메뉴 건너뛰기




Volumn , Issue , 2014, Pages 1746-1753

A review of adaptive feature extraction and classification methods for EEG-based brain-computer interfaces

Author keywords

Adaptive Classification; Adaptive Feature Extraction; Brain Computer Interface; Electroencephalogram; Machine Learning

Indexed keywords

BIOMEDICAL SIGNAL PROCESSING; BRAIN; CLASSIFICATION (OF INFORMATION); COMPUTER CONTROL SYSTEMS; ELECTROENCEPHALOGRAPHY; EXTRACTION; FEATURE EXTRACTION; LEARNING SYSTEMS; MACHINE LEARNING; NEUROPHYSIOLOGY;

EID: 84908495185     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/IJCNN.2014.6889525     Document Type: Conference Paper
Times cited : (74)

References (68)
  • 1
    • 78650431590 scopus 로고    scopus 로고
    • Classification of EEG for affect recognition: An adaptive approach
    • O. AlZoubi, R. A. Calvo, and R. H. Stevens, "Classification of EEG for affect recognition: an adaptive approach", Lecture Notes in Computer Science, vol. 5866, pp. 52-61, 2009.
    • (2009) Lecture Notes in Computer Science , vol.5866 , pp. 52-61
    • AlZoubi, O.1    Calvo, R.A.2    Stevens, R.H.3
  • 4
    • 0029721852 scopus 로고    scopus 로고
    • Classification of spatio-temporal EEG readiness potentials towards the development of a brain-computer interface
    • A. B. Barreto, A. M. Taberner, and L. M. Vicente, "Classification of spatio-temporal EEG readiness potentials towards the development of a brain-computer interface", Proceedings of the IEEE SouthEastcon Conference, pp. 99-102, 1996.
    • (1996) Proceedings of the IEEE SouthEastcon Conference , pp. 99-102
    • Barreto, A.B.1    Taberner, A.M.2    Vicente, L.M.3
  • 5
    • 0034296402 scopus 로고    scopus 로고
    • Generalized discriminant analysis using a kernel approach
    • G. Baudat, and F. Anouar, "Generalized discriminant analysis using a kernel approach", Neural computation, vol. 12, pp. 2385-2404, 2000.
    • (2000) Neural Computation , vol.12 , pp. 2385-2404
    • Baudat, G.1    Anouar, F.2
  • 8
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • C. J. Burges, "A tutorial on support vector machines for pattern recognition", Data Mining and Knowledge Discovery, vol. 2, pp. 121-167, 1998.
    • (1998) Data Mining and Knowledge Discovery , vol.2 , pp. 121-167
    • Burges, C.J.1
  • 11
    • 0037395806 scopus 로고    scopus 로고
    • Learning to control brain activity: A review of the production and control of EEG components for driving brain-computer interface (BCI) systems
    • E. A. Curran, and M. J. Stokes, "Learning to control brain activity: A review of the production and control of EEG components for driving brain-computer interface (BCI) systems", Brain and Cognition, vol. 51, pp. 326-336, 2003.
    • (2003) Brain and Cognition , vol.51 , pp. 326-336
    • Curran, E.A.1    Stokes, M.J.2
  • 15
    • 77955275916 scopus 로고    scopus 로고
    • An online EEG-based brain C computer interface for controlling hand grasp using an adaptive probabilistic neural network
    • M. K. Hazrati, and A. Erfanian, "An online EEG-based brain C computer interface for controlling hand grasp using an adaptive probabilistic neural network", Medical Engineering & Physics, vol. 32, pp. 730-739, 2010.
    • (2010) Medical Engineering & Physics , vol.32 , pp. 730-739
    • Hazrati, M.K.1    Erfanian, A.2
  • 17
    • 0019727297 scopus 로고
    • Autoregressive estimation of short segment spectra for computerized EEG analysis
    • B. H. Jansen, J. R. Bourne, and J. W. Ward, "Autoregressive estimation of short segment spectra for computerized EEG analysis", IEEE Transactions on Biomedical Engineering, vol. 9, pp. 630-638, 1981.
    • (1981) IEEE Transactions on Biomedical Engineering , vol.9 , pp. 630-638
    • Jansen, B.H.1    Bourne, J.R.2    Ward, J.W.3
  • 18
    • 0034210954 scopus 로고    scopus 로고
    • Parallel man-machine training in development of EEG-based cursor control
    • A. Kostov, and M. Polak, "Parallel man-machine training in development of EEG-based cursor control", IEEE Transactions on Rehabilitation Engineering, vol. 8, pp. 203-205, 2000.
    • (2000) IEEE Transactions on Rehabilitation Engineering , vol.8 , pp. 203-205
    • Kostov, A.1    Polak, M.2
  • 19
    • 51849087749 scopus 로고    scopus 로고
    • Towards zero training for brain-computer interfacing
    • M. Krauledat, M. Tangermann, B. Blankertz, and K. R. Müller, "Towards zero training for brain-computer interfacing", PLoS One, vol. 3, pp. 2967, 2008.
    • (2008) PLoS One , vol.3 , pp. 2967
    • Krauledat, M.1    Tangermann, M.2    Blankertz, B.3    Müller, K.R.4
  • 20
    • 74549174193 scopus 로고    scopus 로고
    • Semi-supervised nonnegative matrix factorization
    • H. Lee, J. Yoo, and S. Choi, "Semi-supervised nonnegative matrix factorization", Signal Processing Letters, vol. 17, pp. 4-7, 2010.
    • (2010) Signal Processing Letters , vol.17 , pp. 4-7
    • Lee, H.1    Yoo, J.2    Choi, S.3
  • 21
    • 40849150919 scopus 로고    scopus 로고
    • Joint feature re-extraction and classification using an iterative semi-supervised support vector machine algorithm
    • Y. Li, and C. Guan, "Joint feature re-extraction and classification using an iterative semi-supervised support vector machine algorithm", Machine Learning, vol. 71, pp. 33-53, 2008.
    • (2008) Machine Learning , vol.71 , pp. 33-53
    • Li, Y.1    Guan, C.2
  • 27
    • 0344849430 scopus 로고    scopus 로고
    • Designing optimal spatial filters for single-trial EEG classification in a movement task
    • J. Müller-Gerking, G. Pfurtscheller, and H. Flyvbjerg, "Designing optimal spatial filters for single-trial EEG classification in a movement task", Clinical Neurophysiology, vol. 110, pp. 787-798, 1999.
    • (1999) Clinical Neurophysiology , vol.110 , pp. 787-798
    • Müller-Gerking, J.1    Pfurtscheller, G.2    Flyvbjerg, H.3
  • 28
    • 0035905783 scopus 로고    scopus 로고
    • Actions from thoughts
    • M. A. L. Nicolelis, "Actions from thoughts", Nature, vol. 409, pp. 403-407, 2001.
    • (2001) Nature , vol.409 , pp. 403-407
    • Nicolelis, M.A.L.1
  • 30
    • 47649094596 scopus 로고    scopus 로고
    • Support vector machine-based classification scheme for myoelectric control applied to upper limb
    • M. A. Oskoei, and H. Hu, "Support vector machine-based classification scheme for myoelectric control applied to upper limb", IEEE Transactions on Biomedical Engineering, vol. 55, pp. 1956-1965, 2008.
    • (2008) IEEE Transactions on Biomedical Engineering , vol.55 , pp. 1956-1965
    • Oskoei, M.A.1    Hu, H.2
  • 34
    • 0032168758 scopus 로고    scopus 로고
    • Sparability of EEG signals recorded during right and left motor imagery using adaptive autoregressive parameters
    • G. Pfurtscheller, C. Neuper, A. Schlogl, and K. Lugger, "Sparability of EEG signals recorded during right and left motor imagery using adaptive autoregressive parameters", IEEE Transactions on Rehabilitation Engineering, vol. 6, pp. 316-325, 1998.
    • (1998) IEEE Transactions on Rehabilitation Engineering , vol.6 , pp. 316-325
    • Pfurtscheller, G.1    Neuper, C.2    Schlogl, A.3    Lugger, K.4
  • 35
    • 34047200040 scopus 로고    scopus 로고
    • An improved semi-supervised support vector machine based translation algorithm for BCI systems
    • J. Qin, and Y. Li, "An Improved Semi-Supervised Support Vector Machine Based Translation Algorithm for BCI Systems", Proceedings of 18th International Conference on Pattern Recognition, pp. 1240-1243, 2006.
    • (2006) Proceedings of 18th International Conference on Pattern Recognition , pp. 1240-1243
    • Qin, J.1    Li, Y.2
  • 36
    • 2542525075 scopus 로고    scopus 로고
    • Adaptive probabilistic neural networks for pattern classification in time-varying environment
    • L. Rutkowski, "Adaptive probabilistic neural networks for pattern classification in time-varying environment", IEEE Transactions on Neural Networks, vol. 15, pp. 811-827, 2004.
    • (2004) IEEE Transactions on Neural Networks , vol.15 , pp. 811-827
    • Rutkowski, L.1
  • 37
    • 0031170893 scopus 로고    scopus 로고
    • Adaptive autoregressive modeling used for single-trial EEG classification-verwendung eines Adaptiven Autoregressiven Modells für die Klassifikation von Einzeltrial-EEG-Daten
    • A. Schlögl, D. Flotzinger, and G. Pfurtscheller, "Adaptive Autoregressive Modeling used for Single-trial EEG Classification-Verwendung eines Adaptiven Autoregressiven Modells für die Klassifikation von Einzeltrial-EEG-Daten", Biomedizinische Technik, vol. 42, pp. 162-167, 1997.
    • (1997) Biomedizinische Technik , vol.42 , pp. 162-167
    • Schlögl, A.1    Flotzinger, D.2    Pfurtscheller, G.3
  • 40
    • 0025206332 scopus 로고
    • Probabilistic neural networks
    • D. F. Specht, "Probabilistic neural networks", Neural networks, vol. 3, pp. 109-118, 1990.
    • (1990) Neural Networks , vol.3 , pp. 109-118
    • Specht, D.F.1
  • 42
    • 51849090484 scopus 로고    scopus 로고
    • The extreme energy ratio criterion for EEG feature extraction
    • S. Sun, "The extreme energy ratio criterion for EEG feature extraction", Lecture Notes in Computer Science, vol. 5164, pp. 919-928, 2008.
    • (2008) Lecture Notes in Computer Science , vol.5164 , pp. 919-928
    • Sun, S.1
  • 43
    • 77249148265 scopus 로고    scopus 로고
    • Extreme energy difference for feature extraction of EEG signals
    • S. Sun, "Extreme energy difference for feature extraction of EEG signals", Expert Systems with Applications, vol. 37, pp. 4350-4357, 2010.
    • (2010) Expert Systems with Applications , vol.37 , pp. 4350-4357
    • Sun, S.1
  • 44
    • 71549152834 scopus 로고    scopus 로고
    • Local within-class accuracies for weighting individual outputs in multiple classifier systems
    • S. Sun, "Local within-class accuracies for weighting individual outputs in multiple classifier systems", Pattern Recognition Letters, vol. 31, pp. 119-124, 2010.
    • (2010) Pattern Recognition Letters , vol.31 , pp. 119-124
    • Sun, S.1
  • 45
    • 79251633422 scopus 로고    scopus 로고
    • The stochastic approximation method for adaptive Bayesian classifiers: Towards online brain-computer interfaces
    • S. Sun, Y. Lu, Y. Chen, "The stochastic approximation method for adaptive Bayesian classifiers: Towards online brain-computer interfaces", Neural Computing and Applications, vol. 20, pp. 31-40, 2011.
    • (2011) Neural Computing and Applications , vol.20 , pp. 31-40
    • Sun, S.1    Lu, Y.2    Chen, Y.3
  • 46
    • 84892923727 scopus 로고    scopus 로고
    • Transfer learning with part-based ensembles
    • S. Sun, Z. Xu, and M. Yang, "Transfer learning with part-based ensembles", Lecture Notes in Computer Science, vol. 7872, pp. 271-282, 2013.
    • (2013) Lecture Notes in Computer Science , vol.7872 , pp. 271-282
    • Sun, S.1    Xu, Z.2    Yang, M.3
  • 47
    • 33745290218 scopus 로고    scopus 로고
    • Learning on-line classification via decorrelated LMS algorithm: Application to brain-computer interfaces
    • S. Sun, and C. Zhang, "Learning on-line classification via decorrelated LMS algorithm: application to brain-computer interfaces", Proceedings of 8th International Conference on Discovery Science, pp. 215-226, 2005.
    • (2005) Proceedings of 8th International Conference on Discovery Science , pp. 215-226
    • Sun, S.1    Zhang, C.2
  • 48
    • 33749545271 scopus 로고    scopus 로고
    • Adaptive feature extraction for EEG signal classification
    • S. Sun, and C. Zhang, "Adaptive feature extraction for EEG signal classification", Medical and Biological Engineering and Computing, vol. 44, pp. 931-935, 2006.
    • (2006) Medical and Biological Engineering and Computing , vol.44 , pp. 931-935
    • Sun, S.1    Zhang, C.2
  • 50
    • 84855519943 scopus 로고    scopus 로고
    • Multiple-view multiple-learner semisupervised learning
    • S. Sun, and Q. Zhang, "Multiple-view multiple-learner semisupervised learning", Neural Processing Letters, vol. 34, pp. 229-240, 2011.
    • (2011) Neural Processing Letters , vol.34 , pp. 229-240
    • Sun, S.1    Zhang, Q.2
  • 51
    • 34548688428 scopus 로고    scopus 로고
    • An experimental evaluation of ensemble methods for EEG signal classification
    • S. Sun, C. Zhang, and D. Zhang, "An experimental evaluation of ensemble methods for EEG signal classification", Pattern Recognition Letters, vol. 28, pp. 2157-2163, 2007.
    • (2007) Pattern Recognition Letters , vol.28 , pp. 2157-2163
    • Sun, S.1    Zhang, C.2    Zhang, D.3
  • 52
    • 1942489160 scopus 로고    scopus 로고
    • Adaptive BCI based on variational Bayesian Kalman filtering: An empirical evaluation
    • P. Sykacek, S. J. Roberts, and M. Stokes, "Adaptive BCI based on variational Bayesian Kalman filtering: an empirical evaluation", IEEE Transactions on Biomedical Engineering, vol. 51, pp. 719-727, 2004.
    • (2004) IEEE Transactions on Biomedical Engineering , vol.51 , pp. 719-727
    • Sykacek, P.1    Roberts, S.J.2    Stokes, M.3
  • 53
  • 54
    • 84876073026 scopus 로고    scopus 로고
    • Semi-supervised feature extraction for EEG classification
    • W. Tu, and S. Sun, "Semi-supervised feature extraction for EEG classification", Pattern Analysis and Applications, vol. 16, pp. 213-222, 2012.
    • (2012) Pattern Analysis and Applications , vol.16 , pp. 213-222
    • Tu, W.1    Sun, S.2
  • 55
    • 84856470019 scopus 로고    scopus 로고
    • A subject transfer framework for EEG classification
    • W. Tu, and S. Sun, "A subject transfer framework for EEG classification", Neurocomputing, vol. 82, pp. 109-116, 2012.
    • (2012) Neurocomputing , vol.82 , pp. 109-116
    • Tu, W.1    Sun, S.2
  • 64
    • 0029755708 scopus 로고    scopus 로고
    • Feature extraction and assessment using wavelet packets for monitoring of machining processes
    • Y. Wu, and R. Du, "Feature extraction and assessment using wavelet packets for monitoring of machining processes", Mechanical Systems and Signal Processing, vol. 10, pp. 29-53, 1996.
    • (1996) Mechanical Systems and Signal Processing , vol.10 , pp. 29-53
    • Wu, Y.1    Du, R.2
  • 65
    • 68349114998 scopus 로고    scopus 로고
    • Fuzzy support vector machine for classification of EEG signals using wavelet-based features
    • Q. Xu, H. Zhou, Y. Wang, and J. Huang, "Fuzzy support vector machine for classification of EEG signals using wavelet-based features", Medical Engineering & Physics, vol. 37, pp. 858-865, 2009.
    • (2009) Medical Engineering & Physics , vol.37 , pp. 858-865
    • Xu, Q.1    Zhou, H.2    Wang, Y.3    Huang, J.4
  • 66
    • 33750469388 scopus 로고    scopus 로고
    • Adaptive subject-based feature extraction in brain-computer interfaces using wavelet packet best basis decomposition
    • B. Yang, G. Yan, R. Yan, and T. Wu, "Adaptive subject-based feature extraction in brain-computer interfaces using wavelet packet best basis decomposition", Medical Engineering & Physics, vol. 29, pp. 48-53, 2007.
    • (2007) Medical Engineering & Physics , vol.29 , pp. 48-53
    • Yang, B.1    Yan, G.2    Yan, R.3    Wu, T.4
  • 67
    • 70350214197 scopus 로고    scopus 로고
    • Adaptive classification for brain computer interface systems using sequential Monte Carlo sampling
    • J. W. Yoon, S. J. Roberts, M. Dyson, and J. Q. Gan, "Adaptive classification for brain computer interface systems using sequential Monte Carlo sampling", Neural Networks, vol. 22, pp. 1286-1294, 2009.
    • (2009) Neural Networks , vol.22 , pp. 1286-1294
    • Yoon, J.W.1    Roberts, S.J.2    Dyson, M.3    Gan, J.Q.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.