-
1
-
-
33646749524
-
Continuous electricity generation at high voltages and currents using stacked microbial fuel cells
-
Aelterman P., Rabaey K., Boon N., Verstraete W. Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environ. Sci. Technol. 2006, 40(10):3388-3394.
-
(2006)
Environ. Sci. Technol.
, vol.40
, Issue.10
, pp. 3388-3394
-
-
Aelterman, P.1
Rabaey, K.2
Boon, N.3
Verstraete, W.4
-
2
-
-
0003425384
-
-
American Public Health Association, Washington, DC, APHA, AWWA, WPCF
-
APHA, AWWA, WPCF Standard Methods for Examination of Water and Wastewater 1998, American Public Health Association, Washington, DC. 20th ed.
-
(1998)
Standard Methods for Examination of Water and Wastewater
-
-
-
3
-
-
0037337606
-
Electricity production by Geobacter sulfurreducens attached to electrodes
-
Bond D.R., Lovley D.R. Electricity production by Geobacter sulfurreducens attached to electrodes. Appl. Environ. Microbiol. 2003, 69(3):1548-1555.
-
(2003)
Appl. Environ. Microbiol.
, vol.69
, Issue.3
, pp. 1548-1555
-
-
Bond, D.R.1
Lovley, D.R.2
-
4
-
-
78650851567
-
-
Disinfection alternatives for safe drinking water/principal authors. Edward A. Bryant, George P. Fulton, George C. Budd. Van Nostrand Reinhold, New York.
-
Bryant, E.A., 1992. Disinfection alternatives for safe drinking water/principal authors. Edward A. Bryant, George P. Fulton, George C. Budd. Van Nostrand Reinhold, New York.
-
(1992)
-
-
Bryant, E.A.1
-
5
-
-
0141542682
-
Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells
-
Chaudhuri S.K., Lovley D.R. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat. Biotechnol. 2003, 21(10):1229-1232.
-
(2003)
Nat. Biotechnol.
, vol.21
, Issue.10
, pp. 1229-1232
-
-
Chaudhuri, S.K.1
Lovley, D.R.2
-
6
-
-
36849008648
-
Sustainable power generation in microbial fuel cells using bicarbonate buffer and proton transfer mechanisms
-
Fan Y., Hu H., Liu H. Sustainable power generation in microbial fuel cells using bicarbonate buffer and proton transfer mechanisms. Environ. Sci. Technol. 2007, 41(23):8154-8158.
-
(2007)
Environ. Sci. Technol.
, vol.41
, Issue.23
, pp. 8154-8158
-
-
Fan, Y.1
Hu, H.2
Liu, H.3
-
7
-
-
0012957636
-
Operational parameters affecting the performance of a mediator-less microbial fuel cell
-
Gil G.C., Chang I.S., Kim B.H., Kim M., Jang J.K., Park H.S., Kim H.J. Operational parameters affecting the performance of a mediator-less microbial fuel cell. Biosensors Bioelectron. 2003, 18(4):327-334.
-
(2003)
Biosensors Bioelectron.
, vol.18
, Issue.4
, pp. 327-334
-
-
Gil, G.C.1
Chang, I.S.2
Kim, B.H.3
Kim, M.4
Jang, J.K.5
Park, H.S.6
Kim, H.J.7
-
8
-
-
0002735759
-
Spectrophotometric study of chromate-phosphate complexes in solution
-
Holloway F. Spectrophotometric study of chromate-phosphate complexes in solution. J. Am. Chem. Soc. 1952, 74(1):224-227.
-
(1952)
J. Am. Chem. Soc.
, vol.74
, Issue.1
, pp. 224-227
-
-
Holloway, F.1
-
9
-
-
53649105860
-
Performance of microbial fuel cell subjected to variation in pH, temperature, external load and substrate concentration
-
Jadhav G.S., Ghangrekar M.M. Performance of microbial fuel cell subjected to variation in pH, temperature, external load and substrate concentration. Bioresour. Technol. 2009, 100(2):717-723.
-
(2009)
Bioresour. Technol.
, vol.100
, Issue.2
, pp. 717-723
-
-
Jadhav, G.S.1
Ghangrekar, M.M.2
-
10
-
-
0037074898
-
A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens
-
Kim H.J., Park H.S., Hyun M.S., Chang I.S., Kim M., Kim B.H. A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme Microb. Technol. 2002, 30(2):145-152.
-
(2002)
Enzyme Microb. Technol.
, vol.30
, Issue.2
, pp. 145-152
-
-
Kim, H.J.1
Park, H.S.2
Hyun, M.S.3
Chang, I.S.4
Kim, M.5
Kim, B.H.6
-
11
-
-
33846842443
-
Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells
-
Kim J.R., Cheng S., Oh S.E., Logan B.E. Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells. Environ. Sci. Technol. 2007, 41(3):1004-1009.
-
(2007)
Environ. Sci. Technol.
, vol.41
, Issue.3
, pp. 1004-1009
-
-
Kim, J.R.1
Cheng, S.2
Oh, S.E.3
Logan, B.E.4
-
12
-
-
77954829990
-
Effect of cathode electron-receiver on the performance of microbial fuel cells
-
Kong X., Sun Y., Yuan Z., Li D., Li L., Li Y. Effect of cathode electron-receiver on the performance of microbial fuel cells. Int. J. Hydrogen Energy. 2010, 35(13):7224-7227.
-
(2010)
Int. J. Hydrogen Energy.
, vol.35
, Issue.13
, pp. 7224-7227
-
-
Kong, X.1
Sun, Y.2
Yuan, Z.3
Li, D.4
Li, L.5
Li, Y.6
-
13
-
-
68149139271
-
Persulfate: a self-activated cathodic electron acceptor for microbial fuel cells
-
Li J., Fu Q., Liao Q., Zhu X., Ye D., Tian X. Persulfate: a self-activated cathodic electron acceptor for microbial fuel cells. J. Power Sources 2009, 194(1):269-274.
-
(2009)
J. Power Sources
, vol.194
, Issue.1
, pp. 269-274
-
-
Li, J.1
Fu, Q.2
Liao, Q.3
Zhu, X.4
Ye, D.5
Tian, X.6
-
14
-
-
36249022670
-
Composition and distribution of internal resistance in three types of microbial fuel cells
-
Liang P., Huang X., Fan M., Cao X., Wang C. Composition and distribution of internal resistance in three types of microbial fuel cells. Appl. Microbiol. Biotechnol. 2007, 77(3):551-558.
-
(2007)
Appl. Microbiol. Biotechnol.
, vol.77
, Issue.3
, pp. 551-558
-
-
Liang, P.1
Huang, X.2
Fan, M.3
Cao, X.4
Wang, C.5
-
15
-
-
33748564008
-
Microbial fuel cells - challenges and applications
-
Logan B.E., Regan J.M. Microbial fuel cells - challenges and applications. Environ. Sci. Technol. 2006, 40(17):5172-5180.
-
(2006)
Environ. Sci. Technol.
, vol.40
, Issue.17
, pp. 5172-5180
-
-
Logan, B.E.1
Regan, J.M.2
-
16
-
-
70449448319
-
Enhancing the stability of power generation of single-chamber microbial fuel cells using an anion exchange membrane
-
Mo Y., Liang P., Huang X., Wang H., Cao X. Enhancing the stability of power generation of single-chamber microbial fuel cells using an anion exchange membrane. J. Chem. Technol. Biotechnol. 2009, 84(12):1767-1772.
-
(2009)
J. Chem. Technol. Biotechnol.
, vol.84
, Issue.12
, pp. 1767-1772
-
-
Mo, Y.1
Liang, P.2
Huang, X.3
Wang, H.4
Cao, X.5
-
17
-
-
0008049769
-
Electricity generation in microbial fuel cells using neutral red as an electronophore
-
Park D.H., Zeikus J.G. Electricity generation in microbial fuel cells using neutral red as an electronophore. Appl. Environ. Microbiol. 2000, 66(4):1292.
-
(2000)
Appl. Environ. Microbiol.
, vol.66
, Issue.4
, pp. 1292
-
-
Park, D.H.1
Zeikus, J.G.2
-
18
-
-
0035717337
-
A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell
-
Park H.S., Kim B.H., Kim H.S., Kim H.J., Kim G.T., Kim M., Chang I.S., Park Y.K., Chang H.I. A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell. Anaerobe 2001, 7(6):297-306.
-
(2001)
Anaerobe
, vol.7
, Issue.6
, pp. 297-306
-
-
Park, H.S.1
Kim, B.H.2
Kim, H.S.3
Kim, H.J.4
Kim, G.T.5
Kim, M.6
Chang, I.S.7
Park, Y.K.8
Chang, H.I.9
-
19
-
-
0038546460
-
A novel electrochemically active and Fe (III)-reducing bacterium phylogenetically related to Aeromonas hydrophila, isolated from a microbial fuel cell
-
Pham C.A., Jung S.J., Phung N.T., Lee J., Chang I.S., Kim B.H., Yi H., Chun J. A novel electrochemically active and Fe (III)-reducing bacterium phylogenetically related to Aeromonas hydrophila, isolated from a microbial fuel cell. FEMS Microbiol. Lett. 2003, 223(1):129-134.
-
(2003)
FEMS Microbiol. Lett.
, vol.223
, Issue.1
, pp. 129-134
-
-
Pham, C.A.1
Jung, S.J.2
Phung, N.T.3
Lee, J.4
Chang, I.S.5
Kim, B.H.6
Yi, H.7
Chun, J.8
-
20
-
-
0141565121
-
A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency
-
Rabaey K., Lissens G., Siciliano S.D., Verstraete W. A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotechnol. Lett. 2003, 25(18):1531-1535.
-
(2003)
Biotechnol. Lett.
, vol.25
, Issue.18
, pp. 1531-1535
-
-
Rabaey, K.1
Lissens, G.2
Siciliano, S.D.3
Verstraete, W.4
-
21
-
-
4644305766
-
Biofuel cells select for microbial consortia that self-mediate electron transfer
-
Rabaey K., Boon N., Siciliano S.D., Verhaege M., Verstraete W. Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl. Environ. Microbiol. 2004, 70(9):5373-5382.
-
(2004)
Appl. Environ. Microbiol.
, vol.70
, Issue.9
, pp. 5373-5382
-
-
Rabaey, K.1
Boon, N.2
Siciliano, S.D.3
Verhaege, M.4
Verstraete, W.5
-
22
-
-
33646030010
-
High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP 10
-
Ringeisen B.R., Henderson E., Wu P.K., Pietron J., Ray R., Little B., Biffinger J.C., Jones-Meehan J.M. High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP 10. Environ. Sci. Technol. 2005, 39(16):2629-2634.
-
(2005)
Environ. Sci. Technol.
, vol.39
, Issue.16
, pp. 2629-2634
-
-
Ringeisen, B.R.1
Henderson, E.2
Wu, P.K.3
Pietron, J.4
Ray, R.5
Little, B.6
Biffinger, J.C.7
Jones-Meehan, J.M.8
-
23
-
-
42749096540
-
Cathodic limitations in microbial fuel cells: an overview
-
Rismani-Yazdi H., Carver S.M., Christy A.D., Tuovinen O.H. Cathodic limitations in microbial fuel cells: an overview. J. Power Sources 2008, 180(2):683-694.
-
(2008)
J. Power Sources
, vol.180
, Issue.2
, pp. 683-694
-
-
Rismani-Yazdi, H.1
Carver, S.M.2
Christy, A.D.3
Tuovinen, O.H.4
-
24
-
-
33748545968
-
Effects of membrane cation transport on pH and microbial fuel cell performance
-
Rozendal R.A., Hamelers H.V., Buisman C.J., et al. Effects of membrane cation transport on pH and microbial fuel cell performance. Environ. Sci. Technol. 2006, 40(17):5206-5211.
-
(2006)
Environ. Sci. Technol.
, vol.40
, Issue.17
, pp. 5206-5211
-
-
Rozendal, R.A.1
Hamelers, H.V.2
Buisman, C.J.3
-
25
-
-
34047125848
-
Performance of single chamber biocatalyzed electrolysis with different types of ion exchange membranes
-
Rozendal R.A., Hamelers H.V., Molenkamp R.J., Buisman C.J. Performance of single chamber biocatalyzed electrolysis with different types of ion exchange membranes. Water Res. 2007, 41(9):1984-1994.
-
(2007)
Water Res.
, vol.41
, Issue.9
, pp. 1984-1994
-
-
Rozendal, R.A.1
Hamelers, H.V.2
Molenkamp, R.J.3
Buisman, C.J.4
-
26
-
-
11444262575
-
Ion mobility in Nafion-117 membranes
-
Stenina I., Sistat P., Rebrov A., Pourcelly G., Yaroslavtsev A. Ion mobility in Nafion-117 membranes. Desalination 2004, 170(1):49-57.
-
(2004)
Desalination
, vol.170
, Issue.1
, pp. 49-57
-
-
Stenina, I.1
Sistat, P.2
Rebrov, A.3
Pourcelly, G.4
Yaroslavtsev, A.5
-
27
-
-
0021799472
-
Glucose metabolism in a microbial fuel cell. Stoichiometry of product formation in a thionine-mediated Proteus vulgaris fuel cell and its relation to coulombic yields
-
Thurston C.F., Bennetto H.P., Delaney G.M., Mason J.R., Roller S.D., Stirling J.L. Glucose metabolism in a microbial fuel cell. Stoichiometry of product formation in a thionine-mediated Proteus vulgaris fuel cell and its relation to coulombic yields. Microbiology 1985, 131(6):1393.
-
(1985)
Microbiology
, vol.131
, Issue.6
, pp. 1393
-
-
Thurston, C.F.1
Bennetto, H.P.2
Delaney, G.M.3
Mason, J.R.4
Roller, S.D.5
Stirling, J.L.6
-
28
-
-
33750964484
-
A microbial fuel cell using permanganate as the cathodic electron acceptor
-
You S., Zhao Q., Zhang J., Jiang J., Zhao S. A microbial fuel cell using permanganate as the cathodic electron acceptor. J. Power Sources 2006, 162(2):1409-1415.
-
(2006)
J. Power Sources
, vol.162
, Issue.2
, pp. 1409-1415
-
-
You, S.1
Zhao, Q.2
Zhang, J.3
Jiang, J.4
Zhao, S.5
-
29
-
-
51949116825
-
Ion exchange membrane cathodes for scalable microbial fuel cells
-
Zuo Y., Cheng S., Logan B.E. Ion exchange membrane cathodes for scalable microbial fuel cells. Environ. Sci. Technol. 2008, 42(18):6967-6972.
-
(2008)
Environ. Sci. Technol.
, vol.42
, Issue.18
, pp. 6967-6972
-
-
Zuo, Y.1
Cheng, S.2
Logan, B.E.3
|