-
2
-
-
84908152959
-
Transfer learning with cluster ensembles
-
A. Acharya, E.R. Hruschka, J. Ghosh, and S. Acharyya. 2012. Transfer learning with cluster ensembles. In JMLR Workshop and Conference Proceedings 27 (2012), 123-132
-
(2012)
JMLR Workshop and Conference Proceedings
, vol.27
, Issue.2012
, pp. 123-132
-
-
Acharya, A.1
Hruschka, E.R.2
Ghosh, J.3
Acharyya, S.4
-
3
-
-
26244461684
-
Clustering with Bregman divergences
-
December
-
A. Banerjee, S. Merugu, Inderjit S. Dhillon, and J. Ghosh. 2005. Clustering with Bregman divergences. Journal of Machine Learning Research 6 (December 2005), 1705-1749
-
(2005)
Journal of Machine Learning Research
, vol.6
, pp. 1705-1749
-
-
Banerjee, A.1
Merugu, S.2
Dhillon, I.S.3
Ghosh, J.4
-
4
-
-
84908165271
-
On manifold regularization
-
AISTAT. Y. Bengio, O. Delalleau, andN. Le Roux. Eds. MIT Press
-
M. Belkin, P. Niyogi, and V. Sindhwani. 2005. On manifold regularization. In AISTAT. Y. Bengio, O. Delalleau, andN. Le Roux. 2006. Label propagation and quadratic criterion. In Semi-Supervised Learning, Olivier Chapelle, Bernhard Schölkopf, and Alexander Zien (Eds.). MIT Press, 193-216
-
(2005)
Label Propagation and Quadratic Criterion Semi-Supervised Learning, Olivier Chapelle, Bernhard Schölkopf, and Alexander Zien
, pp. 193-216
-
-
Belkin, M.1
Niyogi, P.2
Sindhwani, V.3
-
5
-
-
80955177430
-
Some notes on alternating optimization
-
Springer, Berlin
-
J. Bezdek and R. Hathaway. 2002. Some notes on alternating optimization. In Advances in Soft Computing AFSS 2002, Nikhil Pal and Michio Sugeno (Eds.). Lecture Notes in Computer Science, Vol. 2275. Springer, Berlin, 187-195
-
(2002)
Advances in Soft Computing AFSS 2002, Nikhil Pal and Michio Sugeno (Eds.). Lecture Notes in Computer Science
, vol.2275
, pp. 187-195
-
-
Bezdek, J.1
Hathaway, R.2
-
7
-
-
0038384383
-
On-line algorithms in machine learning
-
Fiat and Woeginger (Eds.). LNCS Springer
-
A. Blum. 1998. On-line algorithms in machine learning. In Online Algorithms: The State of the Art, Fiat and Woeginger (Eds.). LNCS Vol.1442, Springer
-
(1998)
Online Algorithms: The State of the Art
, vol.1442
-
-
Blum, A.1
-
10
-
-
49949144765
-
The relaxationmethod of finding the common point of convex sets and its application to the solution of problems in convex programming
-
L. M. Bregman. 1967. The relaxationmethod of finding the common point of convex sets and its application to the solution of problems in convex programming. U.S.S.R. Computing, Mathematics and Mathematical Physics 7, 3 (1967), 200-217
-
(1997)
U.S.S.R. Computing, Mathematics and Mathematical Physics
, vol.7
, Issue.3
, pp. 200-217
-
-
Bregman, L.M.1
-
11
-
-
62349084208
-
A simultaneous learning framework for clustering and classification
-
July
-
W. Cai, S. Chen, and D. Zhang. 2009. A simultaneous learning framework for clustering and classification. Pattern Recognition 42, 7 (July 2009), 1248-1259
-
(2009)
Pattern Recognition
, vol.42
, Issue.7
, pp. 1248-1259
-
-
Cai, W.1
Chen, S.2
Zhang, D.3
-
12
-
-
0031189914
-
Multitask learning
-
July
-
R. Caruana. 1997. Multitask Learning. Machine Learning 28, 1 (July 1997), 41-75
-
(1997)
Machine Learning
, vol.28
, Issue.1
, pp. 41-75
-
-
Caruana, R.1
-
15
-
-
71649086725
-
Semi-supervised classification based on clustering ensembles
-
Springer Verlag
-
S. Chen, G. Guo, and L. Chen. 2009. Semi-supervised classification based on clustering ensembles. In Proceedings of AICI'09. Springer-Verlag, 629-638
-
(2009)
Proceedings of AICI'09
, pp. 629-638
-
-
Chen, S.1
Guo, G.2
Chen, L.3
-
17
-
-
14344256768
-
On information regularization
-
A. Corduneanu and T. Jaakkola. 2003. On information regularization. In UAI. 151-158
-
(2003)
UAI
, pp. 151-158
-
-
Corduneanu, A.1
Jaakkola, T.2
-
18
-
-
0001560954
-
Information geometry and alternating minimization procedures
-
1984
-
I. Csiszar and G. Tusnady. 1984. Information geometry and alternating minimization procedures. Statistics aand Decisions 1, 1 (1984), 205-237
-
(1984)
Statistics Aand Decisions
, vol.1
, Issue.1
, pp. 205-237
-
-
Csiszar, I.1
Tusnady, G.2
-
19
-
-
36849056635
-
Co-clustering based classification for out-of-domain documents
-
New York, NY
-
W. Dai, G. Xue, Q. Yang, and Y. Yu. 2007a. Co-clustering based classification for out-of-domain documents. In Proceedings of Knowledge Discovery and Data Mining. New York, NY, 210-219
-
(2007)
Proceedings of Knowledge Discovery and Data Mining
, pp. 210-219
-
-
Dai, W.1
Xue, G.2
Yang, Q.3
Yu, Y.4
-
21
-
-
29644438050
-
Statistical comparison of classifiers over multiple data sets
-
J. Demsar. 2006. Statistical comparison of classifiers over multiple data sets. Journal of Machine Learning Research 7, 7 (2006), 1-30
-
(2006)
Journal of Machine Learning Research
, vol.7
, Issue.7
, pp. 1-30
-
-
Demsar, J.1
-
24
-
-
73049108426
-
Collaborative clustering with background knowledge
-
February 2010
-
G. Forestier, P. Gancarski, and C. Wemmert. 2010. Collaborative clustering with background knowledge. Data Knowledge Engineering 69, 2 (February 2010), 211-228
-
(2010)
Data Knowledge Engineering
, vol.69
, Issue.2
, pp. 211-228
-
-
Forestier, G.1
Gancarski, P.2
Wemmert, C.3
-
26
-
-
84863338443
-
Graph-based consensus maximization among multiple supervised and unsupervised models
-
J. Gao, F. Liang, W. Fan, Y. Sun, and J. Han. 2009. Graph-based consensus maximization among multiple supervised and unsupervised models. In Proceedings of Neural Information Processing Systems. 1-9
-
(2009)
Proceedings of Neural Information Processing Systems
, pp. 1-9
-
-
Gao, J.1
Liang, F.2
Fan, W.3
Sun, Y.4
Han, J.5
-
27
-
-
84870457493
-
A graph-based consensus maximization approach for combining multiple supervised and unsupervised models
-
J. Gao, F. Liang, W. Fan, Y. Sun, and J. Han. 2013. A graph-based consensus maximization approach for combining multiple supervised and unsupervised models. IEEE Transactions on Knowledge and Data Engineering 25, 1, 15-28
-
(2013)
IEEE Transactions on Knowledge and Data Engineering
, vol.25
, Issue.1
, pp. 15-28
-
-
Gao, J.1
Liang, F.2
Fan, W.3
Sun, Y.4
Han, J.5
-
29
-
-
29144534131
-
Convergence theorems for generalized alternating minimization procedures
-
A. Gunawardana and W. Byrne. 2005. Convergence theorems for generalized alternating minimization procedures. Journal of Machine Learning Research 6 (2005), 2049-2073
-
(2005)
Journal of Machine Learning Research
, vol.6
, pp. 2049-2073
-
-
Gunawardana, A.1
Byrne, W.2
-
30
-
-
0002714543
-
Making large-scale SVM learning practical
-
C. Burges B. Scholkopf and A. Smola (Eds. MIT Press, Cambridge, MA
-
T. Joachims. 1999a. Making large-scale SVM learning practical. In Advances in Kernel Methods: Support Vector Learning, C. Burges B. Scholkopf and A. Smola (Eds.). MIT Press, Cambridge, MA, 169-184
-
(1999)
Advances in Kernel Methods: Support Vector Learning
, pp. 169-184
-
-
Joachims, T.1
-
33
-
-
0035391738
-
Best-bases feature extraction algorithms for classification of hyperspectral data
-
S. Kumar, J. Ghosh, and M. M. Crawford. 2001. Best-bases feature extraction algorithms for classification of hyperspectral data. IEEE TGRS 39, 7 (2001), 1368-79
-
(2001)
IEEE TGRS
, vol.39
, Issue.7
, pp. 1368-1379
-
-
Kumar, S.1
Ghosh, J.2
Crawford, M.M.3
-
35
-
-
35348915328
-
Classifier ensembles: Select real-world applications
-
Jan
-
N. C. Oza and K. Tumer. 2008. Classifier ensembles: Select real-world applications. Information Fusion 9, 1 (Jan. 2008), 4-20
-
(2008)
Information Fusion
, vol.9
, Issue.1
, pp. 4-20
-
-
Oza, N.C.1
Tumer, K.2
-
37
-
-
85032751446
-
Bootstrap-inspired techniques in computational intelligence
-
R. Polikar. 2007. Bootstrap-inspired techniques in computational intelligence. IEEE Signal Processing Magazine 24, 4, 59-72
-
(2007)
IEEE Signal Processing Magazine
, vol.24
, Issue.4
, pp. 59-72
-
-
Polikar, R.1
-
38
-
-
49749128817
-
Consensus based ensembles of soft clusterings
-
K. Punera and J. Ghosh. 2008. Consensus based ensembles of soft clusterings. In Applied Artificial Intelligence, Vol. 22. 109-117
-
(2008)
Applied Artificial Intelligence
, vol.22
, pp. 109-117
-
-
Punera, K.1
Ghosh, J.2
-
39
-
-
33750840727
-
Exploiting class Hierarchies for knowledge transfer in hyperspectral data
-
S. Rajan, J. Ghosh, and M. M. Crawford. 2006. Exploiting class Hierarchies for knowledge transfer in hyperspectral data. IEEE TGRS 44, 11 (2006), 3408-3417
-
(2006)
IEEE TGRS
, vol.44
, Issue.11
, pp. 3408-3417
-
-
Rajan, S.1
Ghosh, J.2
Crawford, M.M.3
-
40
-
-
55149102400
-
Guest editor's introduction: Special issue on inductive transfer learning
-
3 Dec
-
D. L. Silver and K. P. Bennett. 2008. Guest editor's introduction: Special issue on inductive transfer learning. Machine Learning 73, 3 (Dec. 2008), 215-220. Issue 3
-
(2008)
Machine Learning
, vol.73
, Issue.3
, pp. 215-220
-
-
Silver, D.L.1
Bennett, K.P.2
-
42
-
-
84898075155
-
An information theoretic framework for multi-view learning
-
K. Sridharan and S. M. Kakade. 2008. An information theoretic framework for multi-view learning. In COLT. 403-414
-
(2008)
COLT
, pp. 403-414
-
-
Sridharan, K.1
Kakade, S.M.2
-
43
-
-
0041965980
-
Cluster ensembles-A knowledge reuse framework for combining multiple partitions
-
Dec
-
A. Strehl and J. Ghosh. 2002a. Cluster ensembles-A knowledge reuse framework for combining multiple partitions. Journal of Machine Learning Research 3 (Dec. 2002), 583-617
-
(2002)
Journal of Machine Learning Research
, vol.3
, pp. 583-617
-
-
Strehl, A.1
Ghosh, J.2
-
44
-
-
0036931833
-
Cluster ensembles-A knowledge reuse framework for combining partitionings
-
Edmonton, Canada. AAAI
-
A. Strehl and J. Ghosh. 2002b. Cluster ensembles-A knowledge reuse framework for combining partitionings. In Proceedings of AAAI 2002, Edmonton, Canada. AAAI, 93-98
-
(2002)
Proceedings of AAAI 2002
, pp. 93-98
-
-
Strehl, A.1
Ghosh, J.2
-
45
-
-
84858733268
-
Entropic graph regularization in non-parametric semi-supervised classification
-
Vancouver, Canada
-
A. Subramanya and J. A. Bilmes. 2009. Entropic graph regularization in non-parametric semi-supervised classification. In Proceedings of Neural Information Processing Systems. Vancouver, Canada, 1803-1811
-
(2009)
Proceedings of Neural Information Processing Systems
, pp. 1803-1811
-
-
Subramanya, A.1
Bilmes, J.A.2
-
46
-
-
84855390912
-
Semi-supervised learning with measure propagation
-
A. Subramanya and J. Bilmes. 2011. Semi-supervised learning with measure propagation. Journal of Machine Learning Research 12 (2011), 3311-3370
-
(2011)
Journal of Machine Learning Research
, vol.12
, Issue.2011
, pp. 3311-3370
-
-
Subramanya, A.1
Bilmes, J.2
-
49
-
-
0030085913
-
1996. Analysis of decision boundaries in linearly combined neural classifiers
-
K. Tumer and J. Ghosh. 1996. Analysis of decision boundaries in linearly combined neural classifiers. Pattern Recognition 29, 2 (1996), 341-348
-
(1996)
Pattern Recognition
, vol.29
, Issue.2
, pp. 341-348
-
-
Tumer, K.1
Ghosh, J.2
-
56
-
-
0002210265
-
On the convergence properties of the em algorithm
-
C. F. J. Wu. 1982. On the convergence properties of the EM algorithm. Annals of Statistics (1982)
-
(1982)
Annals of Statistics
-
-
Wu, C.F.J.1
-
58
-
-
0003503281
-
-
Prentice-Hall International Series in Management, Englewood Cliffs, NJ
-
W. Zangwill. 1969. Nonlinear Programming: A Unified Approach. Prentice-Hall International Series in Management, Englewood Cliffs, NJ
-
(1969)
Nonlinear Programming: A Unified Approach
-
-
Zangwill, W.1
-
59
-
-
33749580724
-
Linear prediction models with graph regularization for web-page categorization
-
ACM, New York, NY
-
T. Zhang, A. Popescul, and B. Dom. 2006. Linear prediction models with graph regularization for web-page categorization. In Proceedings of the 12th ACM SIGKDD. ACM, New York, NY, 821-826
-
(2006)
Proceedings of the 12th ACM SIGKDD
, pp. 821-826
-
-
Zhang, T.1
Popescul, A.2
Dom, B.3
-
61
-
-
1942484430
-
Semi-supervised learning using Gaussian fields and harmonic functions
-
T. Fawcett, N. Mishra, T. Fawcett, and N. Mishra (Eds.). AAAI Press
-
X. Zhu, Z. Ghahramani, and J. D. Lafferty. 2003. Semi-supervised learning using Gaussian fields and harmonic functions. In ICML, T. Fawcett, N. Mishra, T. Fawcett, and N. Mishra (Eds.). AAAI Press, 912-919
-
(2003)
ICML
, pp. 912-919
-
-
Zhu, X.1
Ghahramani, Z.2
Lafferty, J.D.3
|