메뉴 건너뛰기




Volumn 2842, Issue , 2003, Pages 190-204

Learning continuous latent variable models with Bregman divergences

Author keywords

Alternating minimization; Backward projection; Bregman divergence; Forward projection; Information geometry; Iterative scaling; Statistical machine learning; Unsupervised learning

Indexed keywords

CONSTRAINED OPTIMIZATION; ITERATIVE METHODS; MACHINE LEARNING; UNSUPERVISED LEARNING; FUNCTIONS; GEOMETRY; INFORMATION ANALYSIS; LEARNING ALGORITHMS; STATISTICAL METHODS;

EID: 0242278267     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-540-39624-6_16     Document Type: Conference Paper
Times cited : (4)

References (25)
  • 2
    • 0026116433 scopus 로고
    • Duality relationships for entropy-like minimization problems
    • J. Borwein and A. Lewis, “Duality relationships for entropy-like minimization problems,” SIAM J. Control Optim., Vol. 29, No. 2, pp. 325-338, 1991
    • (1991) SIAM J. Control Optim. , vol.29 , Issue.2 , pp. 325-338
    • Borwein, J.1    Lewis, A.2
  • 4
    • 49949144765 scopus 로고
    • The relaxation method of finding the common point of convex sets and its applications to the solution of problems in convex programming
    • L. Bregman, “The relaxation method of finding the common point of convex sets and its applications to the solution of problems in convex programming,” USSR Computational Mathematics and Mathematical Physics, Vol. 7, pp. 200-217, 1967
    • (1967) USSR Computational Mathematics and Mathematical Physics , vol.7 , pp. 200-217
    • Bregman, L.1
  • 6
    • 0035565698 scopus 로고    scopus 로고
    • Proximity function minimization using multiple Bregman projections with applications to split feasibility and Kullback-Leibler distance minimization
    • C. Byrne and Y. Censor, “Proximity function minimization using multiple Bregman projections with applications to split feasibility and Kullback-Leibler distance minimization,” Annals of Operations Research, Vol. 105, pp. 77-98, 2001
    • (2001) Annals of Operations Research , vol.105 , pp. 77-98
    • Byrne, C.1    Censor, Y.2
  • 8
    • 0036643072 scopus 로고    scopus 로고
    • Logistic regression, AdaBoost and Bregman distances
    • M. Collins, R. Schapire and Y. Singer, “Logistic regression, AdaBoost and Bregman distances,” Machine Learning, Vol. 48, No. 1-3, pp. 253-285, 2002
    • (2002) Machine Learning , vol.48 , Issue.1-3 , pp. 253-285
    • Collins, M.1    Schapire, R.2    Singer, Y.3
  • 9
    • 0001560954 scopus 로고
    • Information geometry and alternating minimization procedures
    • I. Csiszar and G. Tusnady, “Information geometry and alternating minimization procedures,” Statistics and Decisions, Supplement Issue 1, pp. 205-237, 1984
    • (1984) Statistics and Decisions, Supplement Issue , vol.1 , pp. 205-237
    • Csiszar, I.1    Tusnady, G.2
  • 10
    • 0001731697 scopus 로고
    • Why least squares and maximum entropy?”
    • I. Csiszar, “Why least squares and maximum entropy?” The Annals of Statisics, Vol. 19, No. 4, pp. 2032-2066, 1991
    • (1991) The Annals of Statisics , vol.19 , Issue.4 , pp. 2032-2066
    • Csiszar, I.1
  • 11
    • 0006409966 scopus 로고
    • Generalized projections for non-negative functions
    • I. Csiszar, “Generalized projections for non-negative functions,” Acta Mathematica Hungarica, Vol. 68, No. 1-2, pp. 161-185, 1995
    • (1995) Acta Mathematica Hungarica , vol.68 , Issue.1-2 , pp. 161-185
    • Csiszar, I.1
  • 12
    • 0002066853 scopus 로고    scopus 로고
    • Maxent, mathematics, and information theory
    • Edited by K. Hanson and R. Silver, Kluwer
    • I. Csiszar, “Maxent, mathematics, and information theory,” Maximum Entropy and Bayesian Methods, Edited by K. Hanson and R. Silver, pp. 35-50, Kluwer, 1996
    • (1996) Maximum Entropy and Bayesian Methods , pp. 35-50
    • Csiszar, I.1
  • 14
    • 0002629270 scopus 로고
    • Maximum likelihood estimation from incomplete data via the EM algorithm
    • A. Dempster, N. Laird and D. Rubin, “Maximum likelihood estimation from incomplete data via the EM algorithm,” J. Royal Stat. Soc. B, Vol. 39, pp 1-38, 1977
    • (1977) J. Royal Stat. Soc. B , vol.39 , pp. 1-38
    • Dempster, A.1    Laird, N.2    Rubin, D.3
  • 16
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting
    • J. Friedman, T. Hastie and R. Tibshirani, “Additive logistic regression: A statistical view of boosting,” Annals of Statistics, Vol. 28, No. 2, pp. 337-407, 2000
    • (2000) Annals of Statistics , vol.28 , Issue.2 , pp. 337-407
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 17
    • 0021376918 scopus 로고
    • Which is the better entropy expression for speech processing:-S log S or log S?
    • R. Johnson and J. Shore, “Which is the better entropy expression for speech processing:-S log S or log S?,” IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. 32, No. 1, pp. 129-137, 1984
    • (1984) IEEE Transactions on Acoustics, Speech, and Signal Processing , vol.32 , Issue.1 , pp. 129-137
    • Johnson, R.1    Shore, J.2
  • 19
    • 0033280975 scopus 로고    scopus 로고
    • Additive models, boosting, and inference for generalized divergences
    • J. Lafferty, “Additive models, boosting, and inference for generalized divergences,” Annual Conference on Computational Learning Theory, pp. 125-133, 1999
    • (1999) Annual Conference on Computational Learning Theory , pp. 125-133
    • Lafferty, J.1
  • 23
    • 4644257995 scopus 로고    scopus 로고
    • Statistical behavior and consistency of classification methods based on convex risk minimization
    • T. Zhang, “Statistical behavior and consistency of classification methods based on convex risk minimization,” to appear in Annals of Statistics, 2004
    • (2004) Annals of Statistics
    • Zhang, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.