    Jacobson, K.2    Torres, P.3    He, Z.4
  • 14
    • 69549128558 scopus 로고    scopus 로고
    • Use of carbon mesh anodes and the effect of different pretreatment methods on power production in microbial fuel cells
    • Wang X., Cheng S.A., Feng Y.J., Merrill M.D., Saito T., Logan B.E. Use of carbon mesh anodes and the effect of different pretreatment methods on power production in microbial fuel cells. Environ. Sci. Technol. 2009, 43:6870-6874.
    • (2009) Environ. Sci. Technol. , vol.43 , pp. 6870-6874
    • Wang, X.1    Cheng, S.A.2    Feng, Y.J.3    Merrill, M.D.4    Saito, T.5    Logan, B.E.6
  • 15
    • 33344465903 scopus 로고    scopus 로고
    • Increased performance of single-chamber microbial fuel cells using an improved cathode structure
    • Cheng S., Liu H., Logan B.E. Increased performance of single-chamber microbial fuel cells using an improved cathode structure. Electrochem. Commun. 2006, 8:489-494.
    • (2006) Electrochem. Commun. , vol.8 , pp. 489-494
    • Cheng, S.1    Liu, H.2    Logan, B.E.3
  • 16
    • 79953863261 scopus 로고    scopus 로고
    • Characterization of microbial fuel cells at microbially and electrochemically meaningful timescales
    • Ren Z., Yan H., Wang W., Mench M., Regan J. Characterization of microbial fuel cells at microbially and electrochemically meaningful timescales. Environ. Sci. Technol. 2011, 45:2435-2441.
    • (2011) Environ. Sci. Technol. , vol.45 , pp. 2435-2441
    • Ren, Z.1    Yan, H.2    Wang, W.3    Mench, M.4    Regan, J.5
  • 17
    • 43049112390 scopus 로고    scopus 로고
    • Treatment of brackish produced water using carbon aerogel-based capacitive deionization technology
    • Xu P., Heil D., Wang G., Drewes J.E. Treatment of brackish produced water using carbon aerogel-based capacitive deionization technology. Water Res. 2008, 42:2605-2617.
    • (2008) Water Res. , vol.42 , pp. 2605-2617
    • Xu, P.1    Heil, D.2    Wang, G.3    Drewes, J.E.4
  • 18
    • 77957353556 scopus 로고    scopus 로고
    • Time-course correlation of biofilm properties and electrochemical performance in single-chamber microbial fuel cells
    • Ren Z., Ramasamy R.P., Cloud-Owen S.R., Yan H., Mench M.M., Regan J.M. Time-course correlation of biofilm properties and electrochemical performance in single-chamber microbial fuel cells. Bioresour. Technol. 2011, 102:416-421.
    • (2011) Bioresour. Technol. , vol.102 , pp. 416-421
    • Ren, Z.1    Ramasamy, R.P.2    Cloud-Owen, S.R.3    Yan, H.4    Mench, M.M.5    Regan, J.M.6
  • 19
    • 60549086211 scopus 로고    scopus 로고
    • Influence of multivalent ions on power production from mixing salt and fresh water with a reverse electrodialysis system
    • Post J.W., Hamelers H.V.M., Buisman C.J.N. Influence of multivalent ions on power production from mixing salt and fresh water with a reverse electrodialysis system. J. Membr. Sci. 2009, 330:65-72.
    • (2009) J. Membr. Sci. , vol.330 , pp. 65-72
    • Post, J.W.1    Hamelers, H.V.M.2    Buisman, C.J.N.3
  • 20
    • 1242340449 scopus 로고    scopus 로고
    • Separation of monovalent and divalent ions from aqueous solution by electrodialysis and nanofiltration
    • Van der Bruggen B., Koninckx A., Vandecasteele C. Separation of monovalent and divalent ions from aqueous solution by electrodialysis and nanofiltration. Water Res. 2004, 38:1347-1353.
    • (2004) Water Res. , vol.38 , pp. 1347-1353
    • Van der Bruggen, B.1    Koninckx, A.2    Vandecasteele, C.3
  • 21
    • 7544235207 scopus 로고    scopus 로고
    • Modification of the ionic composition of salt solutions by electrodialysis
    • Firdaous L., Quemeneur F., Schlumpf J.P., Maleriat J.P. Modification of the ionic composition of salt solutions by electrodialysis. Desalination 2004, 167:397-402.
    • (2004) Desalination , vol.167 , pp. 397-402
    • Firdaous, L.1    Quemeneur, F.2    Schlumpf, J.P.3    Maleriat, J.P.4
  • 22
    • 77950068249 scopus 로고    scopus 로고
    • Fouling of nanofiltration and reverse osmosis membranes during municipal wastewater reclamation: membrane autopsy results from pilot-scale investigations
    • Xu P., Bellona C., Drewes J.E. Fouling of nanofiltration and reverse osmosis membranes during municipal wastewater reclamation: membrane autopsy results from pilot-scale investigations. J. Membr. Sci. 2010, 353:111-121.
    • (2010) J. Membr. Sci. , vol.353 , pp. 111-121
    • Xu, P.1    Bellona, C.2    Drewes, J.E.3
  • 23
    • 77957361587 scopus 로고    scopus 로고
    • Efficient salt removal in a continuously operated upflow microbial desalination cell with an air cathode
    • Jacobson K.S., Drew D.M., He Z. Efficient salt removal in a continuously operated upflow microbial desalination cell with an air cathode. Bioresour. Technol. 2011, 102:376-380.
    • (2011) Bioresour. Technol. , vol.102 , pp. 376-380
    • Jacobson, K.S.1    Drew, D.M.2    He, Z.3
  • 24
    • 78549283196 scopus 로고    scopus 로고
    • Reduction of pH buffer requirement in bioelectrochemical systems
    • Sleutels T.H., Hamelers H.V., Buisman C.J. Reduction of pH buffer requirement in bioelectrochemical systems. Environ. Sci. Technol. 2010, 44:8259-8263.
    • (2010) Environ. Sci. Technol. , vol.44 , pp. 8259-8263
    • Sleutels, T.H.1    Hamelers, H.V.2    Buisman, C.J.3
  • 25
    • 40749115223 scopus 로고    scopus 로고
    • Evaluation of energy-conversion efficiencies in microbial fuel cells (MFCs) utilizing fermentable and non-fermentable substrates
    • Lee H.S., Parameswaran P., Kato-Marcus A., Torres C.I., Rittmann B.E. Evaluation of energy-conversion efficiencies in microbial fuel cells (MFCs) utilizing fermentable and non-fermentable substrates. Water Res. 2008, 42:1501-1510.
    • (2008) Water Res. , vol.42 , pp. 1501-1510
    • Lee, H.S.1    Parameswaran, P.2    Kato-Marcus, A.3    Torres, C.I.4    Rittmann, B.E.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.