메뉴 건너뛰기




Volumn , Issue , 2013, Pages 827-834

Subcategory-aware object classification

Author keywords

Ambiguity Modeling; Classification; Subcategory Mining

Indexed keywords

CLASSIFICATION FRAMEWORK; DENSE SUB-GRAPHS; INDIVIDUAL MODELING; INTER CLASS; KERNEL REGRESSION; OBJECT CATEGORIES; OBJECT CLASSIFICATION; STATE-OF-THE-ART PERFORMANCE;

EID: 84887351116     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2013.112     Document Type: Conference Paper
Times cited : (83)

References (39)
  • 1
    • 84887363931 scopus 로고    scopus 로고
    • Mixture component identification and learning for visual recognition
    • O. Aghazadeh, H. Azizpour, J. Sullivan, and S. Carlsson. Mixture component identification and learning for visual recognition. In ECCV. 2012.
    • (2012) ECCV
    • Aghazadeh, O.1    Azizpour, H.2    Sullivan, J.3    Carlsson, S.4
  • 2
    • 31244432660 scopus 로고    scopus 로고
    • Branch-and-bound approaches to standard quadratic optimization problems
    • I. M. Bomze. Branch-and-bound approaches to standard quadratic optimization problems. J. of Global Optimization, 2002.
    • (2002) J. of Global Optimization
    • Bomze, I.M.1
  • 3
    • 80052912306 scopus 로고    scopus 로고
    • Detecting people using mutually consistent poselet activations
    • L. D. Bourdev, S. Maji, T. Brox, and J. Malik. Detecting people using mutually consistent poselet activations. In ECCV, 2010.
    • (2010) ECCV
    • Bourdev, L.D.1    Maji, S.2    Brox, T.3    Malik, J.4
  • 4
    • 84898420173 scopus 로고    scopus 로고
    • The devil is in the details: An evaluation of recent feature encoding methods
    • K. Chatfield, V. Lempitsky, and A. Vedaldi. The devil is in the details: an evaluation of recent feature encoding methods. In BMVC, 2011.
    • (2011) BMVC
    • Chatfield, K.1    Lempitsky, V.2    Vedaldi, A.3
  • 5
    • 84866694025 scopus 로고    scopus 로고
    • Hierarchical matching with side information for image classification
    • Q. Chen, Z. Song, Y. Hua, Z. Huang, and S. Yan. Hierarchical matching with side information for image classification. In CVPR, 2012.
    • (2012) CVPR
    • Chen, Q.1    Song, Z.2    Hua, Y.3    Huang, Z.4    Yan, S.5
  • 6
    • 0036565814 scopus 로고    scopus 로고
    • Mean shift: A robust approach toward feature space analysis
    • D. Comaniciu and P. Meer. Mean shift: A robust approach toward feature space analysis. TPAMI, 2002.
    • (2002) TPAMI
    • Comaniciu, D.1    Meer, P.2
  • 7
    • 84887382956 scopus 로고    scopus 로고
    • Subordinate class recognition using relational object models
    • J. Dai, J. Feng, and J. Zhou. Subordinate class recognition using relational object models. In ICPR, 2012.
    • (2012) ICPR
    • Dai, J.1    Feng, J.2    Zhou, J.3
  • 8
    • 33749235181 scopus 로고    scopus 로고
    • Locally adaptive classification piloted by uncertainty
    • J. Dai, S. Yan, X. Tang, and J. T. Kwok. Locally adaptive classification piloted by uncertainty. In ICML, 2006.
    • (2006) ICML
    • Dai, J.1    Yan, S.2    Tang, X.3    Kwok, J.T.4
  • 9
    • 33645146449 scopus 로고    scopus 로고
    • Histograms of oriented gradients for human detection
    • N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In CVPR, 2005.
    • (2005) CVPR
    • Dalal, N.1    Triggs, B.2
  • 10
    • 84898443102 scopus 로고    scopus 로고
    • How important are "deformable parts" in the deformable parts model?
    • S. K. Divvala, A. A. Efros, and M. Hebert. How important are "deformable parts" in the deformable parts model? In ECCV Workshops, 2012.
    • (2012) ECCV Workshops
    • Divvala, S.K.1    Efros, A.A.2    Hebert, M.3
  • 11
    • 84898433308 scopus 로고    scopus 로고
    • Object instance sharing by enhanced bounding box correspondence
    • S. K. Divvala, A. A. Efros, and M. Hebert. Object instance sharing by enhanced bounding box correspondence. In BMVC, 2012.
    • (2012) BMVC
    • Divvala, S.K.1    Efros, A.A.2    Hebert, M.3
  • 14
    • 33745155436 scopus 로고    scopus 로고
    • A bayesian hierarchical model for learning natural scene categories
    • L. Fei-Fei and P. Perona. A bayesian hierarchical model for learning natural scene categories. In CVPR, 2005.
    • (2005) CVPR
    • Fei-Fei, L.1    Perona, P.2
  • 17
    • 79959771606 scopus 로고    scopus 로고
    • Improving the fisher kernel for large-scale image classification
    • J. S. Florent Perronnin and T. Mensink. Improving the Fisher Kernel for Large-Scale Image Classification. In ECCV, 2010.
    • (2010) ECCV
    • Florent Perronnin, J.S.1    Mensink, T.2
  • 19
    • 84856653205 scopus 로고    scopus 로고
    • Discriminative mixture-of-templates for viewpoint classification
    • C. Gu and X. Ren. Discriminative mixture-of-templates for viewpoint classification. In ECCV, 2010.
    • (2010) ECCV
    • Gu, C.1    Ren, X.2
  • 21
    • 77953202990 scopus 로고    scopus 로고
    • Combining efficient object localization and image classification
    • H. Harzallah, F. Jurie, and C. Schmid. Combining efficient object localization and image classification. In ICCV, 2009.
    • (2009) ICCV
    • Harzallah, H.1    Jurie, F.2    Schmid, C.3
  • 22
    • 15044364586 scopus 로고    scopus 로고
    • Locally linear discriminant analysis for multimodally distributed classes for face recognition with a single model image
    • T.-K. Kim and J. Kittler. Locally linear discriminant analysis for multimodally distributed classes for face recognition with a single model image. TPAMI, 2005.
    • (2005) TPAMI
    • Kim, T.-K.1    Kittler, J.2
  • 23
    • 33845572523 scopus 로고    scopus 로고
    • Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories
    • S. Lazebnik, C. Schmid, and J. Ponce. Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories. In CVPR, 2006.
    • (2006) CVPR
    • Lazebnik, S.1    Schmid, C.2    Ponce, J.3
  • 24
    • 77955990360 scopus 로고    scopus 로고
    • Object recognition as ranking holistic figure-ground hypotheses
    • F. Li, J. Carreira, and C. Sminchisescu. Object recognition as ranking holistic figure-ground hypotheses. In CVPR, 2010.
    • (2010) CVPR
    • Li, F.1    Carreira, J.2    Sminchisescu, C.3
  • 25
    • 77956514394 scopus 로고    scopus 로고
    • Robust graph mode seeking by graph shift
    • H. Liu and S. Yan. Robust graph mode seeking by graph shift. In ICML, 2010.
    • (2010) ICML
    • Liu, H.1    Yan, S.2
  • 26
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • D. Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 2004.
    • (2004) IJCV
    • Lowe, D.1
  • 27
    • 84863411575 scopus 로고    scopus 로고
    • Ensemble of exemplar-svms for object detection and beyond
    • T. Malisiewicz, A. Gupta, and A. A. Efros. Ensemble of exemplar-svms for object detection and beyond. In ICCV, 2011.
    • (2011) ICCV
    • Malisiewicz, T.1    Gupta, A.2    Efros, A.A.3
  • 28
    • 0029669420 scopus 로고    scopus 로고
    • A comparative study of texture measures with classification based on featured distributions
    • T. Ojala, M. Pietikäinen, and D. Harwood. A comparative study of texture measures with classification based on featured distributions. Pattern Recognition, 1996.
    • (1996) Pattern Recognition
    • Ojala, T.1    Pietikäinen, M.2    Harwood, D.3
  • 29
    • 79960215740 scopus 로고    scopus 로고
    • Multiresolution models for object detection
    • D. Park, D. Ramanan, and C. Fowlkes. Multiresolution models for object detection. In ECCV, 2010.
    • (2010) ECCV
    • Park, D.1    Ramanan, D.2    Fowlkes, C.3
  • 30
    • 84885881090 scopus 로고    scopus 로고
    • Object-centric spatial pooling for image classification
    • O. Russakovsky, Y. Lin, K. Yu, and L. Fei-Fei. Object-centric spatial pooling for image classification. In ECCV, 2012.
    • (2012) ECCV
    • Russakovsky, O.1    Lin, Y.2    Yu, K.3    Fei-Fei, L.4
  • 31
    • 80052891624 scopus 로고    scopus 로고
    • Contextualizing object detection and classification
    • Z. Song, Q. Chen, Z. Huang, Y. Hua, and S. Yan. Contextualizing object detection and classification. In CVPR, 2011.
    • (2011) CVPR
    • Song, Z.1    Chen, Q.2    Huang, Z.3    Hua, Y.4    Yan, S.5
  • 32
    • 31844440737 scopus 로고    scopus 로고
    • Learning discontinuities with products-ofsigmoids for switching between local models
    • M. Toussaint and S. Vijayakumar. Learning discontinuities with products-ofsigmoids for switching between local models. In ICML, 2005.
    • (2005) ICML
    • Toussaint, M.1    Vijayakumar, S.2
  • 35
    • 77955996870 scopus 로고    scopus 로고
    • Locality-constrained linear coding for image classification
    • J. Wang, J. Yang, K. Yu, F. Lv, and T. Huang. Locality-constrained linear coding for image classification. In CVPR, 2010.
    • (2010) CVPR
    • Wang, J.1    Yang, J.2    Yu, K.3    Lv, F.4    Huang, T.5
  • 37
    • 77955988947 scopus 로고    scopus 로고
    • Sun database: Large-scale scene recognition from abbey to zoo
    • J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, and A. Torralba. Sun database: Large-scale scene recognition from abbey to zoo. In CVPR, 2010.
    • (2010) CVPR
    • Xiao, J.1    Hays, J.2    Ehinger, K.A.3    Oliva, A.4    Torralba, A.5
  • 38
    • 77955986466 scopus 로고    scopus 로고
    • Latent hierarchical structural learning for object detection
    • L. Zhu, Y. Chen, A. L. Yuille, andW. T. Freeman. Latent hierarchical structural learning for object detection. In CVPR, 2010.
    • (2010) CVPR
    • Zhu, L.1    Chen, Y.2    Yuille, A.L.3    Freeman, A.T.4
  • 39
    • 84898436991 scopus 로고    scopus 로고
    • Do we need more training data or better models for object detection?
    • X. Zhu, C. Vondrick, D. Ramanan, and C. Fowlkes. Do we need more training data or better models for object detection? In BMVC, 2012.
    • (2012) BMVC
    • Zhu, X.1    Vondrick, C.2    Ramanan, D.3    Fowlkes, C.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.