메뉴 건너뛰기




Volumn 36, Issue 12, 2014, Pages 2367-2380

Domain adaptation of deformable part-based models

Author keywords

deformable part based model; Domain adaptation; pedestrian detection

Indexed keywords

DEFORMABLE PART-BASED MODELS; DOMAIN ADAPTATION; PEDESTRIAN DETECTION;

EID: 84908673598     PISSN: 01628828     EISSN: None     Source Type: Journal    
DOI: 10.1109/TPAMI.2014.2327973     Document Type: Article
Times cited : (110)

References (47)
  • 5
    • 71149086466 scopus 로고    scopus 로고
    • Learning structural SVMs with latent variables
    • Montreal, Quebec
    • C.-N. J. Yu and T. Joachims, "Learning structural SVMs with latent variables", in Proc. 26th Annu. Int. Conf. Mach. Learn., Montreal, Quebec, 2009, pp. 1169-1176.
    • (2009) Proc. 26th Annu. Int. Conf. Mach. Learn. , pp. 1169-1176
    • Yu, J.C.-N.1    Joachims, T.2
  • 6
    • 84857933762 scopus 로고    scopus 로고
    • Structured output regression for detection with partial truncation
    • Syst., Vancouver, Canada
    • A. Vedaldi and A. Zisserman, "Structured output regression for detection with partial truncation", in Proc. Adv. Neural Inf. Process. Syst., Vancouver, Canada, 2009, pp. 1928-1936.
    • (2009) Proc. Adv. Neural Inf. Process , pp. 1928-1936
    • Vedaldi, A.1    Zisserman, A.2
  • 8
    • 37849026107 scopus 로고    scopus 로고
    • Cross-domain video concept detection using adaptive SVMs
    • Augsburg, Germany
    • J. Yang, R. Yan, and A. Hauptmann, "Cross-domain video concept detection using adaptive SVMs", in Proc. ACM 15th Int. Conf. Multimedia, Augsburg, Germany, 2007, pp. 188-197.
    • (2007) Proc. ACM 15th Int. Conf. Multimedia , pp. 188-197
    • Yang, J.1    Yan, R.2    Hauptmann, A.3
  • 9
    • 85161967298 scopus 로고    scopus 로고
    • Self-paced learning for latent variable models
    • Vancouver, BC, Canada
    • M. Kumar, B. Packer, and D. Koller, "Self-paced learning for latent variable models", in Proc. Adv. Neural Inf. Process. Syst., Vancouver, BC, Canada, 2010, pp. 1189-1197.
    • (2010) Proc. Adv. Neural Inf. Process. Syst. , pp. 1189-1197
    • Kumar, M.1    Packer, B.2    Koller, D.3
  • 10
    • 70350620710 scopus 로고    scopus 로고
    • Monocular pedestrian detection: Survey and experiments
    • Dec.
    • M. Enzweiler and D. M. Gavrila, "Monocular pedestrian detection: Survey and experiments", IEEE Trans. Pattern Anal. Mach. Intell., vol. 31, no. 12, pp. 2179-2195, Dec. 2009.
    • (2009) IEEE Trans. Pattern Anal. Mach. Intell. , vol.31 , Issue.12 , pp. 2179-2195
    • Enzweiler, M.1    Gavrila, D.M.2
  • 11
    • 77952647953 scopus 로고    scopus 로고
    • Survey of pedestrian detection for advanced driver assistance systems
    • Jul.
    • D. Geronimo, A. M. Lopez, A. D. Sappa, and T. Graf, "Survey of pedestrian detection for advanced driver assistance systems", IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 7, pp. 1239-1258, Jul. 2010.
    • (2010) IEEE Trans. Pattern Anal. Mach. Intell. , vol.32 , Issue.7 , pp. 1239-1258
    • Geronimo, D.1    Lopez, A.M.2    Sappa, A.D.3    Graf, T.4
  • 13
    • 84868612368 scopus 로고    scopus 로고
    • Transfer learning for pedestrian detection
    • X. Cao, Z. Wang, P. Yan, and X. Li, "Transfer learning for pedestrian detection", Neurocomput., vol. 100, pp. 51-57, 2013.
    • (2013) Neurocomput. , vol.100 , pp. 51-57
    • Cao, X.1    Wang, Z.2    Yan, P.3    Li, X.4
  • 14
    • 79955408519 scopus 로고    scopus 로고
    • Transferring boosted detectors towards viewpoint and scene adaptiveness
    • May
    • J. Pang, Q. Huang, S. Yan, S. Jiang, and L. Qin, "Transferring boosted detectors towards viewpoint and scene adaptiveness", IEEE Trans. Image Process., vol. 20, no. 5, pp. 1388-400, May 2011.
    • (2011) IEEE Trans. Image Process. , vol.20 , Issue.5 , pp. 1388-1400
    • Pang, J.1    Huang, Q.2    Yan, S.3    Jiang, S.4    Qin, L.5
  • 16
    • 84874575811 scopus 로고    scopus 로고
    • Unsupervised domain adaptation of virtual and real worlds for pedestrian detection
    • Tsukuba, Japan
    • D. Vazquez, A. Lopez, and D. Ponsa, "Unsupervised domain adaptation of virtual and real worlds for pedestrian detection", in Proc. 21st Int. Conf. Pattern Recognit., Tsukuba, Japan, 2012, pp. 3492-3495.
    • (2012) Proc. 21st Int. Conf. Pattern Recognit. , pp. 3492-3495
    • Vazquez, D.1    Lopez, A.2    Ponsa, D.3
  • 17
    • 80052885969 scopus 로고    scopus 로고
    • Automatic adaptation of a generic pedestrian detector to a specific traffic scene
    • Colorado Springs, CO, USA
    • M. Wang and X. Wang, "Automatic adaptation of a generic pedestrian detector to a specific traffic scene", in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Colorado Springs, CO, USA, 2011, pp. 3401-3408.
    • (2011) Proc. IEEE Conf. Comput. Vis. Pattern Recognit. , pp. 3401-3408
    • Wang, M.1    Wang, X.2
  • 18
    • 84866688297 scopus 로고    scopus 로고
    • Transferring a generic pedestrian detector towards specific scenes
    • Providence, RI, USA
    • M. Wang and X. Wang, "Transferring a generic pedestrian detector towards specific scenes", in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Providence, RI, USA, 2012, pp. 3274-3281.
    • (2012) Proc. IEEE Conf. Comput. Vis. Pattern Recognit. , pp. 3274-3281
    • Wang, M.1    Wang, X.2
  • 21
    • 85161970767 scopus 로고    scopus 로고
    • Exploring weakly-labeled web images to improve object classification: A domain adaptation approach
    • Vancouver, BC, Canada
    • A. Bergamo, and L. Torresani, "Exploring weakly-labeled web images to improve object classification: A domain adaptation approach", in Proc. Adv. Neural Inf. Process. Syst., Vancouver, BC, Canada, 2010, pp. 181-189.
    • (2010) Proc. Adv. Neural Inf. Process. Syst. , pp. 181-189
    • Bergamo, A.1    Torresani, L.2
  • 23
    • 84860513476 scopus 로고    scopus 로고
    • Frustratingly easy domain adaptation
    • Prague, Czech Republic
    • H. D. III, "Frustratingly easy domain adaptation", in Proc. Annu. Meet. Assoc. Comput. Linguistics, Prague, Czech Republic, 2007, pp. 256-263.
    • (2007) Proc. Annu. Meet. Assoc. Comput. Linguistics , pp. 256-263
  • 24
    • 68349087851 scopus 로고    scopus 로고
    • Cross-domain learning methods for high-level visual concept classification
    • San Diego, CA, USA
    • W. Jiang, E. Zavesky, C. Shih-Fu, and A. Loui, "Cross-domain learning methods for high-level visual concept classification", in Proc. IEEE Int. Conf. Image Process., San Diego, CA, USA, 2008, pp. 161-164.
    • (2008) Proc. IEEE Int. Conf. Image Process. , pp. 161-164
    • Jiang, W.1    Zavesky, E.2    Shih-Fu, C.3    Loui, A.4
  • 26
    • 84856675275 scopus 로고    scopus 로고
    • Tabula rasa: Model transfer for object category detection
    • Y. Aytar and A. Zisserman, "Tabula rasa: Model transfer for object category detection", in Proc. Int. Conf. Comput. Vis., 2011, pp. 2252-2259.
    • (2011) Proc. Int. Conf. Comput. Vis. , pp. 2252-2259
    • Aytar, Y.1    Zisserman, A.2
  • 28
    • 84863396387 scopus 로고    scopus 로고
    • Domain adaptation for object recognition: An unsupervised approach
    • Barcelona, Spain
    • R. Gopalan, R. Li, and R. Chellappa, "Domain adaptation for object recognition: An unsupervised approach", in Proc. IEEE Int. Conf. Comput. Vis., Barcelona, Spain, 2011, pp. 999-1006.
    • (2011) Proc. IEEE Int. Conf. Comput. Vis. , pp. 999-1006
    • Gopalan, R.1    Li, R.2    Chellappa, R.3
  • 32
    • 80052911160 scopus 로고    scopus 로고
    • Online domain adaptation of a pre-trained cascade of classifiers
    • Colorado Springs, CO, USA
    • V. Jain and E. Learned-Miller, "Online domain adaptation of a pre-trained cascade of classifiers", in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Colorado Springs, CO, USA, 2011, pp. 577-584.
    • (2011) Proc. IEEE Conf. Comput. Vis. Pattern Recognit. , pp. 577-584
    • Jain, V.1    Learned-Miller, E.2
  • 33
    • 78149318752 scopus 로고    scopus 로고
    • Adapting visual category models to new domains
    • Hersonissos, Heraklion, Crete, Greece
    • K. Saenko, B. Hulis, M. Fritz, and T. Darrel, "Adapting visual category models to new domains", in Proc. 11th Eur. Conf. Comput. Vis., Hersonissos, Heraklion, Crete, Greece, 2010, pp. 213-226.
    • (2010) Proc. 11th Eur. Conf. Comput. Vis. , pp. 213-226
    • Saenko, K.1    Hulis, B.2    Fritz, M.3    Darrel, T.4
  • 36
    • 84898484392 scopus 로고    scopus 로고
    • Enhancing exemplar SVMs using part level transfer regularization
    • Surrey, U. K.
    • Y. Aytar and A. Zisserman, "Enhancing exemplar SVMs using part level transfer regularization", in Proc. Brit. Mach. Vis. Conf., Surrey, U. K., 2012, pp. 1-11.
    • (2012) Proc. Brit. Mach. Vis. Conf. , pp. 1-11
    • Aytar, Y.1    Zisserman, A.2
  • 38
    • 84877780666 scopus 로고    scopus 로고
    • Shifting weights: Adapting object detectors from image to video
    • Lake Tahoe, NV, USA
    • K. Tang, V. Ramanathan, F.-F. Li, and D. Koller, "Shifting weights: Adapting object detectors from image to video", in Proc. Adv. Neural Inf. Process. Syst., Lake Tahoe, NV, USA, 2012, pp. 647-655.
    • (2012) Proc. Adv. Neural Inf. Process. Syst. , pp. 647-655
    • Tang, K.1    Ramanathan, V.2    Li, F.-F.3    Koller, D.4
  • 41
    • 0001884644 scopus 로고
    • Individual comparisons by ranking methods
    • F. Wilcoxon, "Individual comparisons by ranking methods", Biometrics Bull., vol. 1, no. 6, pp. 80-83, 1945.
    • (1945) Biometrics Bull. , vol.1 , Issue.6 , pp. 80-83
    • Wilcoxon, F.1
  • 44
    • 33645146449 scopus 로고    scopus 로고
    • Histograms of oriented gradients for human detection
    • San Diego, CA, USA
    • N. Dalal and B. Triggs, "Histograms of oriented gradients for human detection", in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., San Diego, CA, USA, 2005, pp. 886-893.
    • (2005) Proc. IEEE Conf. Comput. Vis. Pattern Recognit. , pp. 886-893
    • Dalal, N.1    Triggs, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.