메뉴 건너뛰기




Volumn 26, Issue 6, 2010, Pages 681-691

Improved GMM with parameter initialization for unsupervised adaptation of Brain-Computer interface

Author keywords

Brain computer interface (BCI); Electroencephalogram (EEG); Expectation maximization (EM); Gaussian mixture model (GMM); Unsupervised adaptation

Indexed keywords

ARTIFICIAL DATA; BRAIN SIGNALS; CHANGING BRAIN STATE; CLASS INFORMATION; DATA PROPERTIES; ERROR RATE; EXPECTATION MAXIMIZATION; GAUSSIAN MIXTURE MODEL; MODEL PARAMETERS; NON-STATIONARITIES; REAL APPLICATIONS; UNSUPERVISED ADAPTATION; UNSUPERVISED METHOD;

EID: 77953165121     PISSN: 20407939     EISSN: 20407947     Source Type: Journal    
DOI: 10.1002/cnm.1362     Document Type: Article
Times cited : (27)

References (27)
  • 8
    • 1942489160 scopus 로고    scopus 로고
    • Adaptive BCI based on variational Bayesian Kalman filtering: an empirical evaluation
    • Sykacek P, Roberts S, Stokes M. Adaptive BCI based on variational Bayesian Kalman filtering: an empirical evaluation. IEEE Transactions on Biomedical Engineering 2004; 51(5):719-727.
    • (2004) IEEE Transactions on Biomedical Engineering , vol.51 , Issue.5 , pp. 719-727
    • Sykacek, P.1    Roberts, S.2    Stokes, M.3
  • 12
    • 24944587230 scopus 로고    scopus 로고
    • Using Self-organizing Map for Mental Tasks Classification in Brain-Computer Interface
    • Springer: Berlin
    • Liu H, Wang J, Zheng C. Using Self-organizing Map for Mental Tasks Classification in Brain-Computer Interface. Lecture Notes in Computer Science, vol. 3497. Springer: Berlin, 2005; 327-332.
    • (2005) Lecture Notes in Computer Science , vol.3497 , pp. 327-332
    • Liu, H.1    Wang, J.2    Zheng, C.3
  • 17
    • 0043171108 scopus 로고    scopus 로고
    • Asynchronou BCI and local neural classifiers: an overview of the adaptive brain interface project
    • Millan J, Mouri{ogonek}no J. Asynchronous BCI and local neural classifiers: an overview of the adaptive brain interface project. IEEE Transactions on Neural Systems and Rehabilitation Engineering 2003; 11(2):159-161.
    • (2003) IEEE Transactions on Neural Systems and Rehabilitation Engineering , vol.11 , Issue.2 , pp. 159-161
    • Millan, J.1    Mourino, J.2
  • 21
    • 77953143196 scopus 로고    scopus 로고
    • Unsupervised classification for non-invasive brain-computer interfaces
    • VDI Verlag: D̈usseldorf, Germany, October
    • Eren S, Grosse-Wentrup M, Buss M. Unsupervised classification for non-invasive brain-computer interfaces. Proceedings of Automed Workshop. VDI Verlag: D̈usseldorf, Germany, October 2007; 65-66.
    • (2007) Proceedings of Automed Workshop , pp. 65-66
    • Eren, S.1    Grosse-Wentrup, M.2    Buss, M.3
  • 24
    • 0344849430 scopus 로고    scopus 로고
    • Designing optimal spatial filters for single-trial EEG classification in a movement task
    • M̈uller-Gerking J, Pfurtscheller G, Flyvbjerg H. Designing optimal spatial filters for single-trial EEG classification in a movement task. Clinical Neurophysiology 1999; 110(5):787-798.
    • (1999) Clinical Neurophysiology , vol.110 , Issue.5 , pp. 787-798
    • M̈uller-Gerking, J.1    Pfurtscheller, G.2    Flyvbjerg, H.3
  • 26
    • 0000147667 scopus 로고
    • The ten-twenty electrode system of the international federation in electroencephalography and clinical neurophysiology
    • Jasper H. The ten-twenty electrode system of the international federation in electroencephalography and clinical neurophysiology. EEG Journal 1958; 10:371-375.
    • (1958) EEG Journal , vol.10 , pp. 371-375
    • Jasper, H.1
  • 27
    • 0035084667 scopus 로고    scopus 로고
    • The five percent electrode system for high-resolution EEG and ERP measurements
    • Oostenveld R, Praamstra P. The five percent electrode system for high-resolution EEG and ERP measurements. Clinical Neurophysiology 2001; 112(4):713-719.
    • (2001) Clinical Neurophysiology , vol.112 , Issue.4 , pp. 713-719
    • Oostenveld, R.1    Praamstra, P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.