-
1
-
-
6344285788
-
Transcriptional response of Candida albicans upon internalization by macrophages
-
Lorenz MC, Bender JA, Fink GR, (2004) Transcriptional response of Candida albicans upon internalization by macrophages. Eukaryotic Cell 3: 1076–1087.
-
(2004)
Eukaryotic Cell
, vol.3
, pp. 1076-1087
-
-
Lorenz, M.C.1
Bender, J.A.2
Fink, G.R.3
-
2
-
-
84892889712
-
Regulatory Circuits That Enable Proliferation of the FungusCandida albicans in a Mammalian Host
-
Pérez JC, Johnson AD, (2013) Regulatory Circuits That Enable Proliferation of the FungusCandida albicans in a Mammalian Host. PLoS Pathog 9: e1003780.
-
(2013)
PLoS Pathog
, vol.9
, pp. e1003780
-
-
Pérez, J.C.1
Johnson, A.D.2
-
3
-
-
19644385116
-
Induction of the Candida albicans filamentous growth program by relief of transcriptional repression: a genome-wide analysis
-
Kadosh D, Johnson AD, (2005) Induction of the Candida albicans filamentous growth program by relief of transcriptional repression: a genome-wide analysis. Mol Biol Cell 16: 2903–2912.
-
(2005)
Mol Biol Cell
, vol.16
, pp. 2903-2912
-
-
Kadosh, D.1
Johnson, A.D.2
-
5
-
-
77958111633
-
The metazoan Mediator co-activator complex as an integrative hub for transcriptional regulation
-
Malik S, Roeder RG, (2010) The metazoan Mediator co-activator complex as an integrative hub for transcriptional regulation. Nature Reviews Genetics 11: 761–772.
-
(2010)
Nature Reviews Genetics
, vol.11
, pp. 761-772
-
-
Malik, S.1
Roeder, R.G.2
-
7
-
-
0029076822
-
General requirement for RNA polymerase II holoenzymes in vivo
-
Thompson CM, Young RA, (1995) General requirement for RNA polymerase II holoenzymes in vivo. Proc Natl Acad Sci USA 92: 4587–4590.
-
(1995)
Proc Natl Acad Sci USA
, vol.92
, pp. 4587-4590
-
-
Thompson, C.M.1
Young, R.A.2
-
8
-
-
84880273878
-
Mechanisms of Mediator complex action in transcriptional activation
-
Ansari SA, Morse RH, (2013) Mechanisms of Mediator complex action in transcriptional activation. Cell Mol Life Sci 70: 2743–2756.
-
(2013)
Cell Mol Life Sci
, vol.70
, pp. 2743-2756
-
-
Ansari, S.A.1
Morse, R.H.2
-
9
-
-
84863300453
-
The Tlo Proteins Are Stoichiometric Components of Candida albicans Mediator Anchored via the Med3 Subunit
-
Zhang A, Petrov KO, Hyun ER, Liu Z, Gerber SA, et al. (2012) The Tlo Proteins Are Stoichiometric Components of Candida albicans Mediator Anchored via the Med3 Subunit. Eukaryotic Cell 11: 874–884.
-
(2012)
Eukaryotic Cell
, vol.11
, pp. 874-884
-
-
Zhang, A.1
Petrov, K.O.2
Hyun, E.R.3
Liu, Z.4
Gerber, S.A.5
-
10
-
-
77955617560
-
A human-curated annotation of the Candida albicans genome
-
Braun BR, van Het Hoog M, d'Enfert C, Martchenko M, Dungan J, et al. (2005) A human-curated annotation of the Candida albicans genome. PLoS Genet 1: 36–57.
-
(2005)
PLoS Genet
, vol.1
, pp. 36-57
-
-
Braun, B.R.1
Van Het Hoog, M.2
D'enfert, C.3
Martchenko, M.4
Dungan, J.5
-
11
-
-
34250186544
-
Assembly of the Candida albicans genome into sixteen supercontigs aligned on the eight chromosomes
-
van Het Hoog M, Rast TJ, Martchenko M, Grindle S, Dignard D, et al. (2007) Assembly of the Candida albicans genome into sixteen supercontigs aligned on the eight chromosomes. Genome Biol 8: R52.
-
(2007)
Genome Biol
, vol.8
, pp. R52
-
-
Van Het Hoog, M.1
Rast, T.J.2
Martchenko, M.3
Grindle, S.4
Dignard, D.5
-
12
-
-
84867187155
-
The Three Clades of the Telomere-Associated TLO Gene Family of Candida albicans Have Different Splicing, Localization, and Expression Features
-
Anderson MZ, Baller JA, Dulmage K, Wigen L, Berman J, (2012) The Three Clades of the Telomere-Associated TLO Gene Family of Candida albicans Have Different Splicing, Localization, and Expression Features. Eukaryotic Cell 11: 1268–1275.
-
(2012)
Eukaryotic Cell
, vol.11
, pp. 1268-1275
-
-
Anderson, M.Z.1
Baller, J.A.2
Dulmage, K.3
Wigen, L.4
Berman, J.5
-
13
-
-
47249134314
-
Comparative genomics supports a deep evolutionary origin for the large, four-module transcriptional mediator complex
-
Bourbon H-M, (2008) Comparative genomics supports a deep evolutionary origin for the large, four-module transcriptional mediator complex. Nucleic Acids Res 36: 3993–4008.
-
(2008)
Nucleic Acids Res
, vol.36
, pp. 3993-4008
-
-
Bourbon, H.-M.1
-
14
-
-
73249127952
-
Comparative genomics of the fungal pathogens Candida dubliniensis and Candida albicans
-
Jackson AP, Gamble JA, Yeomans T, Moran GP, Saunders D, et al. (2009) Comparative genomics of the fungal pathogens Candida dubliniensis and Candida albicans. Genome Res 19: 2231–2244.
-
(2009)
Genome Res
, vol.19
, pp. 2231-2244
-
-
Jackson, A.P.1
Gamble, J.A.2
Yeomans, T.3
Moran, G.P.4
Saunders, D.5
-
15
-
-
84860574379
-
The Functions of Mediator in Candida albicans Support a Role in Shaping Species-Specific Gene Expression
-
Uwamahoro N, Qu Y, Jelicic B, Lo TL, Beaurepaire C, et al. (2012) The Functions of Mediator in Candida albicans Support a Role in Shaping Species-Specific Gene Expression. PLoS Genet 8: e1002613.
-
(2012)
PLoS Genet
, vol.8
, pp. e1002613
-
-
Uwamahoro, N.1
Qu, Y.2
Jelicic, B.3
Lo, T.L.4
Beaurepaire, C.5
-
16
-
-
84883222609
-
Differential Regulation of White-Opaque Switching by Individual Subunits of Candida albicans Mediator
-
Zhang A, Liu Z, Myers LC, (2013) Differential Regulation of White-Opaque Switching by Individual Subunits of Candida albicans Mediator. Eukaryotic Cell 12: 1293–1304.
-
(2013)
Eukaryotic Cell
, vol.12
, pp. 1293-1304
-
-
Zhang, A.1
Liu, Z.2
Myers, L.C.3
-
17
-
-
81555220900
-
Candida albicans versus Candida dubliniensis: Why Is C. albicans More Pathogenic?
-
Moran GP, Coleman DC, Sullivan DJ, (2012) Candida albicans versus Candida dubliniensis: Why Is C. albicans More Pathogenic? Int J Microbiol 2012: 205921.
-
(2012)
Int J Microbiol
, vol.2012
, pp. 205921
-
-
Moran, G.P.1
Coleman, D.C.2
Sullivan, D.J.3
-
18
-
-
34547493226
-
Lower filamentation rates of Candida dubliniensis contribute to its lower virulence in comparison with Candida albicans
-
Stokes C, Moran GP, Spiering MJ, Cole GT, Coleman DC, et al. (2007) Lower filamentation rates of Candida dubliniensis contribute to its lower virulence in comparison with Candida albicans. Fungal Genet Biol 44: 920–931.
-
(2007)
Fungal Genet Biol
, vol.44
, pp. 920-931
-
-
Stokes, C.1
Moran, G.P.2
Spiering, M.J.3
Cole, G.T.4
Coleman, D.C.5
-
19
-
-
35748930845
-
Differential regulation of the transcriptional repressor NRG1 accounts for altered host-cell interactions in Candida albicans and Candida dubliniensis
-
Moran GP, MacCallum DM, Spiering MJ, Coleman DC, Sullivan DJ, (2007) Differential regulation of the transcriptional repressor NRG1 accounts for altered host-cell interactions in Candida albicans and Candida dubliniensis. Mol Microbiol 66: 915–929.
-
(2007)
Mol Microbiol
, vol.66
, pp. 915-929
-
-
Moran, G.P.1
Maccallum, D.M.2
Spiering, M.J.3
Coleman, D.C.4
Sullivan, D.J.5
-
20
-
-
77956847635
-
Differential filamentation of Candida albicans and C. dubliniensis is governed by nutrient regulation of UME6 expression
-
O'Connor L, Caplice N, Coleman DC, Sullivan DJ, Moran GP, (2010) Differential filamentation of Candida albicans and C. dubliniensis is governed by nutrient regulation of UME6 expression. Eukaryotic Cell doi:10.1128/EC.00042-10
-
(2010)
Eukaryotic Cell
-
-
O'connor, L.1
Caplice, N.2
Coleman, D.C.3
Sullivan, D.J.4
Moran, G.P.5
-
21
-
-
62949211746
-
Genome-wide gene expression profiling and a forward genetic screen show that differential expression of the sodium ion transporter Ena21 contributes to the differential tolerance of Candida albicans and Candida dubliniensis to osmotic stress
-
Enjalbert B, Moran GP, Vaughan C, Yeomans T, MacCallum DM, et al. (2009) Genome-wide gene expression profiling and a forward genetic screen show that differential expression of the sodium ion transporter Ena21 contributes to the differential tolerance of Candida albicans and Candida dubliniensis to osmotic stress. Mol Microbiol 72: 216–228.
-
(2009)
Mol Microbiol
, vol.72
, pp. 216-228
-
-
Enjalbert, B.1
Moran, G.P.2
Vaughan, C.3
Yeomans, T.4
Maccallum, D.M.5
-
22
-
-
78651481127
-
Comparative genomics and the evolution of pathogenicity in human pathogenic fungi
-
Moran GP, Coleman DC, Sullivan DJ, (2011) Comparative genomics and the evolution of pathogenicity in human pathogenic fungi. Eukaryotic Cell 10: 34–42.
-
(2011)
Eukaryotic Cell
, vol.10
, pp. 34-42
-
-
Moran, G.P.1
Coleman, D.C.2
Sullivan, D.J.3
-
23
-
-
84871776789
-
Mediator Phosphorylation Prevents Stress Response Transcription During Non-stress Conditions
-
Miller C, Matic I, Maier KC, Schwalb B, Roether S, et al. (2012) Mediator Phosphorylation Prevents Stress Response Transcription During Non-stress Conditions. Journal of Biological Chemistry 287: 44017–44026.
-
(2012)
Journal of Biological Chemistry
, vol.287
, pp. 44017-44026
-
-
Miller, C.1
Matic, I.2
Maier, K.C.3
Schwalb, B.4
Roether, S.5
-
24
-
-
84855350995
-
Distinct role of Mediator tail module in regulation of SAGA-dependent, TATA-containing genes in yeast
-
Ansari SA, Ganapathi M, Benschop JJ, Holstege FCP, Wade JT, et al. (2011) Distinct role of Mediator tail module in regulation of SAGA-dependent, TATA-containing genes in yeast. EMBO J 31: 44–57.
-
(2011)
EMBO J
, vol.31
, pp. 44-57
-
-
Ansari, S.A.1
Ganapathi, M.2
Benschop, J.J.3
Holstege, F.C.P.4
Wade, J.T.5
-
25
-
-
35948998096
-
In vivo transcript profiling of Candida albicans identifies a gene essential for interepithelial dissemination
-
Zakikhany K, Naglik JR, Schmidt Westhausen A, Holland G, Schaller M, et al. (2007) In vivo transcript profiling of Candida albicans identifies a gene essential for interepithelial dissemination. Cell Microbiol 9: 2938–2954.
-
(2007)
Cell Microbiol
, vol.9
, pp. 2938-2954
-
-
Zakikhany, K.1
Naglik, J.R.2
Schmidt Westhausen, A.3
Holland, G.4
Schaller, M.5
-
26
-
-
51949088519
-
Analysis of PRA1 and its relationship to Candida albicans- macrophage interactions
-
Marcil A, Gadoury C, Ash J, Zhang J, Nantel A, et al. (2008) Analysis of PRA1 and its relationship to Candida albicans- macrophage interactions. Infect Immun 76: 4345–4358.
-
(2008)
Infect Immun
, vol.76
, pp. 4345-4358
-
-
Marcil, A.1
Gadoury, C.2
Ash, J.3
Zhang, J.4
Nantel, A.5
-
27
-
-
23744490065
-
Mediator Expression Profiling Epistasis Reveals a Signal Transduction Pathway with Antagonistic Submodules and Highly Specific Downstream Targets
-
van de Peppel J, Kettelarij N, van Bakel H, Kockelkorn TTJP, van Leenen D, et al. (2005) Mediator Expression Profiling Epistasis Reveals a Signal Transduction Pathway with Antagonistic Submodules and Highly Specific Downstream Targets. Molecular Cell 19: 511–522.
-
(2005)
Molecular Cell
, vol.19
, pp. 511-522
-
-
Van De Peppel, J.1
Kettelarij, N.2
Van Bakel, H.3
Kockelkorn, T.T.J.P.4
Van Leenen, D.5
-
28
-
-
84891945420
-
Widespread misinterpretable ChIP-seq bias in yeast
-
Park D, Lee Y, Bhupindersingh G, Iyer VR, (2013) Widespread misinterpretable ChIP-seq bias in yeast. PLoS ONE 8: e83506 doi:10.1371/journal.pone.0083506
-
(2013)
PLoS ONE
, vol.8
, pp. e83506
-
-
Park, D.1
Lee, Y.2
Bhupindersingh, G.3
Iyer, V.R.4
-
29
-
-
84887478181
-
Highly expressed loci are vulnerable to misleading ChIP localization of multiple unrelated proteins
-
Teytelman L, Thurtle DM, Rine J, van Oudenaarden A, (2013) Highly expressed loci are vulnerable to misleading ChIP localization of multiple unrelated proteins. Proceedings of the National Academy of Sciences 110: 18602–18607.
-
(2013)
Proceedings of the National Academy of Sciences
, vol.110
, pp. 18602-18607
-
-
Teytelman, L.1
Thurtle, D.M.2
Rine, J.3
Van Oudenaarden, A.4
-
30
-
-
64549091902
-
Where Does Mediator Bind In Vivo?
-
Fan X, Struhl K, (2009) Where Does Mediator Bind In Vivo? PLoS ONE 4: e5029 doi:10.1371/journal.pone.0005029.t002
-
(2009)
PLoS ONE
, vol.4
, pp. e5029
-
-
Fan, X.1
Struhl, K.2
-
31
-
-
84899731243
-
The Pathogen Candida albicans Hijacks Pyroptosis for Escape from Macrophages
-
Uwamahoro N, Verma-Gaur J, Shen HH, Qu Y, Lewis R, et al. (2014) The Pathogen Candida albicans Hijacks Pyroptosis for Escape from Macrophages. mBio 5: e00003–14–e00003–14 doi:10.1128/mBio.00003-14
-
(2014)
mBio
, vol.5
, pp. e00003–14-e00003–14
-
-
Uwamahoro, N.1
Verma-Gaur, J.2
Shen, H.H.3
Qu, Y.4
Lewis, R.5
-
32
-
-
70349470957
-
The Med8 mediator subunit interacts with the Rpb4 subunit of RNA polymerase II and Ace2 transcriptional activator in Schizosaccharomyces pombe
-
Mehta S, Miklos I, Sipiczki M, Sengupta S, Sharma N, (2009) The Med8 mediator subunit interacts with the Rpb4 subunit of RNA polymerase II and Ace2 transcriptional activator in Schizosaccharomyces pombe. FEBS Lett 583: 3115–3120.
-
(2009)
FEBS Lett
, vol.583
, pp. 3115-3120
-
-
Mehta, S.1
Miklos, I.2
Sipiczki, M.3
Sengupta, S.4
Sharma, N.5
-
33
-
-
84861905985
-
Med5(Nut1) and Med17(Srb4) are direct targets of mediator histone H4 tail interactions
-
Liu Z, Myers LC, (2012) Med5(Nut1) and Med17(Srb4) are direct targets of mediator histone H4 tail interactions. PLoS ONE 7: e38416.
-
(2012)
PLoS ONE
, vol.7
, pp. e38416
-
-
Liu, Z.1
Myers, L.C.2
-
34
-
-
84862909260
-
The tail-module of yeast Mediator complex is required for telomere heterochromatin maintenance
-
Peng J, Zhou JQ, (2012) The tail-module of yeast Mediator complex is required for telomere heterochromatin maintenance. Nucleic Acids Res 40: 581–593.
-
(2012)
Nucleic Acids Res
, vol.40
, pp. 581-593
-
-
Peng, J.1
Zhou, J.Q.2
-
35
-
-
33646075157
-
Genome-Wide Occupancy Profile of Mediator and the Srb8-11 Module Reveals Interactions with Coding Regions
-
Zhu X, Wirén M, Sinha I, Rasmussen NN, Linder T, et al. (2006) Genome-Wide Occupancy Profile of Mediator and the Srb8-11 Module Reveals Interactions with Coding Regions. Molecular Cell 22: 169–178.
-
(2006)
Molecular Cell
, vol.22
, pp. 169-178
-
-
Zhu, X.1
Wirén, M.2
Sinha, I.3
Rasmussen, N.N.4
Linder, T.5
-
36
-
-
33646023157
-
Genome-Wide Location of the Coactivator Mediator: Binding without Activation and Transient Cdk8 Interaction on DNA
-
Andrau J-C, van de Pasch L, Lijnzaad P, Bijma T, Koerkamp MG, et al. (2006) Genome-Wide Location of the Coactivator Mediator: Binding without Activation and Transient Cdk8 Interaction on DNA. Molecular Cell 22: 179–192.
-
(2006)
Molecular Cell
, vol.22
, pp. 179-192
-
-
Andrau, J.-C.1
Van De Pasch, L.2
Lijnzaad, P.3
Bijma, T.4
Koerkamp, M.G.5
-
37
-
-
0028569082
-
Suppression of hyphal formation in Candida albicans by mutation of a STE12 homolog
-
Liu H, Köhler J, Fink GR, (1994) Suppression of hyphal formation in Candida albicans by mutation of a STE12 homolog. Science 266: 1723–1726.
-
(1994)
Science
, vol.266
, pp. 1723-1726
-
-
Liu, H.1
Köhler, J.2
Fink, G.R.3
-
38
-
-
84907128740
-
An amino acid liquid synthetic medium for the development of mycellal and yeast forms of Candida albicans
-
Lee KL, Buckley HR, Campbell CC, (1975) An amino acid liquid synthetic medium for the development of mycellal and yeast forms of Candida albicans. Med Mycol 13: 148–153.
-
(1975)
Med Mycol
, vol.13
, pp. 148-153
-
-
Lee, K.L.1
Buckley, H.R.2
Campbell, C.C.3
-
39
-
-
0141889207
-
Differentiation of Candida dubliniensis from Candida albicans on Pal's agar
-
Al-Mosaid A, Sullivan DJ, Coleman DC, (2003) Differentiation of Candida dubliniensis from Candida albicans on Pal's agar. J Clin Microbiol 41: 4787–4789.
-
(2003)
J Clin Microbiol
, vol.41
, pp. 4787-4789
-
-
Al-Mosaid, A.1
Sullivan, D.J.2
Coleman, D.C.3
-
40
-
-
5044225522
-
The SAT1 flipper, an optimized tool for gene disruption in Candida albicans
-
Reuss O, Vik A, Kolter R, Morschhäuser J, (2004) The SAT1 flipper, an optimized tool for gene disruption in Candida albicans. Gene 341: 119–127.
-
(2004)
Gene
, vol.341
, pp. 119-127
-
-
Reuss, O.1
Vik, A.2
Kolter, R.3
Morschhäuser, J.4
-
41
-
-
75849128743
-
Comparative transcript profiling of Candida albicans and Candida dubliniensis identifies SFL2, a C. albicans gene required for virulence in a reconstituted epithelial infection model
-
Spiering MJ, Moran GP, Chauvel M, MacCallum DM, Higgins J, et al. (2010) Comparative transcript profiling of Candida albicans and Candida dubliniensis identifies SFL2, a C. albicans gene required for virulence in a reconstituted epithelial infection model. Eukaryotic Cell 9: 251–265.
-
(2010)
Eukaryotic Cell
, vol.9
, pp. 251-265
-
-
Spiering, M.J.1
Moran, G.P.2
Chauvel, M.3
Maccallum, D.M.4
Higgins, J.5
-
42
-
-
27344435774
-
Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles
-
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, et al. (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102: 15545–15550.
-
(2005)
Proc Natl Acad Sci USA
, vol.102
, pp. 15545-15550
-
-
Subramanian, A.1
Tamayo, P.2
Mootha, V.K.3
Mukherjee, S.4
Ebert, B.L.5
-
43
-
-
84899904290
-
Modeling the Transcriptional Regulatory Network That Controls the Early Hypoxic Response in Candida albicans
-
Sellam A, van het Hoog M, Tebbji F, Beaurepaire C, Whiteway M, et al. (2014) Modeling the Transcriptional Regulatory Network That Controls the Early Hypoxic Response in Candida albicans. Eukaryotic Cell 13: 675–690.
-
(2014)
Eukaryotic Cell
, vol.13
, pp. 675-690
-
-
Sellam, A.1
Van Het Hoog, M.2
Tebbji, F.3
Beaurepaire, C.4
Whiteway, M.5
-
44
-
-
62149122605
-
Neocentromeres form efficiently at multiple possible loci in Candida albicans
-
Ketel C, Wang HSW, McClellan M, Bouchonville K, Selmecki A, et al. (2009) Neocentromeres form efficiently at multiple possible loci in Candida albicans. PLoS Genet 5: e1000400.
-
(2009)
PLoS Genet
, vol.5
, pp. e1000400
-
-
Ketel, C.1
Wang, H.S.W.2
McClellan, M.3
Bouchonville, K.4
Selmecki, A.5
-
45
-
-
28744458859
-
Bioconductor: open software development for computational biology and bioinformatics
-
Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, et al. (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5: R80.
-
(2004)
Genome Biol
, vol.5
, pp. R80
-
-
Gentleman, R.C.1
Carey, V.J.2
Bates, D.M.3
Bolstad, B.4
Dettling, M.5
-
46
-
-
34447277157
-
Ringo–an R/Bioconductor package for analyzing ChIP-chip readouts
-
Toedling J, Skylar O, Sklyar O, Krueger T, Fischer JJ, et al. (2007) Ringo–an R/Bioconductor package for analyzing ChIP-chip readouts. BMC Bioinformatics 8: 221.
-
(2007)
BMC Bioinformatics
, vol.8
, pp. 221
-
-
Toedling, J.1
Skylar, O.2
Sklyar, O.3
Krueger, T.4
Fischer, J.J.5
-
47
-
-
84875582766
-
Visualizing next-generation sequencing data with JBrowse
-
Westesson O, Skinner M, Holmes I, (2013) Visualizing next-generation sequencing data with JBrowse. Brief Bioinformatics 14: 172–177.
-
(2013)
Brief Bioinformatics
, vol.14
, pp. 172-177
-
-
Westesson, O.1
Skinner, M.2
Holmes, I.3
|