메뉴 건너뛰기




Volumn 37, Issue 6, 2010, Pages 4350-4357

Extreme energy difference for feature extraction of EEG signals

Author keywords

Brain computer interface (BCI); Common spatial patterns (CSP); EEG signal classification; Feature extraction; Support vector machine

Indexed keywords

BENCHMARK DATA; CLASSIFICATION ACCURACY; COMMON SPATIAL PATTERNS; EEG SIGNAL CLASSIFICATION; EEG SIGNALS; EIGENVALUE DECOMPOSITION; ELECTROENCEPHALOGRAM SIGNALS; ENERGY DIFFERENCES; ENERGY FEATURE; FEATURE EXTRACTION METHODS; FEATURE EXTRACTOR; LINEAR FEATURE; LINEAR SUPPORT VECTOR MACHINES;

EID: 77249148265     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2009.11.064     Document Type: Article
Times cited : (21)

References (32)
  • 3
    • 0037395806 scopus 로고    scopus 로고
    • Learning to control brain activity: A review of the production and control of EEG components for driving brain-computer interface (BCI) systems
    • Curran E.A., and Stokes M.J. Learning to control brain activity: A review of the production and control of EEG components for driving brain-computer interface (BCI) systems. Brain Cognition 51 3 (2003) 326-336
    • (2003) Brain Cognition , vol.51 , Issue.3 , pp. 326-336
    • Curran, E.A.1    Stokes, M.J.2
  • 4
    • 2442671691 scopus 로고    scopus 로고
    • Boosing bit rates in noninvasive EEG single-trial classifications by feature combination and multiclass pardigms
    • Dornhege G., Blankertz B., Curio G., and Müller K.R. Boosing bit rates in noninvasive EEG single-trial classifications by feature combination and multiclass pardigms. IEEE Transactions on Biomedical Engineering 51 6 (2004) 993-1002
    • (2004) IEEE Transactions on Biomedical Engineering , vol.51 , Issue.6 , pp. 993-1002
    • Dornhege, G.1    Blankertz, B.2    Curio, G.3    Müller, K.R.4
  • 6
    • 24144470790 scopus 로고    scopus 로고
    • Recurrent neural networks employing Lyapunov exponents for EEG signals classification
    • Gülera N.F., Übeylib E.D., and Güler I. Recurrent neural networks employing Lyapunov exponents for EEG signals classification. Expert Systems with Applications 29 3 (2005) 506-514
    • (2005) Expert Systems with Applications , vol.29 , Issue.3 , pp. 506-514
    • Gülera, N.F.1    Übeylib, E.D.2    Güler, I.3
  • 7
    • 22544437013 scopus 로고    scopus 로고
    • Classification of motor imagery tasks for brain-computer interface applications by means of two equivalent dipoles analysis
    • Kamousi B., Liu Z., and He B. Classification of motor imagery tasks for brain-computer interface applications by means of two equivalent dipoles analysis. IEEE Transactions on Neural Systems and Rehabilitation Engineering 13 2 (2005) 166-171
    • (2005) IEEE Transactions on Neural Systems and Rehabilitation Engineering , vol.13 , Issue.2 , pp. 166-171
    • Kamousi, B.1    Liu, Z.2    He, B.3
  • 10
    • 0344849430 scopus 로고    scopus 로고
    • Designing optimal spatial filters for single-trial EEG classification in a movement task
    • Müller-Gerking J., Pfurtscheller G., and Flyvbjerg H. Designing optimal spatial filters for single-trial EEG classification in a movement task. Clinical Neurophysiology 110 5 (1999) 787-798
    • (1999) Clinical Neurophysiology , vol.110 , Issue.5 , pp. 787-798
    • Müller-Gerking, J.1    Pfurtscheller, G.2    Flyvbjerg, H.3
  • 12
    • 0035905783 scopus 로고    scopus 로고
    • Actions from thoughts
    • Nicolelis M.A.L. Actions from thoughts. Nature 409 6818 (2001) 403-407
    • (2001) Nature , vol.409 , Issue.6818 , pp. 403-407
    • Nicolelis, M.A.L.1
  • 14
    • 0032829330 scopus 로고    scopus 로고
    • Event-related EEG/MEG synchronization and desynchronization: Basic principles
    • Pfurtscheller G., and da Silva F.H.L. Event-related EEG/MEG synchronization and desynchronization: Basic principles. Clinical Neurophysiology 110 11 (1999) 1842-1857
    • (1999) Clinical Neurophysiology , vol.110 , Issue.11 , pp. 1842-1857
    • Pfurtscheller, G.1    da Silva, F.H.L.2
  • 19
    • 33751396389 scopus 로고    scopus 로고
    • EEG signal classification using wavelet feature extraction and a mixture of expert model
    • Subasi A. EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Systems with Applications 32 4 (2007) 1084-1093
    • (2007) Expert Systems with Applications , vol.32 , Issue.4 , pp. 1084-1093
    • Subasi, A.1
  • 20
    • 51849090484 scopus 로고    scopus 로고
    • The extreme energy ratio criterion for EEG feature extraction
    • Sun S. The extreme energy ratio criterion for EEG feature extraction. Lecture Notes in Computer Science 5164 (2008) 919-928
    • (2008) Lecture Notes in Computer Science , vol.5164 , pp. 919-928
    • Sun, S.1
  • 21
    • 33749545271 scopus 로고    scopus 로고
    • Adaptive feature extraction for EEG signal classification
    • Sun S., and Zhang C. Adaptive feature extraction for EEG signal classification. Medical and Biological Engineering and Computing 44 10 (2006) 931-935
    • (2006) Medical and Biological Engineering and Computing , vol.44 , Issue.10 , pp. 931-935
    • Sun, S.1    Zhang, C.2
  • 22
    • 33745199646 scopus 로고    scopus 로고
    • An optimal kernel feature extractor and its application to EEG signal classification
    • Sun S., and Zhang C. An optimal kernel feature extractor and its application to EEG signal classification. Neurocomputing 69 13-15 (2006) 1743-1748
    • (2006) Neurocomputing , vol.69 , Issue.13-15 , pp. 1743-1748
    • Sun, S.1    Zhang, C.2
  • 23
    • 38349098748 scopus 로고    scopus 로고
    • The random electrode selection ensemble for EEG signal classification
    • Sun S., Zhang C., and Lu Y. The random electrode selection ensemble for EEG signal classification. Pattern Recognition 41 5 (2008) 1663-1675
    • (2008) Pattern Recognition , vol.41 , Issue.5 , pp. 1663-1675
    • Sun, S.1    Zhang, C.2    Lu, Y.3
  • 24
    • 34548688428 scopus 로고    scopus 로고
    • An experimental evaluation of ensemble methods for EEG signal classification
    • Sun S., Zhang C., and Zhang D. An experimental evaluation of ensemble methods for EEG signal classification. Pattern Recognition Letters 28 15 (2007) 2157-2163
    • (2007) Pattern Recognition Letters , vol.28 , Issue.15 , pp. 2157-2163
    • Sun, S.1    Zhang, C.2    Zhang, D.3
  • 25
    • 53849114338 scopus 로고    scopus 로고
    • Measuring saliency of features representing EEG signals using signal-to-noise ratios
    • Übeyli E.D. Measuring saliency of features representing EEG signals using signal-to-noise ratios. Expert Systems with Applications 36 1 (2009) 501-509
    • (2009) Expert Systems with Applications , vol.36 , Issue.1 , pp. 501-509
    • Übeyli, E.D.1
  • 27
    • 0043171157 scopus 로고    scopus 로고
    • Guest editorial brain-computer interface technology: A review of the second international meeting
    • Vaughan T.M. Guest editorial brain-computer interface technology: A review of the second international meeting. IEEE Transactions on Neural Systems and Rehabilitation Engineering 11 2 (2003) 94-109
    • (2003) IEEE Transactions on Neural Systems and Rehabilitation Engineering , vol.11 , Issue.2 , pp. 94-109
    • Vaughan, T.M.1
  • 28
    • 0032947239 scopus 로고    scopus 로고
    • Common spatial subspace decomposition applied to analysis of brain responses under multiple task conditions: A simulation study
    • Wang Y., Berg P., and Scherg M. Common spatial subspace decomposition applied to analysis of brain responses under multiple task conditions: A simulation study. Clinical Neurophysiology 110 4 (1999) 604-614
    • (1999) Clinical Neurophysiology , vol.110 , Issue.4 , pp. 604-614
    • Wang, Y.1    Berg, P.2    Scherg, M.3
  • 29
    • 2442690499 scopus 로고    scopus 로고
    • BCI competition 2003-data set IV: An algorithm based on CSSD and FDA for classifying single-trial EEG
    • Wang Y., Zhang Z., Li Y., Gao X., Gao S., and Yang F. BCI competition 2003-data set IV: An algorithm based on CSSD and FDA for classifying single-trial EEG. IEEE Transactions on Biomedical Engineering 51 6 (2004) 1081-1086
    • (2004) IEEE Transactions on Biomedical Engineering , vol.51 , Issue.6 , pp. 1081-1086
    • Wang, Y.1    Zhang, Z.2    Li, Y.3    Gao, X.4    Gao, S.5    Yang, F.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.