메뉴 건너뛰기




Volumn 5, Issue 5, 2014, Pages

Metabolic engineering of microorganisms for the production of higher alcohols

Author keywords

[No Author keywords available]

Indexed keywords

2 METHYL 1 BUTANOL; 2 PROPANOL; 3 METHYL 1 PENTANOL; ALCOHOL; BIOFUEL; BUTANOL; FATTY ALCOHOL; HEXANOL; ISOPENTYL ALCOHOL; PROPANOL; UNCLASSIFIED DRUG; ALCOHOL DERIVATIVE; ISOBUTANOL; PENTANOL; TERT-AMYL ALCOHOL;

EID: 84908409114     PISSN: 21612129     EISSN: 21507511     Source Type: Journal    
DOI: 10.1128/mBio.01524-14     Document Type: Review
Times cited : (67)

References (70)
  • 1
    • 84872154202 scopus 로고    scopus 로고
    • Improving butanol fermentation to enter the advanced biofuel market
    • Tracy BP. 2012. Improving butanol fermentation to enter the advanced biofuel market. mBio 3(6):e00518-12. http://dx.doi.org/10.1128/ mBio.00518-12.
    • (2012) mBio , vol.3 , Issue.6
    • Tracy, B.P.1
  • 2
    • 84863012205 scopus 로고    scopus 로고
    • Butanol production from renewable biomass: Rediscovery of metabolic pathways and metabolic engineering
    • Jang YS, Lee J, Malaviya A, Seung DY, Cho JH, Lee SY. 2012. Butanol production from renewable biomass: rediscovery of metabolic pathways and metabolic engineering. Biotechnol. J 7:186-198. http://dx.doi.org/ 10.1002/biot.201100059.
    • (2012) Biotechnol. J , vol.7 , pp. 186-198
    • Jang, Y.S.1    Lee, J.2    Malaviya, A.3    Seung, D.Y.4    Cho, J.H.5    Lee, S.Y.6
  • 3
    • 79957975067 scopus 로고    scopus 로고
    • Fermentative production of butanol-the academic perspective
    • Dürre P. 2011. Fermentative production of butanol-the academic perspective. Curr. Opin. Biotechnol. 22:331-336. http://dx.doi.org/10.1016/ j.copbio.2011.04.010.
    • (2011) Curr. Opin. Biotechnol , vol.22 , pp. 331-336
    • Dürre, P.1
  • 5
    • 0037337740 scopus 로고    scopus 로고
    • Design of antisense RNA constructs for downregulation of the acetone formation pathway of Clostridium acetobutylicum
    • Tummala SB, Welker NE, Papoutsakis ET. 2003. Design of antisense RNA constructs for downregulation of the acetone formation pathway of Clostridium acetobutylicum. J. Bacteriol. 185:1923-1934. http:// dx.doi.org/10.1128/JB.185.6.1923-1934.2003.
    • (2003) J. Bacteriol , vol.185 , pp. 1923-1934
    • Tummala, S.B.1    Welker, N.E.2    Papoutsakis, E.T.3
  • 6
    • 68049142960 scopus 로고    scopus 로고
    • Disruption of the acetoacetate decarboxylase gene in solvent-producing Clostridium acetobutylicum increases the butanol ratio
    • Jiang Y, Xu C, Dong F, Yang Y, Jiang W, Yang S. 2009. Disruption of the acetoacetate decarboxylase gene in solvent-producing Clostridium acetobutylicum increases the butanol ratio. Metab. Eng. 11:284-291. http:// dx.doi.org/10.1016/j.ymben.2009.06.002.
    • (2009) Metab. Eng , vol.11 , pp. 284-291
    • Jiang, Y.1    Xu, C.2    Dong, F.3    Yang, Y.4    Jiang, W.5    Yang, S.6
  • 7
    • 79960743374 scopus 로고    scopus 로고
    • Acetone production in solventogenic Clostridium species: New insights from non-enzymatic decarboxylation of acetoacetate
    • Han B, Gopalan V, Ezeji TC. 2011. Acetone production in solventogenic Clostridium species: new insights from non-enzymatic decarboxylation of acetoacetate. Appl. Microbiol. Biotechnol. 91:565-576. http://dx.doi.org/ 10.1007/s00253-011-3276-5.
    • (2011) Appl. Microbiol. Biotechnol , vol.91 , pp. 565-576
    • Han, B.1    Gopalan, V.2    Ezeji, T.C.3
  • 8
  • 9
    • 84878415306 scopus 로고    scopus 로고
    • Engineering Clostridium acetobutylicum for alcohol production
    • Hou X, Peng W, Xiong L, Huang C, Chen X, Chen X, Zhang W. 2013. Engineering Clostridium acetobutylicum for alcohol production. J. Biotechnol. 166:25-33. http://dx.doi.org/10.1016/j.jbiotec.2013.04.013.
    • (2013) J. Biotechnol , vol.166 , pp. 25-33
    • Hou, X.1    Peng, W.2    Xiong, L.3    Huang, C.4    Chen, X.5    Chen, X.6    Zhang, W.7
  • 10
    • 79958733620 scopus 로고    scopus 로고
    • Engineering the robustness of Clostridium acetobutylicum by introducing glutathione biosynthetic capability
    • Zhu L, Dong H, Zhang Y, Li Y. 2011. Engineering the robustness of Clostridium acetobutylicum by introducing glutathione biosynthetic capability. Metab. Eng. 13:426 - 434. http://dx.doi.org/10.1016/ j.ymben.2011.01.009.
    • (2011) Metab. Eng , vol.13 , pp. 426-434
    • Zhu, L.1    Dong, H.2    Zhang, Y.3    Li, Y.4
  • 11
    • 0030922888 scopus 로고    scopus 로고
    • The genes for butanol and acetone formation in Clostridium acetobutylicum ATCC 824 reside on a large plasmid whose loss leads to degeneration of the strain
    • Cornillot E, Nair RV, Papoutsakis ET, Soucaille P. 1997. The genes for butanol and acetone formation in Clostridium acetobutylicum ATCC 824 reside on a large plasmid whose loss leads to degeneration of the strain. J. Bacteriol. 179:5442-5447.
    • (1997) J. Bacteriol , vol.179 , pp. 5442-5447
    • Cornillot, E.1    Nair, R.V.2    Papoutsakis, E.T.3    Soucaille, P.4
  • 12
    • 0028029330 scopus 로고
    • Expression of plasmid-encoded aad in Clostridium acetobutylicum M5 restores vigorous butanol production
    • Nair RV, Papoutsakis ET. 1994. Expression of plasmid-encoded aad in Clostridium acetobutylicum M5 restores vigorous butanol production. J. Bacteriol. 176:5843-5846.
    • (1994) J. Bacteriol , vol.176 , pp. 5843-5846
    • Nair, R.V.1    Papoutsakis, E.T.2
  • 13
    • 57049169148 scopus 로고    scopus 로고
    • Metabolic engineering of the non-sporulating, non-solventogenic Clostridium acetobutylicum strain M5 to produce butanol without acetone demonstrate the robustness of the acid-formation pathways and the importance of the electron balance
    • Sillers R, Chow A, Tracy B, Papoutsakis ET. 2008. Metabolic engineering of the non-sporulating, non-solventogenic Clostridium acetobutylicum strain M5 to produce butanol without acetone demonstrate the robustness of the acid-formation pathways and the importance of the electron balance. Metab. Eng. 10:321-332. http://dx.doi.org/10.1016/ j.ymben.2008.07.005.
    • (2008) Metab. Eng , vol.10 , pp. 321-332
    • Sillers, R.1    Chow, A.2    Tracy, B.3    Papoutsakis, E.T.4
  • 14
    • 70449575862 scopus 로고    scopus 로고
    • Metabolic engineering of Clostridium acetobutylicumM5for highly selective butanol production
    • Lee JY, Jang YS, Lee J, Papoutsakis ET, Lee SY. 2009. Metabolic engineering of Clostridium acetobutylicumM5for highly selective butanol production. Biotechnol. J. 4:1432-1440. http://dx.doi.org/10.1002/ biot.200900142.
    • (2009) Biotechnol. J , vol.4 , pp. 1432-1440
    • Lee, J.Y.1    Jang, Y.S.2    Lee, J.3    Papoutsakis, E.T.4    Lee, S.Y.5
  • 15
    • 0036180998 scopus 로고    scopus 로고
    • Molecular characterization and transcriptional analysis of adhE2, the gene encoding the NADH-dependent aldehyde/alcohol dehydrogenase responsible for butanol production in alcohologenic cultures of Clostridium acetobutylicum ATCC 824
    • Fontaine L, Meynial-Salles I, Girbal L, Yang X, Croux C, Soucaille P. 2002. Molecular characterization and transcriptional analysis of adhE2, the gene encoding the NADH-dependent aldehyde/alcohol dehydrogenase responsible for butanol production in alcohologenic cultures of Clostridium acetobutylicum ATCC 824. J. Bacteriol. 184:821- 830. http:// dx.doi.org/10.1128/JB.184.3.821-830.2002.
    • (2002) J. Bacteriol , vol.184 , pp. 821-830
    • Fontaine, L.1    Meynial-Salles, I.2    Girbal, L.3    Yang, X.4    Croux, C.5    Soucaille, P.6
  • 16
    • 79958709458 scopus 로고    scopus 로고
    • Metabolic engineering of Clostridium tyrobutyricum for n-butanol production
    • Yu M, Zhang Y, Tang IC, Yang ST. 2011. Metabolic engineering of Clostridium tyrobutyricum for n-butanol production. Metab. Eng. 13: 373-382. http://dx.doi.org/10.1016/j.ymben.2011.04.002.
    • (2011) Metab. Eng , vol.13 , pp. 373-382
    • Yu, M.1    Zhang, Y.2    Tang, I.C.3    Yang, S.T.4
  • 17
    • 84856283798 scopus 로고    scopus 로고
    • Effects of different replicons in conjugative plasmids on transformation efficiency, plasmid stability, gene expression and n-butanol biosynthesis in Clostridium tyrobutyricum
    • Yu M, Du Y, Jiang W, Chang WL, Yang ST, Tang IC. 2012. Effects of different replicons in conjugative plasmids on transformation efficiency, plasmid stability, gene expression and n-butanol biosynthesis in Clostridium tyrobutyricum. Appl. Microbiol. Biotechnol. 93:881- 889. http:// dx.doi.org/10.1007/s00253-011-3736-y.
    • (2012) Appl. Microbiol. Biotechnol , vol.93 , pp. 881-889
    • Yu, M.1    Du, Y.2    Jiang, W.3    Chang, W.L.4    Yang, S.T.5    Tang, I.C.6
  • 18
    • 79952910616 scopus 로고    scopus 로고
    • Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways
    • Bond-Watts BB, Bellerose RJ, Chang MC. 2011. Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways. Nat. Chem. Biol. 7:222-227. http://dx.doi.org/10.1038/nchembio.537.
    • (2011) Nat. Chem. Biol , vol.7 , pp. 222-227
    • Bond-Watts, B.B.1    Bellerose, R.J.2    Chang, M.C.3
  • 19
    • 79955611425 scopus 로고    scopus 로고
    • Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli
    • Shen CR, Lan EI, Dekishima Y, Baez A, Cho KM, Liao JC. 2011. Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli. Appl. Environ. Microbiol. 77:2905-2915. http://dx.doi.org/10.1128/ AEM.03034-10.
    • (2011) Appl. Environ. Microbiol , vol.77 , pp. 2905-2915
    • Shen, C.R.1    Lan, E.I.2    Dekishima, Y.3    Baez, A.4    Cho, K.M.5    Liao, J.C.6
  • 20
    • 0036663710 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli: Increase of NADH availability by overexpressing an NAD(_)-dependent formate dehydrogenase
    • Berríos-Rivera SJ, Bennett GN, San KY. 2002. Metabolic engineering of Escherichia coli: increase of NADH availability by overexpressing an NAD(_)-dependent formate dehydrogenase. Metab. Eng. 4:217-229. http://dx.doi.org/10.1006/mben.2002.0227.
    • (2002) Metab. Eng , vol.4 , pp. 217-229
    • Berríos-Rivera, S.J.1    Bennett, G.N.2    San, K.Y.3
  • 21
    • 0010407860 scopus 로고    scopus 로고
    • Bacterial polyhydroxyalkanoates
    • Lee SY. 1996. Bacterial polyhydroxyalkanoates. Biotechnol. Bioeng. 49:1-14. http://dx.doi.org/10.1002/(SICI)1097-0290(19960105)49:1+1::AID -BIT1+3.3.CO;2-1.
    • (1996) Biotechnol. Bioeng , vol.49 , pp. 1-14
    • Lee, S.Y.1
  • 22
    • 84859950774 scopus 로고    scopus 로고
    • ATP drives direct photosynthetic production of 1-butanol in cyanobacteria
    • Lan EI, Liao JC. 2012. ATP drives direct photosynthetic production of 1-butanol in cyanobacteria. Proc. Natl. Acad. Sci. U. S. A. 109:6018-6023. http://dx.doi.org/10.1073/pnas.1200074109.
    • (2012) Proc. Natl. Acad. Sci. U. S. A , vol.109 , pp. 6018-6023
    • Lan, E.I.1    Liao, J.C.2
  • 23
    • 79960859539 scopus 로고    scopus 로고
    • Extending carbon chain length of 1-butanol pathway for 1-hexanol synthesis from glucose by engineered Escherichia coli
    • Dekishima Y, Lan EI, Shen CR, Cho KM, Liao JC. 2011. Extending carbon chain length of 1-butanol pathway for 1-hexanol synthesis from glucose by engineered Escherichia coli. J. Am. Chem. Soc. 133: 11399-11401. http://dx.doi.org/10.1021/ja203814d.
    • (2011) J. Am. Chem. Soc , vol.133 , pp. 11399-11401
    • Dekishima, Y.1    Lan, E.I.2    Shen, C.R.3    Cho, K.M.4    Liao, J.C.5
  • 24
    • 80051941601 scopus 로고    scopus 로고
    • Engineered reversal of the _-oxidation cycle for the synthesis of fuels and chemicals
    • Dellomonaco C, Clomburg JM, Miller EN, Gonzalez R. 2011. Engineered reversal of the _-oxidation cycle for the synthesis of fuels and chemicals. Nature 476:355-359. http://dx.doi.org/10.1038/nature10333.
    • (2011) Nature , vol.476 , pp. 355-359
    • Dellomonaco, C.1    Clomburg, J.M.2    Miller, E.N.3    Gonzalez, R.4
  • 25
    • 84869472029 scopus 로고    scopus 로고
    • A synthetic biology approach to engineer a functional reversal of the beta-oxidation cycle
    • Clomburg JM, Vick JE, Blankschien MD, Rodriguez-Moya M, Gonzalez R. 2012. A synthetic biology approach to engineer a functional reversal of the beta-oxidation cycle. ACS Synth. Biol. 1:541-554. http://dx.doi.org/ 10.1021/sb3000782.
    • (2012) ACS Synth. Biol , vol.1 , pp. 541-554
    • Clomburg, J.M.1    Vick, J.E.2    Blankschien, M.D.3    Rodriguez-Moya, M.4    Gonzalez, R.5
  • 26
    • 84891829362 scopus 로고    scopus 로고
    • Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived biofuels and chemicals
    • Runguphan W, Keasling JD. 2014. Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived biofuels and chemicals. Metab. Eng. 21:103-113. http://dx.doi.org/10.1016/ j.ymben.2013.07.003.
    • (2014) Metab. Eng , vol.21 , pp. 103-113
    • Runguphan, W.1    Keasling, J.D.2
  • 28
    • 80855131585 scopus 로고    scopus 로고
    • A prokaryotic acyl-CoA reductase performing reduction of fatty acyl-CoA to fatty alcohol
    • Hofvander P, Doan TT, Hamberg M. 2011. A prokaryotic acyl-CoA reductase performing reduction of fatty acyl-CoA to fatty alcohol. FEBS Lett. 585:3538-3543. http://dx.doi.org/10.1016/j.febslet.2011.10.016.
    • (2011) FEBS Lett , vol.585 , pp. 3538-3543
    • Hofvander, P.1    Doan, T.T.2    Hamberg, M.3
  • 30
    • 84880511769 scopus 로고    scopus 로고
    • Fatty alcohol production in engineered E. coli expressing Marinobacter fatty acyl-CoA reductases
    • Liu A, Tan X, Yao L, Lu X. 2013. Fatty alcohol production in engineered E. coli expressing Marinobacter fatty acyl-CoA reductases. Appl. Microbiol. Biotechnol. 97:7061-7071. http://dx.doi.org/10.1007/s00253-013 -5027-2.
    • (2013) Appl. Microbiol. Biotechnol , vol.97 , pp. 7061-7071
    • Liu, A.1    Tan, X.2    Yao, L.3    Lu, X.4
  • 31
    • 84871952399 scopus 로고    scopus 로고
    • Carboxylic acid reductase is a versatile enzyme for the conversion of fatty acids into fuels and chemical commodities
    • Akhtar MK, Turner NJ, Jones PR. 2013. Carboxylic acid reductase is a versatile enzyme for the conversion of fatty acids into fuels and chemical commodities. Proc. Natl. Acad. Sci. U. S. A. 110:87-92. http://dx.doi.org/ 10.1073/pnas.1216516110.
    • (2013) Proc. Natl. Acad. Sci. U. S. A , vol.110 , pp. 87-92
    • Akhtar, M.K.1    Turner, N.J.2    Jones, P.R.3
  • 32
    • 33846978426 scopus 로고    scopus 로고
    • Reduction of carboxylic acids by Nocardia aldehyde oxidoreductase requires a phosphopantetheinylated enzyme
    • Venkitasubramanian P, Daniels L, Rosazza JP. 2007. Reduction of carboxylic acids by Nocardia aldehyde oxidoreductase requires a phosphopantetheinylated enzyme. J. Biol. Chem. 282:478-485. http://dx.doi.org/ 10.1074/jbc.M607980200.
    • (2007) J. Biol. Chem , vol.282 , pp. 478-485
    • Venkitasubramanian, P.1    Daniels, L.2    Rosazza, J.P.3
  • 33
    • 84890934527 scopus 로고    scopus 로고
    • Metabolic engineering of fatty acyl-ACP reductase-dependent pathway to improve fatty alcohol production in Escherichia coli
    • Liu R, Zhu F, Lu L, Fu A, Lu J, Deng Z, Liu T. 2014. Metabolic engineering of fatty acyl-ACP reductase-dependent pathway to improve fatty alcohol production in Escherichia coli. Metab. Eng. 22:10-21. http:// dx.doi.org/10.1016/j.ymben.2013.12.004.
    • (2014) Metab. Eng , vol.22 , pp. 10-21
    • Liu, R.1    Zhu, F.2    Lu, L.3    Fu, A.4    Lu, J.5    Deng, Z.6    Liu, T.7
  • 34
    • 38049001166 scopus 로고    scopus 로고
    • Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels
    • Atsumi S, Hanai T, Liao JC. 2008. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451:86-89. http://dx.doi.org/10.1038/nature06450.
    • (2008) Nature , vol.451 , pp. 86-89
    • Atsumi, S.1    Hanai, T.2    Liao, J.C.3
  • 35
    • 74149094503 scopus 로고    scopus 로고
    • Engineering the isobutanol biosynthetic pathway in Escherichia coli by comparison of three aldehyde reductase/alcohol dehydrogenase genes
    • Atsumi S, Wu TY, Eckl EM, Hawkins SD, Buelter T, Liao JC. 2010. Engineering the isobutanol biosynthetic pathway in Escherichia coli by comparison of three aldehyde reductase/alcohol dehydrogenase genes. Appl. Microbiol. Biotechnol. 85:651- 657. http://dx.doi.org/10.1007/ s00253-009-2085-6.
    • (2010) Appl. Microbiol. Biotechnol , vol.85 , pp. 651-657
    • Atsumi, S.1    Wu, T.Y.2    Eckl, E.M.3    Hawkins, S.D.4    Buelter, T.5    Liao, J.C.6
  • 36
    • 79958177780 scopus 로고    scopus 로고
    • High-flux isobutanol production using engineered Escherichia coli: A bioreactor study with in situ product removal
    • Baez A, Cho KM, Liao JC. 2011. High-flux isobutanol production using engineered Escherichia coli: a bioreactor study with in situ product removal. Appl. Microbiol. Biotechnol. 90:1681-1690. http://dx.doi.org/ 10.1007/s00253-011-3173-y.
    • (2011) Appl. Microbiol. Biotechnol , vol.90 , pp. 1681-1690
    • Baez, A.1    Cho, K.M.2    Liao, J.C.3
  • 37
    • 54349090042 scopus 로고    scopus 로고
    • Production of 2-methyl-1-butanol in engineered Escherichia coli
    • Cann AF, Liao JC. 2008. Production of 2-methyl-1-butanol in engineered Escherichia coli. Appl. Microbiol. Biotechnol. 81:89-98. http://dx.doi.org/ 10.1007/s00253-008-1631-y.
    • (2008) Appl. Microbiol. Biotechnol , vol.81 , pp. 89-98
    • Cann, A.F.1    Liao, J.C.2
  • 38
    • 77950626597 scopus 로고    scopus 로고
    • 3-Methyl-1-butanol production in Escherichia coli: Random mutagenesis and two-phase fermentation
    • Connor MR, Cann AF, Liao JC. 2010. 3-Methyl-1-butanol production in Escherichia coli: random mutagenesis and two-phase fermentation. Appl. Microbiol. Biotechnol. 86:1155-1164. http://dx.doi.org/10.1007/s00253 -009-2401-1.
    • (2010) Appl. Microbiol. Biotechnol , vol.86 , pp. 1155-1164
    • Connor, M.R.1    Cann, A.F.2    Liao, J.C.3
  • 39
    • 84865590395 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for the production of 1-propanol
    • Choi YJ, Park JH, Kim TY, Lee SY. 2012. Metabolic engineering of Escherichia coli for the production of 1-propanol. Metab. Eng. 14: 477-486. http://dx.doi.org/10.1016/j.ymben.2012.07.006.
    • (2012) Metab. Eng , vol.14 , pp. 477-486
    • Choi, Y.J.1    Park, J.H.2    Kim, T.Y.3    Lee, S.Y.4
  • 40
    • 57449098845 scopus 로고    scopus 로고
    • Directed evolution of Methanococcus jannaschii citramalate synthase for biosynthesis of 1-propanol and 1-butanol by Escherichia coli
    • Atsumi S, Liao JC. 2008. Directed evolution of Methanococcus jannaschii citramalate synthase for biosynthesis of 1-propanol and 1-butanol by Escherichia coli. Appl. Environ. Microbiol. 74:7802-7808. http:// dx.doi.org/10.1128/AEM.02046-08.
    • (2008) Appl. Environ. Microbiol , vol.74 , pp. 7802-7808
    • Atsumi, S.1    Liao, J.C.2
  • 41
    • 79960712071 scopus 로고    scopus 로고
    • Engineering Bacillus subtilis for isobutanol production by heterologous Ehrlich pathway construction and the biosynthetic 2-ketoisovalerate precursor pathway overexpression
    • Li S, Wen J, Jia X. 2011. Engineering Bacillus subtilis for isobutanol production by heterologous Ehrlich pathway construction and the biosynthetic 2-ketoisovalerate precursor pathway overexpression. Appl. Microbiol. Biotechnol. 91:577-589. http://dx.doi.org/10.1007/s00253-011 -3280-9.
    • (2011) Appl. Microbiol. Biotechnol , vol.91 , pp. 577-589
    • Li, S.1    Wen, J.2    Jia, X.3
  • 42
    • 84868481932 scopus 로고    scopus 로고
    • Improved 2-methyl-1-propanol production in an engineered Bacillus subtilis by constructing inducible pathways
    • Li S, Jia X, Wen J. 2012. Improved 2-methyl-1-propanol production in an engineered Bacillus subtilis by constructing inducible pathways. Biotechnol. Lett. 34:2253-2258. http://dx.doi.org/10.1007/s10529-012-1041 -1.
    • (2012) Biotechnol. Lett , vol.34 , pp. 2253-2258
    • Li, S.1    Jia, X.2    Wen, J.3
  • 43
    • 79955611428 scopus 로고    scopus 로고
    • Metabolic engineering of Clostridium cellulolyticum for production of isobutanol from cellulose
    • Higashide W, Li Y, Yang Y, Liao JC. 2011. Metabolic engineering of Clostridium cellulolyticum for production of isobutanol from cellulose. Appl. Environ. Microbiol. 77:2727-2733. http://dx.doi.org/10.1128/ AEM.02454-10.
    • (2011) Appl. Environ. Microbiol , vol.77 , pp. 2727-2733
    • Higashide, W.1    Li, Y.2    Yang, Y.3    Liao, J.C.4
  • 44
    • 77955665708 scopus 로고    scopus 로고
    • Engineering Corynebacterium glutamicum for isobutanol production
    • Smith KM, Cho KM, Liao JC. 2010. Engineering Corynebacterium glutamicum for isobutanol production. Appl. Microbiol. Biotechnol. 87: 1045-1055. http://dx.doi.org/10.1007/s00253-010-2522-6.
    • (2010) Appl. Microbiol. Biotechnol , vol.87 , pp. 1045-1055
    • Smith, K.M.1    Cho, K.M.2    Liao, J.C.3
  • 46
    • 84866037643 scopus 로고    scopus 로고
    • Studies on the production of branched-chain alcohols in engineered Ralstonia eutropha
    • Lu J, Brigham CJ, Gai CS, Sinskey AJ. 2012. Studies on the production of branched-chain alcohols in engineered Ralstonia eutropha. Appl. Microbiol. Biotechnol. 96:283-297. http://dx.doi.org/10.1007/s00253-012 -4320-9.
    • (2012) Appl. Microbiol. Biotechnol , vol.96 , pp. 283-297
    • Lu, J.1    Brigham, C.J.2    Gai, C.S.3    Sinskey, A.J.4
  • 48
    • 79960656765 scopus 로고    scopus 로고
    • Increased isobutanol production in Saccharomyces cerevisiae by overexpression of genes in valine metabolism
    • Chen X, Nielsen KF, Borodina I, Kielland-Brandt MC, Karhumaa K. 2011. Increased isobutanol production in Saccharomyces cerevisiae by overexpression of genes in valine metabolism. Biotechnol. Biofuels 4:21. http://dx.doi.org/10.1186/1754-6834-4-21.
    • (2011) Biotechnol. Biofuels , vol.4 , pp. 21
    • Chen, X.1    Nielsen, K.F.2    Borodina, I.3    Kielland-Brandt, M.C.4    Karhumaa, K.5
  • 49
    • 84889061841 scopus 로고    scopus 로고
    • Increased isobutanol production in Saccharomyces cerevisiae by eliminating competing pathways and resolving cofactor imbalance
    • Matsuda F, Ishii J, Kondo T, Ida K, Tezuka H, Kondo A. 2013. Increased isobutanol production in Saccharomyces cerevisiae by eliminating competing pathways and resolving cofactor imbalance. Microb. Cell. Fact. 12:119. http://dx.doi.org/10.1186/1475-2859-12-119.
    • (2013) Microb. Cell. Fact , vol.12 , pp. 119
    • Matsuda, F.1    Ishii, J.2    Kondo, T.3    Ida, K.4    Tezuka, H.5    Kondo, A.6
  • 50
    • 84877256074 scopus 로고    scopus 로고
    • Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols
    • Avalos JL, Fink GR, Stephanopoulos G. 2013. Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols. Nat. Biotechnol. 31:335-341. http://dx.doi.org/ 10.1038/nbt.2509.
    • (2013) Nat. Biotechnol , vol.31 , pp. 335-341
    • Avalos, J.L.1    Fink, G.R.2    Stephanopoulos, G.3
  • 51
    • 78650404944 scopus 로고    scopus 로고
    • Metabolic engineering of Corynebacterium glutamicum for 2-ketoisovalerate production
    • Krause FS, Blombach B, Eikmanns BJ. 2010. Metabolic engineering of Corynebacterium glutamicum for 2-ketoisovalerate production. Appl. Environ. Microbiol. 76:8053- 8061. http://dx.doi.org/10.1128/AEM.01710 -10.
    • (2010) Appl. Environ. Microbiol , vol.76 , pp. 8053-8061
    • Krause, F.S.1    Blombach, B.2    Eikmanns, B.J.3
  • 52
    • 58549111802 scopus 로고    scopus 로고
    • Expanding metabolism for biosynthesis of nonnatural alcohols
    • Zhang K, Sawaya MR, Eisenberg DS, Liao JC. 2008. Expanding metabolism for biosynthesis of nonnatural alcohols. Proc. Natl. Acad. Sci. U. S. A. 105:20653-20658. http://dx.doi.org/10.1073/pnas.0807157106.
    • (2008) Proc. Natl. Acad. Sci. U. S. A , vol.105 , pp. 20653-20658
    • Zhang, K.1    Sawaya, M.R.2    Eisenberg, D.S.3    Liao, J.C.4
  • 53
    • 0020699648 scopus 로고
    • Acetone, isopropanol, and butanol production by Clostridium beijerinckii (syn. Clostridium butylicum) and Clostridium aurantibutyricum
    • George HA, Johnson JL, Moore WE, Holdeman LV, Chen JS. 1983. Acetone, isopropanol, and butanol production by Clostridium beijerinckii (syn. Clostridium butylicum) and Clostridium aurantibutyricum. Appl. Environ. Microbiol. 45:1160-1163.
    • (1983) Appl. Environ. Microbiol , vol.45 , pp. 1160-1163
    • George, H.A.1    Johnson, J.L.2    Moore, W.E.3    Holdeman, L.V.4    Chen, J.S.5
  • 54
    • 0027317888 scopus 로고
    • Purification and characterization of a primary-secondary alcohol dehydrogenase from two strains of Clostridium beijerinckii
    • Ismaiel AA, Zhu CX, Colby GD, Chen JS. 1993. Purification and characterization of a primary-secondary alcohol dehydrogenase from two strains of Clostridium beijerinckii. J. Bacteriol. 175:5097-5105.
    • (1993) J. Bacteriol , vol.175 , pp. 5097-5105
    • Ismaiel, A.A.1    Zhu, C.X.2    Colby, G.D.3    Chen, J.S.4
  • 55
    • 0028869098 scopus 로고
    • Alcohol dehydrogenase: Multiplicity and relatedness in the solvent-producing clostridia
    • Chen JS. 1995. Alcohol dehydrogenase: multiplicity and relatedness in the solvent-producing clostridia. FEMS Microbiol. Rev. 17:263-273. http:// dx.doi.org/10.1111/j.1574-6976.1995.tb00210.x.
    • (1995) FEMS Microbiol. Rev , vol.17 , pp. 263-273
    • Chen, J.S.1
  • 56
    • 0343365512 scopus 로고
    • Acetone-butanol-isopropanol production by Clostridium beijerinckii (synonym, Clostridium butylicum)
    • Chen J-S, Hiu SF. 1986. Acetone-butanol-isopropanol production by Clostridium beijerinckii (synonym, Clostridium butylicum). Biotechnol. Lett. 8:371-376. http://dx.doi.org/10.1007/BF01040869.
    • (1986) Biotechnol. Lett , vol.8 , pp. 371-376
    • Chen, J.-S.1    Hiu, S.F.2
  • 57
    • 0023135293 scopus 로고
    • Butanol-ethanol dehydrogenase and butanol-ethanol-isopropanol dehydrogenase: Different alcohol dehydrogenases in two strains of Clostridium beijerinckii (Clostridium butylicum)
    • Hiu SF, Zhu CX, Yan RT, Chen JS. 1987. Butanol-ethanol dehydrogenase and butanol-ethanol-isopropanol dehydrogenase: different alcohol dehydrogenases in two strains of Clostridium beijerinckii (Clostridium butylicum). Appl. Environ. Microbiol. 53:697-703.
    • (1987) Appl. Environ. Microbiol , vol.53 , pp. 697-703
    • Hiu, S.F.1    Zhu, C.X.2    Yan, R.T.3    Chen, J.S.4
  • 58
    • 0022970603 scopus 로고
    • Acetone-butanol fermentation revisited
    • Jones DT, Woods DR. 1986. Acetone-butanol fermentation revisited. Microbiol. Rev. 50:-484 -524.
    • (1986) Microbiol. Rev , vol.50 , pp. -484-524
    • Jones, D.T.1    Woods, D.R.2
  • 59
    • 84893818789 scopus 로고    scopus 로고
    • Biological production of 2-butanone in Escherichia coli
    • Yoneda H, Tantillo DJ, Atsumi S. 2014. Biological production of 2-butanone in Escherichia coli. ChemSusChem 7:92-95. http://dx.doi.org/ 10.1002/cssc.201300853.
    • (2014) ChemSusChem , vol.7 , pp. 92-95
    • Yoneda, H.1    Tantillo, D.J.2    Atsumi, S.3
  • 60
    • 84881663509 scopus 로고    scopus 로고
    • Metabolic engineering of 2-pentanone synthesis in Escherichia coli
    • Lan EI, Dekishima Y, Chuang DS, Liao JC. 2013. Metabolic engineering of 2-pentanone synthesis in Escherichia coli. AIChE J. 59:3167-3175. http://dx.doi.org/10.1002/aic.14086.
    • (2013) AIChE J , vol.59 , pp. 3167-3175
    • Lan, E.I.1    Dekishima, Y.2    Chuang, D.S.3    Liao, J.C.4
  • 61
    • 37349093415 scopus 로고    scopus 로고
    • Engineered synthetic pathway for isopropanol production in Escherichia coli
    • Hanai T, Atsumi S, Liao JC. 2007. Engineered synthetic pathway for isopropanol production in Escherichia coli. Appl. Environ. Microbiol. 73: 7814-7818. http://dx.doi.org/10.1128/AEM.01140-07.
    • (2007) Appl. Environ. Microbiol , vol.73 , pp. 7814-7818
    • Hanai, T.1    Atsumi, S.2    Liao, J.C.3
  • 62
    • 38049130302 scopus 로고    scopus 로고
    • Production of isopropanol by metabolically engineered Escherichia coli
    • Jojima T, Inui M, Yukawa H. 2008. Production of isopropanol by metabolically engineered Escherichia coli. Appl. Microbiol. Biotechnol. 77: 1219-1224. http://dx.doi.org/10.1007/s00253-007-1246-8.
    • (2008) Appl. Microbiol. Biotechnol , vol.77 , pp. 1219-1224
    • Jojima, T.1    Inui, M.2    Yukawa, H.3
  • 63
    • 78449244865 scopus 로고    scopus 로고
    • Improvement of isopropanol production by metabolically engineered Escherichia coli using gas stripping
    • Inokuma K, Liao JC, Okamoto M, Hanai T. 2010. Improvement of isopropanol production by metabolically engineered Escherichia coli using gas stripping. J. Biosci. Bioeng. 110:696-701. http://dx.doi.org/10.1016/ j.jbiosc.2010.07.010.
    • (2010) J. Biosci. Bioeng , vol.110 , pp. 696-701
    • Inokuma, K.1    Liao, J.C.2    Okamoto, M.3    Hanai, T.4
  • 64
    • 84862754984 scopus 로고    scopus 로고
    • Direct isopropanol production from cellobiose by engineered Escherichia coli using a synthetic pathway and a cell surface display system
    • Soma Y, Inokuma K, Tanaka T, Ogino C, Kondo A, Okamoto M, Hanai T. 2012. Direct isopropanol production from cellobiose by engineered Escherichia coli using a synthetic pathway and a cell surface display system. J. Biosci. Bioeng. 114:80 - 85. http://dx.doi.org/10.1016/ j.jbiosc.2012.02.019.
    • (2012) J. Biosci. Bioeng , vol.114 , pp. 80-85
    • Soma, Y.1    Inokuma, K.2    Tanaka, T.3    Ogino, C.4    Kondo, A.5    Okamoto, M.6    Hanai, T.7
  • 66
    • 84876863362 scopus 로고    scopus 로고
    • Metabolic engineering of Clostridium acetobutylicum ATCC 824 for the highyield production of a biofuel composed of an isopropanol/butanol/ ethanol mixture
    • Dusséaux S, Croux C, Soucaille P, Meynial-Salles I. 2013. Metabolic engineering of Clostridium acetobutylicum ATCC 824 for the highyield production of a biofuel composed of an isopropanol/butanol/ ethanol mixture. Metab. Eng. 18:1- 8. http://dx.doi.org/10.1016/ j.ymben.2013.03.003.
    • (2013) Metab. Eng , vol.18 , pp. 1-8
    • Dusséaux, S.1    Croux, C.2    Soucaille, P.3    Meynial-Salles, I.4
  • 67
    • 84862772588 scopus 로고    scopus 로고
    • Introducing a single secondary alcohol dehydrogenase into butanol-tolerant Clostridium acetobutylicum Rh8 switches ABE fermentation to high level IBE fermentation
    • Dai Z, Dong H, Zhu Y, Zhang Y, Li Y, Ma Y. 2012. Introducing a single secondary alcohol dehydrogenase into butanol-tolerant Clostridium acetobutylicum Rh8 switches ABE fermentation to high level IBE fermentation. Biotechnol. Biofuels 5:44. http://dx.doi.org/10.1186/1754-6834-5 -44.
    • (2012) Biotechnol. Biofuels , vol.5 , pp. 44
    • Dai, Z.1    Dong, H.2    Zhu, Y.3    Zhang, Y.4    Li, Y.5    Ma, Y.6
  • 68
    • 84881579946 scopus 로고    scopus 로고
    • Metabolic engineering of Clostridium acetobutylicum for the enhanced production of isopropanol-butanol-ethanol fuel mixture
    • Jang YS, Malaviya A, Lee J, Im JA, Lee SY, Lee J, Eom MH, Cho JH, Seung DY. 2013. Metabolic engineering of Clostridium acetobutylicum for the enhanced production of isopropanol-butanol-ethanol fuel mixture. Biotechnol. Prog. 29:1083-1088. http://dx.doi.org/10.1002/btpr.1733.
    • (2013) Biotechnol. Prog , vol.29 , pp. 1083-1088
    • Jang, Y.S.1    Malaviya, A.2    Lee, J.3    Im, J.A.4    Lee, S.Y.5    Lee, J.6    Eom, M.H.7    Cho, J.H.8    Seung, D.Y.9
  • 69
    • 84876750152 scopus 로고    scopus 로고
    • Acetone-butanol-ethanol production with high productivity using Clostridium acetobutylicum BKM19
    • Jang YS, Malaviya A, Lee SY. 2013. Acetone-butanol-ethanol production with high productivity using Clostridium acetobutylicum BKM19. Biotechnol. Bioeng. 110:1646-1653. http://dx.doi.org/10.1002/bit.24843.
    • (2013) Biotechnol. Bioeng , vol.110 , pp. 1646-1653
    • Jang, Y.S.1    Malaviya, A.2    Lee, S.Y.3
  • 70
    • 84867643979 scopus 로고    scopus 로고
    • 2in cyanobacterium Synechococcus elongatus PCC7942 and characterization of the native acetohydroxyacid synthase
    • 2in cyanobacterium Synechococcus elongatus PCC7942 and characterization of the native acetohydroxyacid synthase. Energy Environ. Sci. 5:9574-9583. http://dx.doi.org/10.1039/c2ee23148d.
    • (2012) Energy Environ. Sci , vol.5 , pp. 9574-9583
    • Shen, C.R.1    Liao, J.C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.