메뉴 건너뛰기




Volumn , Issue , 2012, Pages 3426-3433

Hierarchical matching with side information for image classification

Author keywords

[No Author keywords available]

Indexed keywords

BAG OF WORDS; HIER-ARCHICAL CLUSTERING; HIERARCHICAL MATCHING; LOCAL FEATURE; LOCAL FEATURE VECTORS; OBJECT DETECTION; SIDE INFORMATION; STATE-OF-THE-ART PERFORMANCE; VISUAL SALIENCY; WEIGHTED SUM;

EID: 84866694025     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2012.6248083     Document Type: Conference Paper
Times cited : (81)

References (44)
  • 1
    • 84898946229 scopus 로고    scopus 로고
    • Support vector machines for multipleinstance learning
    • 2
    • S. Andrews and I. Tsochantaridis. Support vector machines for multipleinstance learning. In NIPS, 2003. 2
    • (2003) NIPS
    • Andrews, S.1    Tsochantaridis, I.2
  • 2
    • 50649101132 scopus 로고    scopus 로고
    • Image classification using random forests and ferns
    • 3
    • A. Bosch, A. Zisserman, and X. Munoz. Image classification using random forests and ferns. In CVPR, 2007. 3
    • (2007) CVPR
    • Bosch, A.1    Zisserman, A.2    Munoz, X.3
  • 4
    • 84856668103 scopus 로고    scopus 로고
    • BiCoS: A bi-level co-segmentation method for image classification
    • 3, 7
    • Y. Chai, V. Lempitsky, and A. Zisserman. BiCoS: A Bi-level Co-Segmentation Method for Image Classification. In ICCV, 2011. 3, 7
    • (2011) ICCV
    • Chai, Y.1    Lempitsky, V.2    Zisserman, A.3
  • 5
    • 84898420173 scopus 로고    scopus 로고
    • The devil is in the details: An evaluation of recent feature encoding methods
    • 6
    • K. Chatfield, V. Lempitsky, A. Vedaldi and A. Zisserman. The devil is in the details: an evaluation of recent feature encoding methods. In BMVC, 2011. 6
    • (2011) BMVC
    • Chatfield, K.1    Lempitsky, V.2    Vedaldi, A.3    Zisserman, A.4
  • 6
    • 33645146449 scopus 로고    scopus 로고
    • Histograms of oriented gradients for human detection
    • 4
    • N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In CVPR, 2005. 4
    • (2005) CVPR
    • Dalal, N.1    Triggs, B.2
  • 9
    • 33144466753 scopus 로고    scopus 로고
    • One-Shot learning of object categories
    • 4
    • L. Fei-Fei and R. Fergus. One-Shot learning of object categories. TPAMI, 2006. 4
    • (2006) TPAMI
    • Fei-Fei, L.1    Fergus, R.2
  • 10
    • 33745155436 scopus 로고    scopus 로고
    • A bayesian hierarchical model for learning natural scene categories
    • 1
    • L. Fei-Fei and P. Perona. A bayesian hierarchical model for learning natural scene categories. In CVPR, 2005. 1
    • (2005) CVPR
    • Fei-Fei, L.1    Perona, P.2
  • 11
    • 77955422240 scopus 로고    scopus 로고
    • Object detection with discriminatively trained part-based models
    • 4, 6
    • P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan. Object Detection with Discriminatively Trained Part-Based Models. TPAMI, 2010. 4, 6
    • (2010) TPAMI
    • Felzenszwalb, P.1    Girshick, R.2    McAllester, D.3    Ramanan, D.4
  • 12
    • 79959771606 scopus 로고    scopus 로고
    • Improving the fisher kernel for large-scale image classification
    • 4, 6, 7, 8
    • F. Perronnin, J. Sanchez, and T. Mensink. Improving the Fisher Kernel for Large-Scale Image Classification. In ECCV, 2010. 4, 6, 7, 8
    • (2010) ECCV
    • Perronnin, F.1    Sanchez, J.2    Mensink, T.3
  • 13
    • 85067032737 scopus 로고    scopus 로고
    • On feature combination for multi-class object classification
    • 7
    • P. Gehler and S. Nowozin. On feature combination for multi-class object classification. In ICCV, 2009. 7
    • (2009) ICCV
    • Gehler, P.1    Nowozin, S.2
  • 14
    • 33745855044 scopus 로고    scopus 로고
    • The pyramid match kernel: Discriminative classification with sets of image features
    • 2, 4
    • K. Grauman and T. Darrell. The pyramid match kernel: Discriminative classification with sets of image features. In ICCV, 2005. 2, 4
    • (2005) ICCV
    • Grauman, K.1    Darrell, T.2
  • 15
    • 84856654029 scopus 로고    scopus 로고
    • Object classification using heterogeneous co-occurrence features
    • S. Ito and S. Kubota. Object Classification Using Heterogeneous Co-occurrence Features. In ECCV, 2010.
    • (2010) ECCV
    • Ito, S.1    Kubota, S.2
  • 16
    • 0032204063 scopus 로고    scopus 로고
    • A model of saliency-based visual attention for rapid scene analysis
    • 2
    • L. Itti, C. Koch, and E. Niebur. A model of saliency-based visual attention for rapid scene analysis. TPAMI, 1998. 2
    • (1998) TPAMI
    • Itti, L.1    Koch, C.2    Niebur, E.3
  • 17
    • 77956006319 scopus 로고    scopus 로고
    • Robust classification of objects, faces, and flowers using natural image statistics
    • 2, 6, 7
    • C. Kanan and G. Cottrell. Robust classification of objects, faces, and flowers using natural image statistics. In CVPR, 2010. 2, 6, 7
    • (2010) CVPR
    • Kanan, C.1    Cottrell, G.2
  • 18
    • 84866662571 scopus 로고    scopus 로고
    • Top-down color attention for object recognition
    • 2
    • F. S. Khan and J. van de Weijer. Top-down color attention for object recognition. In CVPR, 2009. 2
    • (2009) CVPR
    • Khan, F.S.1    Van De Weijer, J.2
  • 19
    • 0022388528 scopus 로고
    • Shifts in selective visual attention: Towards the underlying neural circuitry
    • 2
    • C. Koch and S. Ullman. Shifts in selective visual attention: towards the underlying neural circuitry. Hum Neurobiol, 1985. 2
    • (1985) Hum Neurobiol
    • Koch, C.1    Ullman, S.2
  • 20
    • 33845572523 scopus 로고    scopus 로고
    • Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories
    • 1, 2, 4, 5
    • S. Lazebnik, C. Schmid, and J. Ponce. Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories. In CVPR, 2006. 1, 2, 4, 5
    • (2006) CVPR
    • Lazebnik, S.1    Schmid, C.2    Ponce, J.3
  • 21
    • 77955990360 scopus 로고    scopus 로고
    • Object recognition as ranking holistic figure-ground hypotheses
    • 4
    • F. Li, J. Carreira, and C. Sminchisescu. Object recognition as ranking holistic figure-ground hypotheses. In CVPR, 2010. 4
    • (2010) CVPR
    • Li, F.1    Carreira, J.2    Sminchisescu, C.3
  • 22
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • 4
    • D. Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 2004. 4
    • (2004) IJCV
    • Lowe, D.1
  • 24
    • 33845570201 scopus 로고    scopus 로고
    • A visual vocabulary for flower classification
    • 6
    • M.-E. Nilsback and A. Zisserman. A Visual Vocabulary for Flower Classification. In CVPR, 2006. 6
    • (2006) CVPR
    • Nilsback, M.-E.1    Zisserman, A.2
  • 25
    • 65249121810 scopus 로고    scopus 로고
    • Automated flower classification over a large number of classes
    • 6
    • M.-E. Nilsback and A. Zisserman. Automated Flower Classification over a Large Number of Classes. In ICVGIP, 2008. 6
    • (2008) ICVGIP
    • Nilsback, M.-E.1    Zisserman, A.2
  • 26
    • 0029669420 scopus 로고    scopus 로고
    • A comparative study of texture measures with classification based on featured distributions
    • 4
    • T. Ojala, M. Pietikäinen, and D. Harwood. A comparative study of texture measures with classification based on featured distributions. PR, 1996. 4
    • (1996) PR
    • Ojala, T.1    Pietikäinen, M.2    Harwood, D.3
  • 28
    • 0142199137 scopus 로고    scopus 로고
    • Top-down control of visual attention in object detection
    • 2
    • A. Oliva, A. Torralba, M. Castelhano, and J. Henderson. Top-down control of visual attention in object detection. In ICIP, 2003. 2
    • (2003) ICIP
    • Oliva, A.1    Torralba, A.2    Castelhano, M.3    Henderson, J.4
  • 30
    • 31744441556 scopus 로고    scopus 로고
    • A globally convergent and consistent method for estimating the shape parameter of a generalized Gaussian distribution
    • 5
    • K.-S. Song. A globally convergent and consistent method for estimating the shape parameter of a generalized Gaussian distribution. TIT, 2006. 5
    • (2006) TIT
    • Song, K.-S.1
  • 31
    • 0347380229 scopus 로고    scopus 로고
    • The CMU pose, illumination, and expression database
    • 4
    • T. Sim, S. Baker, and M. Bsat The CMU Pose, Illumination, and Expression Database. TPAMI, 2003. 4
    • (2003) TPAMI
    • Sim, T.1    Baker, S.2    Bsat, M.3
  • 32
    • 80052891624 scopus 로고    scopus 로고
    • Contextualizing object detection and classification
    • 7, 8
    • Z. Song, Q. Chen, Z. Huang, Y. Hua, and S. Yan. Contextualizing object detection and classification. In CVPR, 2011. 7, 8
    • (2011) CVPR
    • Song, Z.1    Chen, Q.2    Huang, Z.3    Hua, Y.4    Yan, S.5
  • 33
    • 33750341577 scopus 로고    scopus 로고
    • Contextual guidance of eye movements and attention in real-world scenes: The role of global features in object search
    • 2
    • A. Torralba, A. Oliva, M. S. Castelhano, and J. M. Henderson. Contextual guidance of eye movements and attention in real-world scenes: The role of global features in object search. Psychological Review, 2006. 2
    • (2006) Psychological Review
    • Torralba, A.1    Oliva, A.2    Castelhano, M.S.3    Henderson, J.M.4
  • 37
    • 84866662628 scopus 로고    scopus 로고
    • Efficient additive kernels via explicit feature maps
    • 5
    • A. Vedaldi and A. Zisserman. Efficient Additive Kernels via Explicit Feature Maps. TPAMI, 2011. 5
    • (2011) TPAMI
    • Vedaldi, A.1    Zisserman, A.2
  • 38
    • 77953177673 scopus 로고    scopus 로고
    • Joint learning of visual attributes, object classes and visual saliency
    • 2
    • G. Wang and D. Forsyth. Joint learning of visual attributes, object classes and visual saliency. In ICCV, 2009. 2
    • (2009) ICCV
    • Wang, G.1    Forsyth, D.2
  • 39
    • 77955996870 scopus 로고    scopus 로고
    • Locality-constrained linear coding for image classification
    • 4, 7, 8
    • J. Wang, J. Yang, K. Yu, F. Lv, and T. Huang. Locality-constrained linear coding for image classification. In CVPR, 2010. 4, 7, 8
    • (2010) CVPR
    • Wang, J.1    Yang, J.2    Yu, K.3    Lv, F.4    Huang, T.5
  • 41
    • 84866724620 scopus 로고    scopus 로고
    • Region-based image classification with a latent SVM model
    • 2
    • O. Yakhnenko and J. Verbeek. Region-Based Image Classification with a Latent SVM Model. Technical report, INRIA, 2011. 2
    • (2011) Technical Report INRIA
    • Yakhnenko, O.1    Verbeek, J.2
  • 42
    • 70450209196 scopus 로고    scopus 로고
    • Linear spatial pyramid matching using sparse coding for image classification
    • 4
    • J. Yang, K. Yu, and Y. Gong. Linear spatial pyramid matching using sparse coding for image classification. In CVPR, 2009. 4
    • (2009) CVPR
    • Yang, J.1    Yu, K.2    Gong, Y.3
  • 44
    • 80052886214 scopus 로고    scopus 로고
    • Image classification using super-vector coding of local image descriptors
    • 4
    • X. Zhou, K. Yu, and T. Zhang. Image classification using super-vector coding of local image descriptors. In ECCV, 2010. 4
    • (2010) ECCV
    • Zhou, X.1    Yu, K.2    Zhang, T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.