메뉴 건너뛰기




Volumn 9, Issue 1, 2014, Pages

An optimization framework for combining ensembles of classifiers and clusterers with applications to nontransductive semisupervised learning and transfer learning

Author keywords

Classification; Clustering; Ensembles; Semisupervised learning; Transductive learning; Transfer learning

Indexed keywords

LEARNING SYSTEMS; SEMI-SUPERVISED LEARNING; TRANSFER LEARNING;

EID: 84908216012     PISSN: 15564681     EISSN: 1556472X     Source Type: Journal    
DOI: 10.1145/2601435     Document Type: Article
Times cited : (17)

References (62)
  • 7
    • 0038384383 scopus 로고    scopus 로고
    • On-line algorithms in machine learning
    • Fiat and Woeginger (Eds.). LNCS Springer
    • A. Blum. 1998. On-line algorithms in machine learning. In Online Algorithms: The State of the Art, Fiat and Woeginger (Eds.). LNCS Vol.1442, Springer
    • (1998) Online Algorithms: The State of the Art , vol.1442
    • Blum, A.1
  • 10
    • 49949144765 scopus 로고    scopus 로고
    • The relaxationmethod of finding the common point of convex sets and its application to the solution of problems in convex programming
    • L. M. Bregman. 1967. The relaxationmethod of finding the common point of convex sets and its application to the solution of problems in convex programming. U.S.S.R. Computing, Mathematics and Mathematical Physics 7, 3 (1967), 200-217
    • (1997) U.S.S.R. Computing, Mathematics and Mathematical Physics , vol.7 , Issue.3 , pp. 200-217
    • Bregman, L.M.1
  • 11
    • 62349084208 scopus 로고    scopus 로고
    • A simultaneous learning framework for clustering and classification
    • July
    • W. Cai, S. Chen, and D. Zhang. 2009. A simultaneous learning framework for clustering and classification. Pattern Recognition 42, 7 (July 2009), 1248-1259
    • (2009) Pattern Recognition , vol.42 , Issue.7 , pp. 1248-1259
    • Cai, W.1    Chen, S.2    Zhang, D.3
  • 12
    • 0031189914 scopus 로고    scopus 로고
    • Multitask learning
    • July
    • R. Caruana. 1997. Multitask Learning. Machine Learning 28, 1 (July 1997), 41-75
    • (1997) Machine Learning , vol.28 , Issue.1 , pp. 41-75
    • Caruana, R.1
  • 15
    • 71649086725 scopus 로고    scopus 로고
    • Semi-supervised classification based on clustering ensembles
    • Springer Verlag
    • S. Chen, G. Guo, and L. Chen. 2009. Semi-supervised classification based on clustering ensembles. In Proceedings of AICI'09. Springer-Verlag, 629-638
    • (2009) Proceedings of AICI'09 , pp. 629-638
    • Chen, S.1    Guo, G.2    Chen, L.3
  • 17
    • 14344256768 scopus 로고    scopus 로고
    • On information regularization
    • A. Corduneanu and T. Jaakkola. 2003. On information regularization. In UAI. 151-158
    • (2003) UAI , pp. 151-158
    • Corduneanu, A.1    Jaakkola, T.2
  • 18
    • 0001560954 scopus 로고
    • Information geometry and alternating minimization procedures
    • 1984
    • I. Csiszar and G. Tusnady. 1984. Information geometry and alternating minimization procedures. Statistics aand Decisions 1, 1 (1984), 205-237
    • (1984) Statistics Aand Decisions , vol.1 , Issue.1 , pp. 205-237
    • Csiszar, I.1    Tusnady, G.2
  • 20
    • 34547972773 scopus 로고    scopus 로고
    • Boosting for transfer learning
    • W. Dai, Q. Yang, Gui rong Xue, and Yong Yu. 2007b. Boosting for transfer learning. In Proc. of ICML. 193-200
    • (2007) Proc. of ICML , pp. 193-200
    • Dai, W.1    Yang, Q.2    Xue, G.3    Yu, Y.4
  • 21
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparison of classifiers over multiple data sets
    • J. Demsar. 2006. Statistical comparison of classifiers over multiple data sets. Journal of Machine Learning Research 7, 7 (2006), 1-30
    • (2006) Journal of Machine Learning Research , vol.7 , Issue.7 , pp. 1-30
    • Demsar, J.1
  • 24
    • 73049108426 scopus 로고    scopus 로고
    • Collaborative clustering with background knowledge
    • February 2010
    • G. Forestier, P. Gancarski, and C. Wemmert. 2010. Collaborative clustering with background knowledge. Data Knowledge Engineering 69, 2 (February 2010), 211-228
    • (2010) Data Knowledge Engineering , vol.69 , Issue.2 , pp. 211-228
    • Forestier, G.1    Gancarski, P.2    Wemmert, C.3
  • 27
    • 84870457493 scopus 로고    scopus 로고
    • A graph-based consensus maximization approach for combining multiple supervised and unsupervised models
    • J. Gao, F. Liang, W. Fan, Y. Sun, and J. Han. 2013. A graph-based consensus maximization approach for combining multiple supervised and unsupervised models. IEEE Transactions on Knowledge and Data Engineering 25, 1, 15-28
    • (2013) IEEE Transactions on Knowledge and Data Engineering , vol.25 , Issue.1 , pp. 15-28
    • Gao, J.1    Liang, F.2    Fan, W.3    Sun, Y.4    Han, J.5
  • 29
    • 29144534131 scopus 로고    scopus 로고
    • Convergence theorems for generalized alternating minimization procedures
    • A. Gunawardana and W. Byrne. 2005. Convergence theorems for generalized alternating minimization procedures. Journal of Machine Learning Research 6 (2005), 2049-2073
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 2049-2073
    • Gunawardana, A.1    Byrne, W.2
  • 30
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale SVM learning practical
    • C. Burges B. Scholkopf and A. Smola (Eds. MIT Press, Cambridge, MA
    • T. Joachims. 1999a. Making large-scale SVM learning practical. In Advances in Kernel Methods: Support Vector Learning, C. Burges B. Scholkopf and A. Smola (Eds.). MIT Press, Cambridge, MA, 169-184
    • (1999) Advances in Kernel Methods: Support Vector Learning , pp. 169-184
    • Joachims, T.1
  • 33
    • 0035391738 scopus 로고    scopus 로고
    • Best-bases feature extraction algorithms for classification of hyperspectral data
    • S. Kumar, J. Ghosh, and M. M. Crawford. 2001. Best-bases feature extraction algorithms for classification of hyperspectral data. IEEE TGRS 39, 7 (2001), 1368-79
    • (2001) IEEE TGRS , vol.39 , Issue.7 , pp. 1368-1379
    • Kumar, S.1    Ghosh, J.2    Crawford, M.M.3
  • 35
    • 35348915328 scopus 로고    scopus 로고
    • Classifier ensembles: Select real-world applications
    • Jan
    • N. C. Oza and K. Tumer. 2008. Classifier ensembles: Select real-world applications. Information Fusion 9, 1 (Jan. 2008), 4-20
    • (2008) Information Fusion , vol.9 , Issue.1 , pp. 4-20
    • Oza, N.C.1    Tumer, K.2
  • 37
    • 85032751446 scopus 로고    scopus 로고
    • Bootstrap-inspired techniques in computational intelligence
    • R. Polikar. 2007. Bootstrap-inspired techniques in computational intelligence. IEEE Signal Processing Magazine 24, 4, 59-72
    • (2007) IEEE Signal Processing Magazine , vol.24 , Issue.4 , pp. 59-72
    • Polikar, R.1
  • 38
    • 49749128817 scopus 로고    scopus 로고
    • Consensus based ensembles of soft clusterings
    • K. Punera and J. Ghosh. 2008. Consensus based ensembles of soft clusterings. In Applied Artificial Intelligence, Vol. 22. 109-117
    • (2008) Applied Artificial Intelligence , vol.22 , pp. 109-117
    • Punera, K.1    Ghosh, J.2
  • 39
    • 33750840727 scopus 로고    scopus 로고
    • Exploiting class Hierarchies for knowledge transfer in hyperspectral data
    • S. Rajan, J. Ghosh, and M. M. Crawford. 2006. Exploiting class Hierarchies for knowledge transfer in hyperspectral data. IEEE TGRS 44, 11 (2006), 3408-3417
    • (2006) IEEE TGRS , vol.44 , Issue.11 , pp. 3408-3417
    • Rajan, S.1    Ghosh, J.2    Crawford, M.M.3
  • 40
    • 55149102400 scopus 로고    scopus 로고
    • Guest editor's introduction: Special issue on inductive transfer learning
    • 3 Dec
    • D. L. Silver and K. P. Bennett. 2008. Guest editor's introduction: Special issue on inductive transfer learning. Machine Learning 73, 3 (Dec. 2008), 215-220. Issue 3
    • (2008) Machine Learning , vol.73 , Issue.3 , pp. 215-220
    • Silver, D.L.1    Bennett, K.P.2
  • 42
    • 84898075155 scopus 로고    scopus 로고
    • An information theoretic framework for multi-view learning
    • K. Sridharan and S. M. Kakade. 2008. An information theoretic framework for multi-view learning. In COLT. 403-414
    • (2008) COLT , pp. 403-414
    • Sridharan, K.1    Kakade, S.M.2
  • 43
    • 0041965980 scopus 로고    scopus 로고
    • Cluster ensembles-A knowledge reuse framework for combining multiple partitions
    • Dec
    • A. Strehl and J. Ghosh. 2002a. Cluster ensembles-A knowledge reuse framework for combining multiple partitions. Journal of Machine Learning Research 3 (Dec. 2002), 583-617
    • (2002) Journal of Machine Learning Research , vol.3 , pp. 583-617
    • Strehl, A.1    Ghosh, J.2
  • 44
    • 0036931833 scopus 로고    scopus 로고
    • Cluster ensembles-A knowledge reuse framework for combining partitionings
    • Edmonton, Canada. AAAI
    • A. Strehl and J. Ghosh. 2002b. Cluster ensembles-A knowledge reuse framework for combining partitionings. In Proceedings of AAAI 2002, Edmonton, Canada. AAAI, 93-98
    • (2002) Proceedings of AAAI 2002 , pp. 93-98
    • Strehl, A.1    Ghosh, J.2
  • 45
    • 84858733268 scopus 로고    scopus 로고
    • Entropic graph regularization in non-parametric semi-supervised classification
    • Vancouver, Canada
    • A. Subramanya and J. A. Bilmes. 2009. Entropic graph regularization in non-parametric semi-supervised classification. In Proceedings of Neural Information Processing Systems. Vancouver, Canada, 1803-1811
    • (2009) Proceedings of Neural Information Processing Systems , pp. 1803-1811
    • Subramanya, A.1    Bilmes, J.A.2
  • 46
    • 84855390912 scopus 로고    scopus 로고
    • Semi-supervised learning with measure propagation
    • A. Subramanya and J. Bilmes. 2011. Semi-supervised learning with measure propagation. Journal of Machine Learning Research 12 (2011), 3311-3370
    • (2011) Journal of Machine Learning Research , vol.12 , Issue.2011 , pp. 3311-3370
    • Subramanya, A.1    Bilmes, J.2
  • 49
    • 0030085913 scopus 로고    scopus 로고
    • 1996. Analysis of decision boundaries in linearly combined neural classifiers
    • K. Tumer and J. Ghosh. 1996. Analysis of decision boundaries in linearly combined neural classifiers. Pattern Recognition 29, 2 (1996), 341-348
    • (1996) Pattern Recognition , vol.29 , Issue.2 , pp. 341-348
    • Tumer, K.1    Ghosh, J.2
  • 56
    • 0002210265 scopus 로고
    • On the convergence properties of the em algorithm
    • C. F. J. Wu. 1982. On the convergence properties of the EM algorithm. Annals of Statistics (1982)
    • (1982) Annals of Statistics
    • Wu, C.F.J.1
  • 58
    • 0003503281 scopus 로고
    • Prentice-Hall International Series in Management, Englewood Cliffs, NJ
    • W. Zangwill. 1969. Nonlinear Programming: A Unified Approach. Prentice-Hall International Series in Management, Englewood Cliffs, NJ
    • (1969) Nonlinear Programming: A Unified Approach
    • Zangwill, W.1
  • 59
    • 33749580724 scopus 로고    scopus 로고
    • Linear prediction models with graph regularization for web-page categorization
    • ACM, New York, NY
    • T. Zhang, A. Popescul, and B. Dom. 2006. Linear prediction models with graph regularization for web-page categorization. In Proceedings of the 12th ACM SIGKDD. ACM, New York, NY, 821-826
    • (2006) Proceedings of the 12th ACM SIGKDD , pp. 821-826
    • Zhang, T.1    Popescul, A.2    Dom, B.3
  • 61
    • 1942484430 scopus 로고    scopus 로고
    • Semi-supervised learning using Gaussian fields and harmonic functions
    • T. Fawcett, N. Mishra, T. Fawcett, and N. Mishra (Eds.). AAAI Press
    • X. Zhu, Z. Ghahramani, and J. D. Lafferty. 2003. Semi-supervised learning using Gaussian fields and harmonic functions. In ICML, T. Fawcett, N. Mishra, T. Fawcett, and N. Mishra (Eds.). AAAI Press, 912-919
    • (2003) ICML , pp. 912-919
    • Zhu, X.1    Ghahramani, Z.2    Lafferty, J.D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.