-
1
-
-
84872154202
-
Improving butanol fermentation to enter the advanced biofuel market
-
Tracy BP. 2012. Improving butanol fermentation to enter the advanced biofuel market. mBio 3(6):e00518-12. http://dx.doi.org/10.1128/ mBio.00518-12.
-
(2012)
mBio
, vol.3
, Issue.6
-
-
Tracy, B.P.1
-
2
-
-
84863012205
-
Butanol production from renewable biomass: Rediscovery of metabolic pathways and metabolic engineering
-
Jang YS, Lee J, Malaviya A, Seung DY, Cho JH, Lee SY. 2012. Butanol production from renewable biomass: rediscovery of metabolic pathways and metabolic engineering. Biotechnol. J 7:186-198. http://dx.doi.org/ 10.1002/biot.201100059.
-
(2012)
Biotechnol. J
, vol.7
, pp. 186-198
-
-
Jang, Y.S.1
Lee, J.2
Malaviya, A.3
Seung, D.Y.4
Cho, J.H.5
Lee, S.Y.6
-
3
-
-
79957975067
-
Fermentative production of butanol-the academic perspective
-
Dürre P. 2011. Fermentative production of butanol-the academic perspective. Curr. Opin. Biotechnol. 22:331-336. http://dx.doi.org/10.1016/ j.copbio.2011.04.010.
-
(2011)
Curr. Opin. Biotechnol
, vol.22
, pp. 331-336
-
-
Dürre, P.1
-
4
-
-
51649108629
-
Fermentative butanol production by Clostridia
-
Lee SY, Park JH, Jang SH, Nielsen LK, Kim J, Jung KS. 2008. Fermentative butanol production by Clostridia. Biotechnol. Bioeng. 101: 209-228. http://dx.doi.org/10.1002/bit.22003.
-
(2008)
Biotechnol. Bioeng
, vol.101
, pp. 209-228
-
-
Lee, S.Y.1
Park, J.H.2
Jang, S.H.3
Nielsen, L.K.4
Kim, J.5
Jung, K.S.6
-
5
-
-
0037337740
-
Design of antisense RNA constructs for downregulation of the acetone formation pathway of Clostridium acetobutylicum
-
Tummala SB, Welker NE, Papoutsakis ET. 2003. Design of antisense RNA constructs for downregulation of the acetone formation pathway of Clostridium acetobutylicum. J. Bacteriol. 185:1923-1934. http:// dx.doi.org/10.1128/JB.185.6.1923-1934.2003.
-
(2003)
J. Bacteriol
, vol.185
, pp. 1923-1934
-
-
Tummala, S.B.1
Welker, N.E.2
Papoutsakis, E.T.3
-
6
-
-
68049142960
-
Disruption of the acetoacetate decarboxylase gene in solvent-producing Clostridium acetobutylicum increases the butanol ratio
-
Jiang Y, Xu C, Dong F, Yang Y, Jiang W, Yang S. 2009. Disruption of the acetoacetate decarboxylase gene in solvent-producing Clostridium acetobutylicum increases the butanol ratio. Metab. Eng. 11:284-291. http:// dx.doi.org/10.1016/j.ymben.2009.06.002.
-
(2009)
Metab. Eng
, vol.11
, pp. 284-291
-
-
Jiang, Y.1
Xu, C.2
Dong, F.3
Yang, Y.4
Jiang, W.5
Yang, S.6
-
7
-
-
79960743374
-
Acetone production in solventogenic Clostridium species: New insights from non-enzymatic decarboxylation of acetoacetate
-
Han B, Gopalan V, Ezeji TC. 2011. Acetone production in solventogenic Clostridium species: new insights from non-enzymatic decarboxylation of acetoacetate. Appl. Microbiol. Biotechnol. 91:565-576. http://dx.doi.org/ 10.1007/s00253-011-3276-5.
-
(2011)
Appl. Microbiol. Biotechnol
, vol.91
, pp. 565-576
-
-
Han, B.1
Gopalan, V.2
Ezeji, T.C.3
-
8
-
-
84868374643
-
Enhanced butanol production obtained by reinforcing the direct butanol-forming route in Clostridium acetobutylicum
-
Jang YS, Lee JY, Lee J, Park JH, Im JA, Eom MH, Lee J, Lee SH, Song H, Cho JH, Seung DY, Lee SY. 2012. Enhanced butanol production obtained by reinforcing the direct butanol-forming route in Clostridium acetobutylicum. mBio 3(5):e00314-12. http://dx.doi.org/10.1128/ mBio.00314-12.
-
(2012)
mBio
, vol.3
, Issue.5
-
-
Jang, Y.S.1
Lee, J.Y.2
Lee, J.3
Park, J.H.4
Im, J.A.5
Eom, M.H.6
Lee, J.7
Lee, S.H.8
Song, H.9
Cho, J.H.10
Seung, D.Y.11
Lee, S.Y.12
-
9
-
-
84878415306
-
Engineering Clostridium acetobutylicum for alcohol production
-
Hou X, Peng W, Xiong L, Huang C, Chen X, Chen X, Zhang W. 2013. Engineering Clostridium acetobutylicum for alcohol production. J. Biotechnol. 166:25-33. http://dx.doi.org/10.1016/j.jbiotec.2013.04.013.
-
(2013)
J. Biotechnol
, vol.166
, pp. 25-33
-
-
Hou, X.1
Peng, W.2
Xiong, L.3
Huang, C.4
Chen, X.5
Chen, X.6
Zhang, W.7
-
10
-
-
79958733620
-
Engineering the robustness of Clostridium acetobutylicum by introducing glutathione biosynthetic capability
-
Zhu L, Dong H, Zhang Y, Li Y. 2011. Engineering the robustness of Clostridium acetobutylicum by introducing glutathione biosynthetic capability. Metab. Eng. 13:426 - 434. http://dx.doi.org/10.1016/ j.ymben.2011.01.009.
-
(2011)
Metab. Eng
, vol.13
, pp. 426-434
-
-
Zhu, L.1
Dong, H.2
Zhang, Y.3
Li, Y.4
-
11
-
-
0030922888
-
The genes for butanol and acetone formation in Clostridium acetobutylicum ATCC 824 reside on a large plasmid whose loss leads to degeneration of the strain
-
Cornillot E, Nair RV, Papoutsakis ET, Soucaille P. 1997. The genes for butanol and acetone formation in Clostridium acetobutylicum ATCC 824 reside on a large plasmid whose loss leads to degeneration of the strain. J. Bacteriol. 179:5442-5447.
-
(1997)
J. Bacteriol
, vol.179
, pp. 5442-5447
-
-
Cornillot, E.1
Nair, R.V.2
Papoutsakis, E.T.3
Soucaille, P.4
-
12
-
-
0028029330
-
Expression of plasmid-encoded aad in Clostridium acetobutylicum M5 restores vigorous butanol production
-
Nair RV, Papoutsakis ET. 1994. Expression of plasmid-encoded aad in Clostridium acetobutylicum M5 restores vigorous butanol production. J. Bacteriol. 176:5843-5846.
-
(1994)
J. Bacteriol
, vol.176
, pp. 5843-5846
-
-
Nair, R.V.1
Papoutsakis, E.T.2
-
13
-
-
57049169148
-
Metabolic engineering of the non-sporulating, non-solventogenic Clostridium acetobutylicum strain M5 to produce butanol without acetone demonstrate the robustness of the acid-formation pathways and the importance of the electron balance
-
Sillers R, Chow A, Tracy B, Papoutsakis ET. 2008. Metabolic engineering of the non-sporulating, non-solventogenic Clostridium acetobutylicum strain M5 to produce butanol without acetone demonstrate the robustness of the acid-formation pathways and the importance of the electron balance. Metab. Eng. 10:321-332. http://dx.doi.org/10.1016/ j.ymben.2008.07.005.
-
(2008)
Metab. Eng
, vol.10
, pp. 321-332
-
-
Sillers, R.1
Chow, A.2
Tracy, B.3
Papoutsakis, E.T.4
-
14
-
-
70449575862
-
Metabolic engineering of Clostridium acetobutylicumM5for highly selective butanol production
-
Lee JY, Jang YS, Lee J, Papoutsakis ET, Lee SY. 2009. Metabolic engineering of Clostridium acetobutylicumM5for highly selective butanol production. Biotechnol. J. 4:1432-1440. http://dx.doi.org/10.1002/ biot.200900142.
-
(2009)
Biotechnol. J
, vol.4
, pp. 1432-1440
-
-
Lee, J.Y.1
Jang, Y.S.2
Lee, J.3
Papoutsakis, E.T.4
Lee, S.Y.5
-
15
-
-
0036180998
-
Molecular characterization and transcriptional analysis of adhE2, the gene encoding the NADH-dependent aldehyde/alcohol dehydrogenase responsible for butanol production in alcohologenic cultures of Clostridium acetobutylicum ATCC 824
-
Fontaine L, Meynial-Salles I, Girbal L, Yang X, Croux C, Soucaille P. 2002. Molecular characterization and transcriptional analysis of adhE2, the gene encoding the NADH-dependent aldehyde/alcohol dehydrogenase responsible for butanol production in alcohologenic cultures of Clostridium acetobutylicum ATCC 824. J. Bacteriol. 184:821- 830. http:// dx.doi.org/10.1128/JB.184.3.821-830.2002.
-
(2002)
J. Bacteriol
, vol.184
, pp. 821-830
-
-
Fontaine, L.1
Meynial-Salles, I.2
Girbal, L.3
Yang, X.4
Croux, C.5
Soucaille, P.6
-
16
-
-
79958709458
-
Metabolic engineering of Clostridium tyrobutyricum for n-butanol production
-
Yu M, Zhang Y, Tang IC, Yang ST. 2011. Metabolic engineering of Clostridium tyrobutyricum for n-butanol production. Metab. Eng. 13: 373-382. http://dx.doi.org/10.1016/j.ymben.2011.04.002.
-
(2011)
Metab. Eng
, vol.13
, pp. 373-382
-
-
Yu, M.1
Zhang, Y.2
Tang, I.C.3
Yang, S.T.4
-
17
-
-
84856283798
-
Effects of different replicons in conjugative plasmids on transformation efficiency, plasmid stability, gene expression and n-butanol biosynthesis in Clostridium tyrobutyricum
-
Yu M, Du Y, Jiang W, Chang WL, Yang ST, Tang IC. 2012. Effects of different replicons in conjugative plasmids on transformation efficiency, plasmid stability, gene expression and n-butanol biosynthesis in Clostridium tyrobutyricum. Appl. Microbiol. Biotechnol. 93:881- 889. http:// dx.doi.org/10.1007/s00253-011-3736-y.
-
(2012)
Appl. Microbiol. Biotechnol
, vol.93
, pp. 881-889
-
-
Yu, M.1
Du, Y.2
Jiang, W.3
Chang, W.L.4
Yang, S.T.5
Tang, I.C.6
-
18
-
-
79952910616
-
Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways
-
Bond-Watts BB, Bellerose RJ, Chang MC. 2011. Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways. Nat. Chem. Biol. 7:222-227. http://dx.doi.org/10.1038/nchembio.537.
-
(2011)
Nat. Chem. Biol
, vol.7
, pp. 222-227
-
-
Bond-Watts, B.B.1
Bellerose, R.J.2
Chang, M.C.3
-
19
-
-
79955611425
-
Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli
-
Shen CR, Lan EI, Dekishima Y, Baez A, Cho KM, Liao JC. 2011. Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli. Appl. Environ. Microbiol. 77:2905-2915. http://dx.doi.org/10.1128/ AEM.03034-10.
-
(2011)
Appl. Environ. Microbiol
, vol.77
, pp. 2905-2915
-
-
Shen, C.R.1
Lan, E.I.2
Dekishima, Y.3
Baez, A.4
Cho, K.M.5
Liao, J.C.6
-
20
-
-
0036663710
-
Metabolic engineering of Escherichia coli: Increase of NADH availability by overexpressing an NAD(_)-dependent formate dehydrogenase
-
Berríos-Rivera SJ, Bennett GN, San KY. 2002. Metabolic engineering of Escherichia coli: increase of NADH availability by overexpressing an NAD(_)-dependent formate dehydrogenase. Metab. Eng. 4:217-229. http://dx.doi.org/10.1006/mben.2002.0227.
-
(2002)
Metab. Eng
, vol.4
, pp. 217-229
-
-
Berríos-Rivera, S.J.1
Bennett, G.N.2
San, K.Y.3
-
21
-
-
0010407860
-
Bacterial polyhydroxyalkanoates
-
Lee SY. 1996. Bacterial polyhydroxyalkanoates. Biotechnol. Bioeng. 49:1-14. http://dx.doi.org/10.1002/(SICI)1097-0290(19960105)49:1+1::AID -BIT1+3.3.CO;2-1.
-
(1996)
Biotechnol. Bioeng
, vol.49
, pp. 1-14
-
-
Lee, S.Y.1
-
22
-
-
84859950774
-
ATP drives direct photosynthetic production of 1-butanol in cyanobacteria
-
Lan EI, Liao JC. 2012. ATP drives direct photosynthetic production of 1-butanol in cyanobacteria. Proc. Natl. Acad. Sci. U. S. A. 109:6018-6023. http://dx.doi.org/10.1073/pnas.1200074109.
-
(2012)
Proc. Natl. Acad. Sci. U. S. A
, vol.109
, pp. 6018-6023
-
-
Lan, E.I.1
Liao, J.C.2
-
23
-
-
79960859539
-
Extending carbon chain length of 1-butanol pathway for 1-hexanol synthesis from glucose by engineered Escherichia coli
-
Dekishima Y, Lan EI, Shen CR, Cho KM, Liao JC. 2011. Extending carbon chain length of 1-butanol pathway for 1-hexanol synthesis from glucose by engineered Escherichia coli. J. Am. Chem. Soc. 133: 11399-11401. http://dx.doi.org/10.1021/ja203814d.
-
(2011)
J. Am. Chem. Soc
, vol.133
, pp. 11399-11401
-
-
Dekishima, Y.1
Lan, E.I.2
Shen, C.R.3
Cho, K.M.4
Liao, J.C.5
-
24
-
-
80051941601
-
Engineered reversal of the _-oxidation cycle for the synthesis of fuels and chemicals
-
Dellomonaco C, Clomburg JM, Miller EN, Gonzalez R. 2011. Engineered reversal of the _-oxidation cycle for the synthesis of fuels and chemicals. Nature 476:355-359. http://dx.doi.org/10.1038/nature10333.
-
(2011)
Nature
, vol.476
, pp. 355-359
-
-
Dellomonaco, C.1
Clomburg, J.M.2
Miller, E.N.3
Gonzalez, R.4
-
25
-
-
84869472029
-
A synthetic biology approach to engineer a functional reversal of the beta-oxidation cycle
-
Clomburg JM, Vick JE, Blankschien MD, Rodriguez-Moya M, Gonzalez R. 2012. A synthetic biology approach to engineer a functional reversal of the beta-oxidation cycle. ACS Synth. Biol. 1:541-554. http://dx.doi.org/ 10.1021/sb3000782.
-
(2012)
ACS Synth. Biol
, vol.1
, pp. 541-554
-
-
Clomburg, J.M.1
Vick, J.E.2
Blankschien, M.D.3
Rodriguez-Moya, M.4
Gonzalez, R.5
-
26
-
-
84891829362
-
Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived biofuels and chemicals
-
Runguphan W, Keasling JD. 2014. Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived biofuels and chemicals. Metab. Eng. 21:103-113. http://dx.doi.org/10.1016/ j.ymben.2013.07.003.
-
(2014)
Metab. Eng
, vol.21
, pp. 103-113
-
-
Runguphan, W.1
Keasling, J.D.2
-
27
-
-
75749125061
-
Microbial production of fatty-acidderived fuels and chemicals from plant biomass
-
Steen EJ, Kang Y, Bokinsky G, Hu Z, Schirmer A, McClure A, Del Cardayre SB, Keasling JD. 2010. Microbial production of fatty-acidderived fuels and chemicals from plant biomass. Nature 463:559-562. http://dx.doi.org/10.1038/nature08721.
-
(2010)
Nature
, vol.463
, pp. 559-562
-
-
Steen, E.J.1
Kang, Y.2
Bokinsky, G.3
Hu, Z.4
Schirmer, A.5
McClure, A.6
Del Cardayre, S.B.7
Keasling, J.D.8
-
28
-
-
80855131585
-
A prokaryotic acyl-CoA reductase performing reduction of fatty acyl-CoA to fatty alcohol
-
Hofvander P, Doan TT, Hamberg M. 2011. A prokaryotic acyl-CoA reductase performing reduction of fatty acyl-CoA to fatty alcohol. FEBS Lett. 585:3538-3543. http://dx.doi.org/10.1016/j.febslet.2011.10.016.
-
(2011)
FEBS Lett
, vol.585
, pp. 3538-3543
-
-
Hofvander, P.1
Doan, T.T.2
Hamberg, M.3
-
29
-
-
84886996793
-
Production of medium chain length fatty alcohols from glucose in Escherichia coli
-
Youngquist JT, Schumacher MH, Rose JP, Raines TC, Politz MC, Copeland MF, Pfleger BF. 2013. Production of medium chain length fatty alcohols from glucose in Escherichia coli. Metab. Eng. 20:177-186. http:// dx.doi.org/10.1016/j.ymben.2013.10.006.
-
(2013)
Metab. Eng
, vol.20
, pp. 177-186
-
-
Youngquist, J.T.1
Schumacher, M.H.2
Rose, J.P.3
Raines, T.C.4
Politz, M.C.5
Copeland, M.F.6
Pfleger, B.F.7
-
30
-
-
84880511769
-
Fatty alcohol production in engineered E. coli expressing Marinobacter fatty acyl-CoA reductases
-
Liu A, Tan X, Yao L, Lu X. 2013. Fatty alcohol production in engineered E. coli expressing Marinobacter fatty acyl-CoA reductases. Appl. Microbiol. Biotechnol. 97:7061-7071. http://dx.doi.org/10.1007/s00253-013 -5027-2.
-
(2013)
Appl. Microbiol. Biotechnol
, vol.97
, pp. 7061-7071
-
-
Liu, A.1
Tan, X.2
Yao, L.3
Lu, X.4
-
31
-
-
84871952399
-
Carboxylic acid reductase is a versatile enzyme for the conversion of fatty acids into fuels and chemical commodities
-
Akhtar MK, Turner NJ, Jones PR. 2013. Carboxylic acid reductase is a versatile enzyme for the conversion of fatty acids into fuels and chemical commodities. Proc. Natl. Acad. Sci. U. S. A. 110:87-92. http://dx.doi.org/ 10.1073/pnas.1216516110.
-
(2013)
Proc. Natl. Acad. Sci. U. S. A
, vol.110
, pp. 87-92
-
-
Akhtar, M.K.1
Turner, N.J.2
Jones, P.R.3
-
32
-
-
33846978426
-
Reduction of carboxylic acids by Nocardia aldehyde oxidoreductase requires a phosphopantetheinylated enzyme
-
Venkitasubramanian P, Daniels L, Rosazza JP. 2007. Reduction of carboxylic acids by Nocardia aldehyde oxidoreductase requires a phosphopantetheinylated enzyme. J. Biol. Chem. 282:478-485. http://dx.doi.org/ 10.1074/jbc.M607980200.
-
(2007)
J. Biol. Chem
, vol.282
, pp. 478-485
-
-
Venkitasubramanian, P.1
Daniels, L.2
Rosazza, J.P.3
-
33
-
-
84890934527
-
Metabolic engineering of fatty acyl-ACP reductase-dependent pathway to improve fatty alcohol production in Escherichia coli
-
Liu R, Zhu F, Lu L, Fu A, Lu J, Deng Z, Liu T. 2014. Metabolic engineering of fatty acyl-ACP reductase-dependent pathway to improve fatty alcohol production in Escherichia coli. Metab. Eng. 22:10-21. http:// dx.doi.org/10.1016/j.ymben.2013.12.004.
-
(2014)
Metab. Eng
, vol.22
, pp. 10-21
-
-
Liu, R.1
Zhu, F.2
Lu, L.3
Fu, A.4
Lu, J.5
Deng, Z.6
Liu, T.7
-
34
-
-
38049001166
-
Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels
-
Atsumi S, Hanai T, Liao JC. 2008. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451:86-89. http://dx.doi.org/10.1038/nature06450.
-
(2008)
Nature
, vol.451
, pp. 86-89
-
-
Atsumi, S.1
Hanai, T.2
Liao, J.C.3
-
35
-
-
74149094503
-
Engineering the isobutanol biosynthetic pathway in Escherichia coli by comparison of three aldehyde reductase/alcohol dehydrogenase genes
-
Atsumi S, Wu TY, Eckl EM, Hawkins SD, Buelter T, Liao JC. 2010. Engineering the isobutanol biosynthetic pathway in Escherichia coli by comparison of three aldehyde reductase/alcohol dehydrogenase genes. Appl. Microbiol. Biotechnol. 85:651- 657. http://dx.doi.org/10.1007/ s00253-009-2085-6.
-
(2010)
Appl. Microbiol. Biotechnol
, vol.85
, pp. 651-657
-
-
Atsumi, S.1
Wu, T.Y.2
Eckl, E.M.3
Hawkins, S.D.4
Buelter, T.5
Liao, J.C.6
-
36
-
-
79958177780
-
High-flux isobutanol production using engineered Escherichia coli: A bioreactor study with in situ product removal
-
Baez A, Cho KM, Liao JC. 2011. High-flux isobutanol production using engineered Escherichia coli: a bioreactor study with in situ product removal. Appl. Microbiol. Biotechnol. 90:1681-1690. http://dx.doi.org/ 10.1007/s00253-011-3173-y.
-
(2011)
Appl. Microbiol. Biotechnol
, vol.90
, pp. 1681-1690
-
-
Baez, A.1
Cho, K.M.2
Liao, J.C.3
-
37
-
-
54349090042
-
Production of 2-methyl-1-butanol in engineered Escherichia coli
-
Cann AF, Liao JC. 2008. Production of 2-methyl-1-butanol in engineered Escherichia coli. Appl. Microbiol. Biotechnol. 81:89-98. http://dx.doi.org/ 10.1007/s00253-008-1631-y.
-
(2008)
Appl. Microbiol. Biotechnol
, vol.81
, pp. 89-98
-
-
Cann, A.F.1
Liao, J.C.2
-
38
-
-
77950626597
-
3-Methyl-1-butanol production in Escherichia coli: Random mutagenesis and two-phase fermentation
-
Connor MR, Cann AF, Liao JC. 2010. 3-Methyl-1-butanol production in Escherichia coli: random mutagenesis and two-phase fermentation. Appl. Microbiol. Biotechnol. 86:1155-1164. http://dx.doi.org/10.1007/s00253 -009-2401-1.
-
(2010)
Appl. Microbiol. Biotechnol
, vol.86
, pp. 1155-1164
-
-
Connor, M.R.1
Cann, A.F.2
Liao, J.C.3
-
39
-
-
84865590395
-
Metabolic engineering of Escherichia coli for the production of 1-propanol
-
Choi YJ, Park JH, Kim TY, Lee SY. 2012. Metabolic engineering of Escherichia coli for the production of 1-propanol. Metab. Eng. 14: 477-486. http://dx.doi.org/10.1016/j.ymben.2012.07.006.
-
(2012)
Metab. Eng
, vol.14
, pp. 477-486
-
-
Choi, Y.J.1
Park, J.H.2
Kim, T.Y.3
Lee, S.Y.4
-
40
-
-
57449098845
-
Directed evolution of Methanococcus jannaschii citramalate synthase for biosynthesis of 1-propanol and 1-butanol by Escherichia coli
-
Atsumi S, Liao JC. 2008. Directed evolution of Methanococcus jannaschii citramalate synthase for biosynthesis of 1-propanol and 1-butanol by Escherichia coli. Appl. Environ. Microbiol. 74:7802-7808. http:// dx.doi.org/10.1128/AEM.02046-08.
-
(2008)
Appl. Environ. Microbiol
, vol.74
, pp. 7802-7808
-
-
Atsumi, S.1
Liao, J.C.2
-
41
-
-
79960712071
-
Engineering Bacillus subtilis for isobutanol production by heterologous Ehrlich pathway construction and the biosynthetic 2-ketoisovalerate precursor pathway overexpression
-
Li S, Wen J, Jia X. 2011. Engineering Bacillus subtilis for isobutanol production by heterologous Ehrlich pathway construction and the biosynthetic 2-ketoisovalerate precursor pathway overexpression. Appl. Microbiol. Biotechnol. 91:577-589. http://dx.doi.org/10.1007/s00253-011 -3280-9.
-
(2011)
Appl. Microbiol. Biotechnol
, vol.91
, pp. 577-589
-
-
Li, S.1
Wen, J.2
Jia, X.3
-
42
-
-
84868481932
-
Improved 2-methyl-1-propanol production in an engineered Bacillus subtilis by constructing inducible pathways
-
Li S, Jia X, Wen J. 2012. Improved 2-methyl-1-propanol production in an engineered Bacillus subtilis by constructing inducible pathways. Biotechnol. Lett. 34:2253-2258. http://dx.doi.org/10.1007/s10529-012-1041 -1.
-
(2012)
Biotechnol. Lett
, vol.34
, pp. 2253-2258
-
-
Li, S.1
Jia, X.2
Wen, J.3
-
43
-
-
79955611428
-
Metabolic engineering of Clostridium cellulolyticum for production of isobutanol from cellulose
-
Higashide W, Li Y, Yang Y, Liao JC. 2011. Metabolic engineering of Clostridium cellulolyticum for production of isobutanol from cellulose. Appl. Environ. Microbiol. 77:2727-2733. http://dx.doi.org/10.1128/ AEM.02454-10.
-
(2011)
Appl. Environ. Microbiol
, vol.77
, pp. 2727-2733
-
-
Higashide, W.1
Li, Y.2
Yang, Y.3
Liao, J.C.4
-
44
-
-
77955665708
-
Engineering Corynebacterium glutamicum for isobutanol production
-
Smith KM, Cho KM, Liao JC. 2010. Engineering Corynebacterium glutamicum for isobutanol production. Appl. Microbiol. Biotechnol. 87: 1045-1055. http://dx.doi.org/10.1007/s00253-010-2522-6.
-
(2010)
Appl. Microbiol. Biotechnol
, vol.87
, pp. 1045-1055
-
-
Smith, K.M.1
Cho, K.M.2
Liao, J.C.3
-
45
-
-
79958185451
-
Corynebacterium glutamicum tailored for efficient isobutanol production
-
Blombach B, Riester T, Wieschalka S, Ziert C, Youn JW, Wendisch VF, Eikmanns BJ. 2011. Corynebacterium glutamicum tailored for efficient isobutanol production. Appl. Environ. Microbiol. 77:3300-3310. http:// dx.doi.org/10.1128/AEM.02972-10.
-
(2011)
Appl. Environ. Microbiol
, vol.77
, pp. 3300-3310
-
-
Blombach, B.1
Riester, T.2
Wieschalka, S.3
Ziert, C.4
Youn, J.W.5
Wendisch, V.F.6
Eikmanns, B.J.7
-
46
-
-
84866037643
-
Studies on the production of branched-chain alcohols in engineered Ralstonia eutropha
-
Lu J, Brigham CJ, Gai CS, Sinskey AJ. 2012. Studies on the production of branched-chain alcohols in engineered Ralstonia eutropha. Appl. Microbiol. Biotechnol. 96:283-297. http://dx.doi.org/10.1007/s00253-012 -4320-9.
-
(2012)
Appl. Microbiol. Biotechnol
, vol.96
, pp. 283-297
-
-
Lu, J.1
Brigham, C.J.2
Gai, C.S.3
Sinskey, A.J.4
-
47
-
-
84859111827
-
2to higher alcohols
-
2to higher alcohols. Science 335:1596. http://dx.doi.org/ 10.1126/science.1217643.
-
(2012)
Science
, vol.335
, pp. 1596
-
-
Li, H.1
Opgenorth, P.H.2
Wernick, D.G.3
Rogers, S.4
Wu, T.Y.5
Higashide, W.6
Malati, P.7
Huo, Y.X.8
Cho, K.M.9
Liao, J.C.10
-
48
-
-
79960656765
-
Increased isobutanol production in Saccharomyces cerevisiae by overexpression of genes in valine metabolism
-
Chen X, Nielsen KF, Borodina I, Kielland-Brandt MC, Karhumaa K. 2011. Increased isobutanol production in Saccharomyces cerevisiae by overexpression of genes in valine metabolism. Biotechnol. Biofuels 4:21. http://dx.doi.org/10.1186/1754-6834-4-21.
-
(2011)
Biotechnol. Biofuels
, vol.4
, pp. 21
-
-
Chen, X.1
Nielsen, K.F.2
Borodina, I.3
Kielland-Brandt, M.C.4
Karhumaa, K.5
-
49
-
-
84889061841
-
Increased isobutanol production in Saccharomyces cerevisiae by eliminating competing pathways and resolving cofactor imbalance
-
Matsuda F, Ishii J, Kondo T, Ida K, Tezuka H, Kondo A. 2013. Increased isobutanol production in Saccharomyces cerevisiae by eliminating competing pathways and resolving cofactor imbalance. Microb. Cell. Fact. 12:119. http://dx.doi.org/10.1186/1475-2859-12-119.
-
(2013)
Microb. Cell. Fact
, vol.12
, pp. 119
-
-
Matsuda, F.1
Ishii, J.2
Kondo, T.3
Ida, K.4
Tezuka, H.5
Kondo, A.6
-
50
-
-
84877256074
-
Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols
-
Avalos JL, Fink GR, Stephanopoulos G. 2013. Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols. Nat. Biotechnol. 31:335-341. http://dx.doi.org/ 10.1038/nbt.2509.
-
(2013)
Nat. Biotechnol
, vol.31
, pp. 335-341
-
-
Avalos, J.L.1
Fink, G.R.2
Stephanopoulos, G.3
-
51
-
-
78650404944
-
Metabolic engineering of Corynebacterium glutamicum for 2-ketoisovalerate production
-
Krause FS, Blombach B, Eikmanns BJ. 2010. Metabolic engineering of Corynebacterium glutamicum for 2-ketoisovalerate production. Appl. Environ. Microbiol. 76:8053- 8061. http://dx.doi.org/10.1128/AEM.01710 -10.
-
(2010)
Appl. Environ. Microbiol
, vol.76
, pp. 8053-8061
-
-
Krause, F.S.1
Blombach, B.2
Eikmanns, B.J.3
-
53
-
-
0020699648
-
Acetone, isopropanol, and butanol production by Clostridium beijerinckii (syn. Clostridium butylicum) and Clostridium aurantibutyricum
-
George HA, Johnson JL, Moore WE, Holdeman LV, Chen JS. 1983. Acetone, isopropanol, and butanol production by Clostridium beijerinckii (syn. Clostridium butylicum) and Clostridium aurantibutyricum. Appl. Environ. Microbiol. 45:1160-1163.
-
(1983)
Appl. Environ. Microbiol
, vol.45
, pp. 1160-1163
-
-
George, H.A.1
Johnson, J.L.2
Moore, W.E.3
Holdeman, L.V.4
Chen, J.S.5
-
54
-
-
0027317888
-
Purification and characterization of a primary-secondary alcohol dehydrogenase from two strains of Clostridium beijerinckii
-
Ismaiel AA, Zhu CX, Colby GD, Chen JS. 1993. Purification and characterization of a primary-secondary alcohol dehydrogenase from two strains of Clostridium beijerinckii. J. Bacteriol. 175:5097-5105.
-
(1993)
J. Bacteriol
, vol.175
, pp. 5097-5105
-
-
Ismaiel, A.A.1
Zhu, C.X.2
Colby, G.D.3
Chen, J.S.4
-
55
-
-
0028869098
-
Alcohol dehydrogenase: Multiplicity and relatedness in the solvent-producing clostridia
-
Chen JS. 1995. Alcohol dehydrogenase: multiplicity and relatedness in the solvent-producing clostridia. FEMS Microbiol. Rev. 17:263-273. http:// dx.doi.org/10.1111/j.1574-6976.1995.tb00210.x.
-
(1995)
FEMS Microbiol. Rev
, vol.17
, pp. 263-273
-
-
Chen, J.S.1
-
56
-
-
0343365512
-
Acetone-butanol-isopropanol production by Clostridium beijerinckii (synonym, Clostridium butylicum)
-
Chen J-S, Hiu SF. 1986. Acetone-butanol-isopropanol production by Clostridium beijerinckii (synonym, Clostridium butylicum). Biotechnol. Lett. 8:371-376. http://dx.doi.org/10.1007/BF01040869.
-
(1986)
Biotechnol. Lett
, vol.8
, pp. 371-376
-
-
Chen, J.-S.1
Hiu, S.F.2
-
57
-
-
0023135293
-
Butanol-ethanol dehydrogenase and butanol-ethanol-isopropanol dehydrogenase: Different alcohol dehydrogenases in two strains of Clostridium beijerinckii (Clostridium butylicum)
-
Hiu SF, Zhu CX, Yan RT, Chen JS. 1987. Butanol-ethanol dehydrogenase and butanol-ethanol-isopropanol dehydrogenase: different alcohol dehydrogenases in two strains of Clostridium beijerinckii (Clostridium butylicum). Appl. Environ. Microbiol. 53:697-703.
-
(1987)
Appl. Environ. Microbiol
, vol.53
, pp. 697-703
-
-
Hiu, S.F.1
Zhu, C.X.2
Yan, R.T.3
Chen, J.S.4
-
58
-
-
0022970603
-
Acetone-butanol fermentation revisited
-
Jones DT, Woods DR. 1986. Acetone-butanol fermentation revisited. Microbiol. Rev. 50:-484 -524.
-
(1986)
Microbiol. Rev
, vol.50
, pp. -484-524
-
-
Jones, D.T.1
Woods, D.R.2
-
59
-
-
84893818789
-
Biological production of 2-butanone in Escherichia coli
-
Yoneda H, Tantillo DJ, Atsumi S. 2014. Biological production of 2-butanone in Escherichia coli. ChemSusChem 7:92-95. http://dx.doi.org/ 10.1002/cssc.201300853.
-
(2014)
ChemSusChem
, vol.7
, pp. 92-95
-
-
Yoneda, H.1
Tantillo, D.J.2
Atsumi, S.3
-
60
-
-
84881663509
-
Metabolic engineering of 2-pentanone synthesis in Escherichia coli
-
Lan EI, Dekishima Y, Chuang DS, Liao JC. 2013. Metabolic engineering of 2-pentanone synthesis in Escherichia coli. AIChE J. 59:3167-3175. http://dx.doi.org/10.1002/aic.14086.
-
(2013)
AIChE J
, vol.59
, pp. 3167-3175
-
-
Lan, E.I.1
Dekishima, Y.2
Chuang, D.S.3
Liao, J.C.4
-
61
-
-
37349093415
-
Engineered synthetic pathway for isopropanol production in Escherichia coli
-
Hanai T, Atsumi S, Liao JC. 2007. Engineered synthetic pathway for isopropanol production in Escherichia coli. Appl. Environ. Microbiol. 73: 7814-7818. http://dx.doi.org/10.1128/AEM.01140-07.
-
(2007)
Appl. Environ. Microbiol
, vol.73
, pp. 7814-7818
-
-
Hanai, T.1
Atsumi, S.2
Liao, J.C.3
-
62
-
-
38049130302
-
Production of isopropanol by metabolically engineered Escherichia coli
-
Jojima T, Inui M, Yukawa H. 2008. Production of isopropanol by metabolically engineered Escherichia coli. Appl. Microbiol. Biotechnol. 77: 1219-1224. http://dx.doi.org/10.1007/s00253-007-1246-8.
-
(2008)
Appl. Microbiol. Biotechnol
, vol.77
, pp. 1219-1224
-
-
Jojima, T.1
Inui, M.2
Yukawa, H.3
-
63
-
-
78449244865
-
Improvement of isopropanol production by metabolically engineered Escherichia coli using gas stripping
-
Inokuma K, Liao JC, Okamoto M, Hanai T. 2010. Improvement of isopropanol production by metabolically engineered Escherichia coli using gas stripping. J. Biosci. Bioeng. 110:696-701. http://dx.doi.org/10.1016/ j.jbiosc.2010.07.010.
-
(2010)
J. Biosci. Bioeng
, vol.110
, pp. 696-701
-
-
Inokuma, K.1
Liao, J.C.2
Okamoto, M.3
Hanai, T.4
-
64
-
-
84862754984
-
Direct isopropanol production from cellobiose by engineered Escherichia coli using a synthetic pathway and a cell surface display system
-
Soma Y, Inokuma K, Tanaka T, Ogino C, Kondo A, Okamoto M, Hanai T. 2012. Direct isopropanol production from cellobiose by engineered Escherichia coli using a synthetic pathway and a cell surface display system. J. Biosci. Bioeng. 114:80 - 85. http://dx.doi.org/10.1016/ j.jbiosc.2012.02.019.
-
(2012)
J. Biosci. Bioeng
, vol.114
, pp. 80-85
-
-
Soma, Y.1
Inokuma, K.2
Tanaka, T.3
Ogino, C.4
Kondo, A.5
Okamoto, M.6
Hanai, T.7
-
65
-
-
84863120284
-
Metabolic engineering of Clostridium acetobutylicum ATCC 824 for isopropanol-butanol-ethanol fermentation
-
Lee J, Jang YS, Choi SJ, Im JA, Song H, Cho JH, Seung DY, Papoutsakis ET, Bennett GN, Lee SY. 2012. Metabolic engineering of Clostridium acetobutylicum ATCC 824 for isopropanol-butanol-ethanol fermentation. Appl. Environ. Microbiol. 78:1416 -1423. http://dx.doi.org/10.1128/ AEM.06382-11.
-
(2012)
Appl. Environ. Microbiol
, vol.78
, pp. 1416-1423
-
-
Lee, J.1
Jang, Y.S.2
Choi, S.J.3
Im, J.A.4
Song, H.5
Cho, J.H.6
Seung, D.Y.7
Papoutsakis, E.T.8
Bennett, G.N.9
Lee, S.Y.10
-
66
-
-
84876863362
-
Metabolic engineering of Clostridium acetobutylicum ATCC 824 for the highyield production of a biofuel composed of an isopropanol/butanol/ ethanol mixture
-
Dusséaux S, Croux C, Soucaille P, Meynial-Salles I. 2013. Metabolic engineering of Clostridium acetobutylicum ATCC 824 for the highyield production of a biofuel composed of an isopropanol/butanol/ ethanol mixture. Metab. Eng. 18:1- 8. http://dx.doi.org/10.1016/ j.ymben.2013.03.003.
-
(2013)
Metab. Eng
, vol.18
, pp. 1-8
-
-
Dusséaux, S.1
Croux, C.2
Soucaille, P.3
Meynial-Salles, I.4
-
67
-
-
84862772588
-
Introducing a single secondary alcohol dehydrogenase into butanol-tolerant Clostridium acetobutylicum Rh8 switches ABE fermentation to high level IBE fermentation
-
Dai Z, Dong H, Zhu Y, Zhang Y, Li Y, Ma Y. 2012. Introducing a single secondary alcohol dehydrogenase into butanol-tolerant Clostridium acetobutylicum Rh8 switches ABE fermentation to high level IBE fermentation. Biotechnol. Biofuels 5:44. http://dx.doi.org/10.1186/1754-6834-5 -44.
-
(2012)
Biotechnol. Biofuels
, vol.5
, pp. 44
-
-
Dai, Z.1
Dong, H.2
Zhu, Y.3
Zhang, Y.4
Li, Y.5
Ma, Y.6
-
68
-
-
84881579946
-
Metabolic engineering of Clostridium acetobutylicum for the enhanced production of isopropanol-butanol-ethanol fuel mixture
-
Jang YS, Malaviya A, Lee J, Im JA, Lee SY, Lee J, Eom MH, Cho JH, Seung DY. 2013. Metabolic engineering of Clostridium acetobutylicum for the enhanced production of isopropanol-butanol-ethanol fuel mixture. Biotechnol. Prog. 29:1083-1088. http://dx.doi.org/10.1002/btpr.1733.
-
(2013)
Biotechnol. Prog
, vol.29
, pp. 1083-1088
-
-
Jang, Y.S.1
Malaviya, A.2
Lee, J.3
Im, J.A.4
Lee, S.Y.5
Lee, J.6
Eom, M.H.7
Cho, J.H.8
Seung, D.Y.9
-
69
-
-
84876750152
-
Acetone-butanol-ethanol production with high productivity using Clostridium acetobutylicum BKM19
-
Jang YS, Malaviya A, Lee SY. 2013. Acetone-butanol-ethanol production with high productivity using Clostridium acetobutylicum BKM19. Biotechnol. Bioeng. 110:1646-1653. http://dx.doi.org/10.1002/bit.24843.
-
(2013)
Biotechnol. Bioeng
, vol.110
, pp. 1646-1653
-
-
Jang, Y.S.1
Malaviya, A.2
Lee, S.Y.3
-
70
-
-
84867643979
-
2in cyanobacterium Synechococcus elongatus PCC7942 and characterization of the native acetohydroxyacid synthase
-
2in cyanobacterium Synechococcus elongatus PCC7942 and characterization of the native acetohydroxyacid synthase. Energy Environ. Sci. 5:9574-9583. http://dx.doi.org/10.1039/c2ee23148d.
-
(2012)
Energy Environ. Sci
, vol.5
, pp. 9574-9583
-
-
Shen, C.R.1
Liao, J.C.2
|