메뉴 건너뛰기




Volumn , Issue PART 1, 2013, Pages 284-292

Efficient sparse group feature selection via nonconvex optimization

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; LEARNING SYSTEMS; NUMERICAL METHODS; PARAMETER ESTIMATION;

EID: 84897549285     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (40)

References (33)
  • 2
    • 85014561619 scopus 로고    scopus 로고
    • A fast iterative shrinkage-thresholding algorithm for linear inverse problems
    • Beck, A. and Teboulle, M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences, 2(1):183-202, 2009.
    • (2009) SIAM Journal on Imaging Sciences , vol.2 , Issue.1 , pp. 183-202
    • Beck, A.1    Teboulle, M.2
  • 3
    • 68649086910 scopus 로고    scopus 로고
    • Simultaneous analysis of lasso and dantzig selector
    • Bickel, P.J., Ritov, Y., and Tsybakov, A.B. Simultaneous analysis of lasso and dantzig selector. The Annals of Statistics, 37(4):1705-1732, 2009.
    • (2009) The Annals of Statistics , vol.37 , Issue.4 , pp. 1705-1732
    • Bickel, P.J.1    Ritov, Y.2    Tsybakov, A.B.3
  • 6
    • 79959342076 scopus 로고    scopus 로고
    • Penalized methods for bi-level variable selection
    • Breheny, P. and Huang, J. Penalized methods for bi-level variable selection. Statistics and its interface, 2(3):369, 2009.
    • (2009) Statistics and Its Interface , vol.2 , Issue.3 , pp. 369
    • Breheny, P.1    Huang, J.2
  • 8
    • 0029307534 scopus 로고    scopus 로고
    • De-noising by soft-thresholding
    • ISSN 0018-9448
    • Donoho, D.L. De-noising by soft-thresholding. Information Theory, IEEE Transactions on, 41(3):613-627, 2002. ISSN 0018-9448.
    • (2002) Information Theory, IEEE Transactions on , vol.41 , Issue.3 , pp. 613-627
    • Donoho, D.L.1
  • 10
    • 1542784498 scopus 로고    scopus 로고
    • Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties
    • Fan, J. and Li, R. Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association, 96(456):1348-1360, 2001. (Pubitemid 33695585)
    • (2001) Journal of the American Statistical Association , vol.96 , Issue.456 , pp. 1348-1360
    • Fan, J.1    Li, R.2
  • 14
    • 77955136689 scopus 로고    scopus 로고
    • The benefit of group sparsity
    • Huang, J. and Zhang, T. The benefit of group sparsity. The Annals of Statistics, 38(4): 1978-2004, 2010.
    • (2010) The Annals of Statistics , vol.38 , Issue.4 , pp. 1978-2004
    • Huang, J.1    Zhang, T.2
  • 15
    • 66249102619 scopus 로고    scopus 로고
    • A group bridge approach for variable selection
    • Huang, J., Ma, S., Xie, H., and Zhang, C.H. A group bridge approach for variable selection. Biometrika, 96(2):339-355, 2009.
    • (2009) Biometrika , vol.96 , Issue.2 , pp. 339-355
    • Huang, J.1    Ma, S.2    Xie, H.3    Zhang, C.H.4
  • 20
    • 0029291966 scopus 로고
    • Sparse approximation solutions to linear systems
    • Natarajan, B. K. Sparse approximation solutions to linear systems. SIAM J. Comput., 24(2):227-234, 1995.
    • (1995) SIAM J. Comput. , vol.24 , Issue.2 , pp. 227-234
    • Natarajan, B.K.1
  • 21
    • 57649169327 scopus 로고    scopus 로고
    • Gradient methods for minimizing composite objective function
    • Nesterov, Y. Gradient methods for minimizing composite objective function. CORE Discussion Papers, 2007.
    • (2007) CORE Discussion Papers
    • Nesterov, Y.1
  • 24
    • 0000939953 scopus 로고    scopus 로고
    • Convex analysis approach to dc programming: Theory, algorithms and applications
    • Tao, P.D. and An, LTH. Convex analysis approach to dc programming: Theory, algorithms and applications. Acta Math. Vietnam, 22(1):289-355, 1997.
    • (1997) Acta Math. Vietnam , vol.22 , Issue.1 , pp. 289-355
    • Tao, P.D.1    An, L.T.H.2
  • 26
    • 77955054299 scopus 로고    scopus 로고
    • On the conditions used to prove oracle results for the lasso
    • Van De Geer, S.A. and Biihlmann, P. On the conditions used to prove oracle results for the lasso. Electronic Journal of Statistics, 3:1360-1392, 2009.
    • (2009) Electronic Journal of Statistics , vol.3 , pp. 1360-1392
    • Van De Geer, S.A.1    Biihlmann, P.2
  • 27
    • 34547840186 scopus 로고    scopus 로고
    • Group SCAD regression analysis for microarray time course gene expression data
    • DOI 10.1093/bioinformatics/btm125
    • Wang, L., Chen, G., and Li, H. Group scad regression analysis for microarray time course gene expression data. Bioinformatics, 23(12):1486-1494, 2007. (Pubitemid 47244473)
    • (2007) Bioinformatics , vol.23 , Issue.12 , pp. 1486-1494
    • Wang, L.1    Chen, G.2    Li, H.3
  • 29
    • 33645035051 scopus 로고    scopus 로고
    • Model selection and estimation in regression with grouped variables
    • DOI 10.1111/j.1467-9868.2005.00532.x
    • Yuan, M. and Lin, Y. Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68(1):49-67, 2006. (Pubitemid 43415335)
    • (2006) Journal of the Royal Statistical Society. Series B: Statistical Methodology , vol.68 , Issue.1 , pp. 49-67
    • Yuan, M.1    Lin, Y.2
  • 31
    • 77951191949 scopus 로고    scopus 로고
    • Analysis of multi-stage convex relaxation for sparse regularization
    • Zhang, T. Analysis of multi-stage convex relaxation for sparse regularization. The Journal of Machine Learning Research, 11:1081-1107, 2010.
    • (2010) The Journal of Machine Learning Research , vol.11 , pp. 1081-1107
    • Zhang, T.1
  • 33
    • 33845263263 scopus 로고    scopus 로고
    • On model selection consistency of Lasso
    • Zhao, P. and Yu, B. On model selection consistency of lasso. The Journal of Machine Learning Research, 7: 2541-2563, 2006. (Pubitemid 44866738)
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 2541-2563
    • Zhao, P.1    Yu, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.