-
1
-
-
51949100471
-
People-tracking-by-detection and people-detection-by-tracking
-
M. Andriluka, S. Roth, and B. Schiele. People-tracking-by-detection and people-detection-by-tracking. In CVPR, 2008.
-
(2008)
CVPR
-
-
Andriluka, M.1
Roth, S.2
Schiele, B.3
-
3
-
-
0037331011
-
An algorithm for data-driven bandwidth selection
-
D. Comaniciu. An algorithm for data-driven bandwidth selection. PAMI, 25(2):281-288, 2003.
-
(2003)
PAMI
, vol.25
, Issue.2
, pp. 281-288
-
-
Comaniciu, D.1
-
4
-
-
50249179541
-
-
PhD thesis, Institut National Polytechnique de Grenoble
-
N. Dalal. Finding People in Images and Videos. PhD thesis, Institut National Polytechnique de Grenoble, 2006.
-
(2006)
Finding People in Images and Videos
-
-
Dalal, N.1
-
5
-
-
33645146449
-
Histogram of oriented gradient for human detection
-
N. Dalal and B. Triggs. Histogram of oriented gradient for human detection. In CVPR, 2005.
-
(2005)
CVPR
-
-
Dalal, N.1
Triggs, B.2
-
6
-
-
34948855444
-
Human detection using oriented hist. of flow and appearance
-
N. Dalal., B. Triggs., and C. Schmid. Human detection using oriented hist. of flow and appearance. In ECCV, 2006.
-
(2006)
ECCV
-
-
Dalal., N.1
Triggs., B.2
Schmid, C.3
-
7
-
-
70450200878
-
Multiple component learning for object detection
-
P. Dollár, B. Babenko, S. Belongie, P. Perona, and Z. Tu. Multiple component learning for object detection. In ECCV, 2008.
-
(2008)
ECCV
-
-
Dollár, P.1
Babenko, B.2
Belongie, S.3
Perona, P.4
Tu, Z.5
-
9
-
-
77956500861
-
Monocular pedestrian detection: Survey and experiments
-
to appear
-
M. Enzweiler and D. Gavrila. Monocular pedestrian detection: Survey and experiments. PAMI, to appear.
-
PAMI
-
-
Enzweiler, M.1
Gavrila, D.2
-
10
-
-
57749200663
-
Monocular pedestrian recognition using motion parallax
-
M. Enzweiler, P. Kanter, and D. Gavrila. Monocular pedestrian recognition using motion parallax. In IV, 2008.
-
(2008)
IV
-
-
Enzweiler, M.1
Kanter, P.2
Gavrila, D.3
-
11
-
-
50249083612
-
Depth and appearance for mobile scene analysis
-
A. Ess, B. Leibe, and L. V. Gool. Depth and appearance for mobile scene analysis. In ICCV, 2007.
-
(2007)
ICCV
-
-
Ess, A.1
Leibe, B.2
Gool, L.V.3
-
12
-
-
51949103533
-
A mobile vision system for robust multi-person tracking
-
A. Ess, B. Leibe, K. Schindler, and L. van Gool. A mobile vision system for robust multi-person tracking. In CVPR, 2008.
-
(2008)
CVPR
-
-
Ess, A.1
Leibe, B.2
Schindler, K.3
Gool, L.V.4
-
13
-
-
51949101231
-
A discriminatively trained, multiscale, deformable part model
-
P. Felzenszwalb, D. McAllester, and D. Ramanan. A discriminatively trained, multiscale, deformable part model. In CVPR, 2008.
-
(2008)
CVPR
-
-
Felzenszwalb, P.1
Mcallester, D.2
Ramanan, D.3
-
14
-
-
0034164230
-
Additive logistic regression: A statistical view of boosting
-
J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a statistical view of boosting. The Annals of Statistics, 38(2):337-374, 2000.
-
(2000)
The Annals of Statistics
, vol.38
, Issue.2
, pp. 337-374
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
15
-
-
34447258877
-
A bayesian, exemplar-based approach to hierarchical shape matching
-
D. M. Gavrila. A bayesian, exemplar-based approach to hierarchical shape matching. PAMI, 2007.
-
(2007)
PAMI
-
-
Gavrila, D.M.1
-
16
-
-
33846638203
-
Multi-cue pedestrian detection and tracking from a moving vehicle
-
D. M. Gavrila and S. Munder. Multi-cue pedestrian detection and tracking from a moving vehicle. IJCV, pages 41-59, 2007.
-
(2007)
IJCV
, pp. 41-59
-
-
Gavrila, D.M.1
Munder, S.2
-
18
-
-
77956516760
-
MCBoost: Multiple classifier boosting for perceptual co-clustering of images and visual features
-
T.-K. Kim and R. Cipolla. MCBoost: Multiple classifier boosting for perceptual co-clustering of images and visual features. In NIPS, 2008.
-
(2008)
NIPS
-
-
Kim, T.-K.1
Cipolla, R.2
-
19
-
-
70450162383
-
A pose-invariant descriptor for human detection and segmentation
-
Z. Lin and L. S. Davis. A pose-invariant descriptor for human detection and segmentation. In ECCV, 2008.
-
(2008)
ECCV
-
-
Lin, Z.1
Davis, L.S.2
-
20
-
-
70450221089
-
Classification using intersection kernel SVMs is efficient
-
S. Maji, A. Berg, and J. Malik. Classification using intersection kernel SVMs is efficient. In CVPR, 2008.
-
(2008)
CVPR
-
-
Maji, S.1
Berg, A.2
Malik, J.3
-
21
-
-
24644521635
-
Human detection based on a prob. Assembly of robust part det
-
K. Mikolajczyk, C. Schmid, and A. Zisserman. Human detection based on a prob. assembly of robust part det. In ECCV, 2004.
-
(2004)
ECCV
-
-
Mikolajczyk, K.1
Schmid, C.2
Zisserman, A.3
-
22
-
-
0034206769
-
A trainable system for object detection
-
C. Papageorgiou and T. Poggio. A trainable system for object detection. IJCV, 38(1):15-33, 2000.
-
(2000)
IJCV
, vol.38
, Issue.1
, pp. 15-33
-
-
Papageorgiou, C.1
Poggio, T.2
-
23
-
-
34948834722
-
Detecting pedestrians by learning shapelet features
-
P. Sabzmeydani and G. Mori. Detecting pedestrians by learning shapelet features. In CVPR, 2007.
-
(2007)
CVPR
-
-
Sabzmeydani, P.1
Mori, G.2
-
24
-
-
34948907324
-
Towards robust pedestrian detection in crowded image sequences
-
E. Seemann, M. Fritz, and B. Schiele. Towards robust pedestrian detection in crowded image sequences. In CVPR, 2007.
-
(2007)
CVPR
-
-
Seemann, E.1
Fritz, M.2
Schiele, B.3
-
25
-
-
33845576654
-
Multi-aspect detection of articulated objects
-
E. Seemann, B. Leibe, and B. Schiele. Multi-aspect detection of articulated objects. In CVPR, 2006.
-
(2006)
CVPR
-
-
Seemann, E.1
Leibe, B.2
Schiele, B.3
-
26
-
-
4544259619
-
Pedestrian detection for driving assistance systems: Single-frame classification and system level performance
-
A. Shashua, Y. Gdalyahu, and G. Hayun. Pedestrian detection for driving assistance systems: single-frame classification and system level performance. In IV, 2004.
-
(2004)
IV
-
-
Shashua, A.1
Gdalyahu, Y.2
Hayun, G.3
-
27
-
-
85162073533
-
Configuration estimates improve pedestrian finding
-
D. Tran and D. Forsyth. Configuration estimates improve pedestrian finding. In NIPS, volume 20, 2008.
-
(2008)
NIPS
, vol.20
-
-
Tran, D.1
Forsyth, D.2
-
28
-
-
50249124717
-
Pedestrian det. Via classification on riemannian manifolds
-
O. Tuzel, F. M. Porikli, and P. Meer. Pedestrian det. via classification on riemannian manifolds. PAMI, 30(10):1713-1727, 2008.
-
(2008)
PAMI
, vol.30
, Issue.10
, pp. 1713-1727
-
-
Tuzel, O.1
Porikli, F.M.2
Meer, P.3
-
29
-
-
77955900262
-
Learning the discriminative power-invariance trade-off
-
M. Varma and D. Ray. Learning the discriminative power-invariance trade-off. In ICCV, 2008.
-
(2008)
ICCV
-
-
Varma, M.1
Ray, D.2
-
30
-
-
70450216559
-
Detecting pedestrians using patterns of motion and appearance
-
P. Viola, M. Jones, and D. Snow. Detecting pedestrians using patterns of motion and appearance. In CVPR, 2003.
-
(2003)
CVPR
-
-
Viola, P.1
Jones, M.2
Snow, D.3
-
31
-
-
2142812371
-
Robust real-time face detection
-
P. A. Viola and M. J. Jones. Robust real-time face detection. IJCV, 57(2):137-154, 2004.
-
(2004)
IJCV
, vol.57
, Issue.2
, pp. 137-154
-
-
Viola, P.A.1
Jones, M.J.2
-
32
-
-
70449617510
-
A performance evaluation of single and multi-feature people detection
-
C. Wojek and B. Schiele. A performance evaluation of single and multi-feature people detection. In DAGM, 2008.
-
(2008)
DAGM
-
-
Wojek, C.1
Schiele, B.2
-
33
-
-
50649118116
-
Cluster boosted tree classifier for multi-view, multi-pose object detection
-
B. Wu and R. Nevatia. Cluster boosted tree classifier for multi-view, multi-pose object detection. In ICCV, 2007.
-
(2007)
ICCV
-
-
Wu, B.1
Nevatia, R.2
-
34
-
-
51949112689
-
Optimizing discrimination-efficiency tradeoff in integrating heterogeneous local features for object detection
-
B.Wu and R. Nevatia. Optimizing discrimination-efficiency tradeoff in integrating heterogeneous local features for object detection. In CVPR, 2008.
-
(2008)
CVPR
-
-
Wu, B.1
Nevatia, R.2
-
36
-
-
51949088494
-
Global data association for multiobject tracking using network flows
-
L. Zhang, Y. Li, and R. Nevatia. Global data association for multiobject tracking using network flows. In CVPR, 2008.
-
(2008)
CVPR
-
-
Zhang, L.1
Li, Y.2
Nevatia, R.3
|