메뉴 건너뛰기




Volumn 262, Issue , 2013, Pages 1-8

Copper catalysis for enhancement of cobalt leaching and acid utilization efficiency in microbial fuel cells

Author keywords

Acid utilization efficiency; Apparent activation energy; Cobalt leaching; Copper catalysis; Microbial fuel cell

Indexed keywords

APPARENT ACTIVATION ENERGY; COBALT RECOVERY; COPPER CATALYSIS; LI-ION BATTERIES; MICROBIAL FUEL CELLS (MFCS); SOLID/LIQUID RATIOS; SOLUTION CONDUCTIVITY; UTILIZATION EFFICIENCY;

EID: 84883428614     PISSN: 03043894     EISSN: 18733336     Source Type: Journal    
DOI: 10.1016/j.jhazmat.2013.08.004     Document Type: Article
Times cited : (28)

References (36)
  • 1
    • 56449110783 scopus 로고    scopus 로고
    • Spent hydroprocessing catalyst management: a review. Part II. Advances in metal recovery and safe disposal methods
    • Marafi M., Stanislaus A. Spent hydroprocessing catalyst management: a review. Part II. Advances in metal recovery and safe disposal methods. Resources, Conservation and Recycling 2008, 53:1-26.
    • (2008) Resources, Conservation and Recycling , vol.53 , pp. 1-26
    • Marafi, M.1    Stanislaus, A.2
  • 2
    • 74149093043 scopus 로고    scopus 로고
    • Electrochemical recovery of cobalt and copper from spent Li-ion batteries as multilayer deposits
    • Freitas M.B.J.G., Celante V.G., Pietre M.K. Electrochemical recovery of cobalt and copper from spent Li-ion batteries as multilayer deposits. Journal of Power Sources 2010, 195:3309-3315.
    • (2010) Journal of Power Sources , vol.195 , pp. 3309-3315
    • Freitas, M.B.J.G.1    Celante, V.G.2    Pietre, M.K.3
  • 4
    • 0035426835 scopus 로고    scopus 로고
    • Electroleaching of polymetallic ocean nodules to recover copper, nickel and cobalt
    • Kumari A., Natarajan K.A. Electroleaching of polymetallic ocean nodules to recover copper, nickel and cobalt. Minerals Engineering 2001, 14:877-886.
    • (2001) Minerals Engineering , vol.14 , pp. 877-886
    • Kumari, A.1    Natarajan, K.A.2
  • 5
    • 84863554625 scopus 로고    scopus 로고
    • Anodic fenton process assisted by a microbial fuel cell for enhanced degradation of organic pollutants
    • Liu X.W., Sun X.F., Li D.B., Li W.W., Huang Y.X., Sheng G.P., Yu H.Q. Anodic fenton process assisted by a microbial fuel cell for enhanced degradation of organic pollutants. Water Research 2012, 46:4371-4378.
    • (2012) Water Research , vol.46 , pp. 4371-4378
    • Liu, X.W.1    Sun, X.F.2    Li, D.B.3    Li, W.W.4    Huang, Y.X.5    Sheng, G.P.6    Yu, H.Q.7
  • 6
    • 84864831407 scopus 로고    scopus 로고
    • Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies
    • Logan B.E., Rabaey K. Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science 2012, 337:686-690.
    • (2012) Science , vol.337 , pp. 686-690
    • Logan, B.E.1    Rabaey, K.2
  • 8
    • 84862187780 scopus 로고    scopus 로고
    • A microbial fuel cell-membrane bioreactor integrated system for cost-effective wastewater treatment
    • Wang Y.P., Liu X.W., Li W.W., Li F., Wang Y.K., Sheng G.P., Zeng R.J., Yu H.Q. A microbial fuel cell-membrane bioreactor integrated system for cost-effective wastewater treatment. Applied Energy 2012, 98:230-235.
    • (2012) Applied Energy , vol.98 , pp. 230-235
    • Wang, Y.P.1    Liu, X.W.2    Li, W.W.3    Li, F.4    Wang, Y.K.5    Sheng, G.P.6    Zeng, R.J.7    Yu, H.Q.8
  • 9
  • 10
    • 69849103522 scopus 로고    scopus 로고
    • Removal of selenite from wastewater using microbial fuel cells
    • Catal T., Bermek H., Liu H. Removal of selenite from wastewater using microbial fuel cells. Biotechnology Letters 2009, 31:1211-1216.
    • (2009) Biotechnology Letters , vol.31 , pp. 1211-1216
    • Catal, T.1    Bermek, H.2    Liu, H.3
  • 12
    • 84862795873 scopus 로고    scopus 로고
    • Recovery of silver from silver(I)-containing solutions in bioelectrochemical reactors
    • Tao H.C., Gao Z.Y., Ding H., Xu N., Wu W.M. Recovery of silver from silver(I)-containing solutions in bioelectrochemical reactors. Bioresource Technology 2012, 111:92-97.
    • (2012) Bioresource Technology , vol.111 , pp. 92-97
    • Tao, H.C.1    Gao, Z.Y.2    Ding, H.3    Xu, N.4    Wu, W.M.5
  • 14
    • 52449101935 scopus 로고    scopus 로고
    • Cathodic reduction of hexavalent chromium [Cr(VI)] coupled with electricity generation in microbial fuel cells
    • Wang G., Huang L.P., Zhang Y.F. Cathodic reduction of hexavalent chromium [Cr(VI)] coupled with electricity generation in microbial fuel cells. Biotechnology Letters 2008, 30:1959-1966.
    • (2008) Biotechnology Letters , vol.30 , pp. 1959-1966
    • Wang, G.1    Huang, L.P.2    Zhang, Y.F.3
  • 15
    • 79955016287 scopus 로고    scopus 로고
    • 2+ as an electron acceptor coupled with power generation using a microbial fuel cell
    • 2+ as an electron acceptor coupled with power generation using a microbial fuel cell. Bioresource Technology 2011, 102:6304-6307.
    • (2011) Bioresource Technology , vol.102 , pp. 6304-6307
    • Wang, Z.1    Lim, B.2    Choi, C.3
  • 16
    • 70449436466 scopus 로고    scopus 로고
    • Simultaneous removal of sulfide and organics with vanadium (V) reduction in microbial fuel cells
    • Zhang B., Zhao H., Shi C., Zhou S., Ni J. Simultaneous removal of sulfide and organics with vanadium (V) reduction in microbial fuel cells. Journal of Chemical Technology and Biotechnology 2009, 84:1780-1786.
    • (2009) Journal of Chemical Technology and Biotechnology , vol.84 , pp. 1780-1786
    • Zhang, B.1    Zhao, H.2    Shi, C.3    Zhou, S.4    Ni, J.5
  • 17
    • 84866378058 scopus 로고    scopus 로고
    • Bioelectrochemical recovery of ammonia-copper (II) complexes from wastewater using a dual chamber microbial fuel cell
    • Zhang L.J., Tao H.C., Wei X.Y., Lei T., Li J.B., Wang A.J., Wu W.M. Bioelectrochemical recovery of ammonia-copper (II) complexes from wastewater using a dual chamber microbial fuel cell. Chemosphere 2012, 89:1177-1182.
    • (2012) Chemosphere , vol.89 , pp. 1177-1182
    • Zhang, L.J.1    Tao, H.C.2    Wei, X.Y.3    Lei, T.4    Li, J.B.5    Wang, A.J.6    Wu, W.M.7
  • 18
    • 84870526742 scopus 로고    scopus 로고
    • Synergetic interactions improve cobalt leaching from lithium cobalt oxide in microbial fuel cells
    • Huang L.P., Li T.C., Liu C., Quan X., Chen L.J., Wang A.J., Chen G.H. Synergetic interactions improve cobalt leaching from lithium cobalt oxide in microbial fuel cells. Bioresource Technology 2013, 128:539-546.
    • (2013) Bioresource Technology , vol.128 , pp. 539-546
    • Huang, L.P.1    Li, T.C.2    Liu, C.3    Quan, X.4    Chen, L.J.5    Wang, A.J.6    Chen, G.H.7
  • 19
    • 0027694952 scopus 로고
    • The catalytic effect of some cations on the biological leaching of a Spanish complex sulphide
    • Escudero M.E., González F., Blázquez M.L. The catalytic effect of some cations on the biological leaching of a Spanish complex sulphide. Hydrometallurgy 1993, 34:151-169.
    • (1993) Hydrometallurgy , vol.34 , pp. 151-169
    • Escudero, M.E.1    González, F.2    Blázquez, M.L.3
  • 21
    • 83955161175 scopus 로고    scopus 로고
    • A copper-catalyzed bioleaching process for enhancement of cobalt dissolution from spent lithium-ion batteries
    • Zeng G.S., Deng X.R., Luo S.L., Luo X.B., Zou J.P. A copper-catalyzed bioleaching process for enhancement of cobalt dissolution from spent lithium-ion batteries. Journal of Hazardous Materials 2012, 199-200:164-169.
    • (2012) Journal of Hazardous Materials , pp. 164-169
    • Zeng, G.S.1    Deng, X.R.2    Luo, S.L.3    Luo, X.B.4    Zou, J.P.5
  • 22
    • 78650512558 scopus 로고    scopus 로고
    • Evaluation of carbon-based materials in tubular biocathode microbial fuel cells in terms of hexavalent chromium reduction and electricity generation
    • Huang L.P., Chai X.L., Cheng S.A., Chen G.H. Evaluation of carbon-based materials in tubular biocathode microbial fuel cells in terms of hexavalent chromium reduction and electricity generation. Chemical Engineering Journal 2011, 166:652-661.
    • (2011) Chemical Engineering Journal , vol.166 , pp. 652-661
    • Huang, L.P.1    Chai, X.L.2    Cheng, S.A.3    Chen, G.H.4
  • 23
    • 84864224064 scopus 로고    scopus 로고
    • Improved performance of CEA microbial fuel cells with increased reactor size
    • Fan Y., Han S.K., Liu H. Improved performance of CEA microbial fuel cells with increased reactor size. Energy and Environmental Science 2012, 5:8273-8280.
    • (2012) Energy and Environmental Science , vol.5 , pp. 8273-8280
    • Fan, Y.1    Han, S.K.2    Liu, H.3
  • 24
    • 84861840908 scopus 로고    scopus 로고
    • Essential data and techniques for conducting microbial fuel cell and other types of bioelectrochemical system experiments
    • Logan B.E. Essential data and techniques for conducting microbial fuel cell and other types of bioelectrochemical system experiments. ChemSusChem 2012, 15:988-994.
    • (2012) ChemSusChem , vol.15 , pp. 988-994
    • Logan, B.E.1
  • 27
    • 36549038110 scopus 로고    scopus 로고
    • Bioleaching of metals from spent lithium ion secondary batteries using Acidithiobacillus ferrooxidans
    • Mishra D., Kim D.J., Ralph D.E., Ann J.G., Rhee Y.H. Bioleaching of metals from spent lithium ion secondary batteries using Acidithiobacillus ferrooxidans. Waste Management 2008, 28:333-338.
    • (2008) Waste Management , vol.28 , pp. 333-338
    • Mishra, D.1    Kim, D.J.2    Ralph, D.E.3    Ann, J.G.4    Rhee, Y.H.5
  • 28
    • 69049093672 scopus 로고    scopus 로고
    • Bioleaching mechanism of Co and Li from spent lithium-ion battery by the mixed culture of acidophilic sulfur-oxidizing and iron-oxidizing bacteria
    • Xin B., Zhang D., Zhang X., Xia Y., Wu F., Chen S., Li L. Bioleaching mechanism of Co and Li from spent lithium-ion battery by the mixed culture of acidophilic sulfur-oxidizing and iron-oxidizing bacteria. Bioresource Technology 2009, 100:6163-6169.
    • (2009) Bioresource Technology , vol.100 , pp. 6163-6169
    • Xin, B.1    Zhang, D.2    Zhang, X.3    Xia, Y.4    Wu, F.5    Chen, S.6    Li, L.7
  • 29
    • 77956173875 scopus 로고    scopus 로고
    • The humic acid analogue anthraquinone-2,6-disulfonate (AQDS) serves as an electron shuttle in the electricity-driven microbial dechlorination of trichloroethene to cis-dichloroethene
    • Aulenta F., Maio V.D., Ferri T., Majone M. The humic acid analogue anthraquinone-2,6-disulfonate (AQDS) serves as an electron shuttle in the electricity-driven microbial dechlorination of trichloroethene to cis-dichloroethene. Bioresource Technology 2010, 101:9728-9733.
    • (2010) Bioresource Technology , vol.101 , pp. 9728-9733
    • Aulenta, F.1    Maio, V.D.2    Ferri, T.3    Majone, M.4
  • 30
    • 84858752481 scopus 로고    scopus 로고
    • Reductive dechlorination and mineralization of pentachlorophenol in biocathode microbial fuel cells
    • Huang L.P., Chai X.L., Quan X., Logan B.E., Chen G.H. Reductive dechlorination and mineralization of pentachlorophenol in biocathode microbial fuel cells. Bioresource Technology 2012, 111:167-174.
    • (2012) Bioresource Technology , vol.111 , pp. 167-174
    • Huang, L.P.1    Chai, X.L.2    Quan, X.3    Logan, B.E.4    Chen, G.H.5
  • 31
    • 80053925223 scopus 로고    scopus 로고
    • Vacuum pyrolysis and hydrometallurgical process for the recovery of valuable metals from spent lithium-ion batteries
    • Sun L., Qiu K.Q. Vacuum pyrolysis and hydrometallurgical process for the recovery of valuable metals from spent lithium-ion batteries. Journal of Hazardous Materials 2011, 194:378-384.
    • (2011) Journal of Hazardous Materials , vol.194 , pp. 378-384
    • Sun, L.1    Qiu, K.Q.2
  • 32
    • 80053554217 scopus 로고    scopus 로고
    • Selected ion exchange applications in the hydrometallurgical industry
    • van Deventer J. Selected ion exchange applications in the hydrometallurgical industry. Solvent Extraction and Ion Exchange 2011, 29:695-718.
    • (2011) Solvent Extraction and Ion Exchange , vol.29 , pp. 695-718
    • van Deventer, J.1
  • 33
    • 77955251022 scopus 로고    scopus 로고
    • Catalytic reduction of hexaminecobalt(III) by pitch-based spherical activated carbon (PBSAC)
    • Chen Y., Mao Y.P., Zhu H.S., Cheng J.Y., Long X.L., Yuan W.K. Catalytic reduction of hexaminecobalt(III) by pitch-based spherical activated carbon (PBSAC). Clean - Soil, Air, Water 2010, 38:601-607.
    • (2010) Clean - Soil, Air, Water , vol.38 , pp. 601-607
    • Chen, Y.1    Mao, Y.P.2    Zhu, H.S.3    Cheng, J.Y.4    Long, X.L.5    Yuan, W.K.6
  • 35
    • 83555173509 scopus 로고    scopus 로고
    • The effect of aluminium oxide on the reduction of cobalt oxide and thermostability of cobalt and cobalt oxide
    • Lendzion-Bielun Z., Jedrzejewski R., Arabczyk W. The effect of aluminium oxide on the reduction of cobalt oxide and thermostability of cobalt and cobalt oxide. Central European Journal of Chemistry 2011, 9:834-839.
    • (2011) Central European Journal of Chemistry , vol.9 , pp. 834-839
    • Lendzion-Bielun, Z.1    Jedrzejewski, R.2    Arabczyk, W.3
  • 36
    • 84865746608 scopus 로고    scopus 로고
    • Bioelectrochemical recovery of Cu, Pb, Cd, and Zn from dilute solutions
    • Modin O., Wang X., Wu X., Rauch S., Fedje K.K. Bioelectrochemical recovery of Cu, Pb, Cd, and Zn from dilute solutions. Journal of Hazardous Materials 2012, 235-236:291-297.
    • (2012) Journal of Hazardous Materials , vol.235-236 , pp. 291-297
    • Modin, O.1    Wang, X.2    Wu, X.3    Rauch, S.4    Fedje, K.K.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.