메뉴 건너뛰기




Volumn 2, Issue , 2012, Pages 917-925

A spectral algorithm for Latent Dirichlet Allocation

Author keywords

[No Author keywords available]

Indexed keywords

CORRELATION ANALYSIS; EFFICIENT LEARNING; LATENT DIRICHLET ALLOCATION; LATENT DIRICHLET ALLOCATIONS; LOW-ORDER MOMENTS; SPECTRAL ALGORITHM; SPECTRAL DECOMPOSITION; THIRD ORDER MOMENT;

EID: 84877771041     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (190)

References (37)
  • 1
    • 0141607824 scopus 로고    scopus 로고
    • Latent dirichlet allocation
    • David M. Blei, Andrew Ng, and Michael Jordan. Latent dirichlet allocation. JMLR, 3:993-1022, 2003.
    • (2003) JMLR , vol.3 , pp. 993-1022
    • Blei, D.M.1    Ng, A.2    Jordan, M.3
  • 2
    • 0021404166 scopus 로고
    • Mixture densities, maximum likelihood and the em algorithm
    • R. A. Redner and H. F. Walker. Mixture densities, maximum likelihood and the EM algorithm. SIAM Review, 26(2):195-239, 1984.
    • (1984) SIAM Review , vol.26 , Issue.2 , pp. 195-239
    • Redner, R.A.1    Walker, H.F.2
  • 4
    • 85162005069 scopus 로고    scopus 로고
    • Online learning for latent dirichlet allocation
    • M.D. Hoffman, D.M. Blei, and F. Bach. Online learning for latent dirichlet allocation. In NIPS, 2010.
    • (2010) NIPS
    • Hoffman, M.D.1    Blei, D.M.2    Bach, F.3
  • 5
    • 0001509519 scopus 로고    scopus 로고
    • Probilistic latent semantic analysis
    • Thomas Hofmann. Probilistic latent semantic analysis. In UAI, 1999.
    • (1999) UAI
    • Hofmann, T.1
  • 6
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by nonnegative matrix factorization
    • Daniel D. Lee and H. Sebastian Seung. Learning the parts of objects by nonnegative matrix factorization. Nature, 401, 1999.
    • (1999) Nature , vol.401
    • Lee, D.D.1    Sebastian Seung, H.2
  • 10
    • 84863403791 scopus 로고    scopus 로고
    • Learning mixutres of Gaussians
    • S. Dasgupta. Learning mixutres of Gaussians. In FOCS, 1999.
    • (1999) FOCS
    • Dasgupta, S.1
  • 11
    • 0009827232 scopus 로고    scopus 로고
    • A two-round variant of em for gaussian mixtures
    • S. Dasgupta and L. Schulman. A two-round variant of em for gaussian mixtures. In UAI, 2000.
    • (2000) UAI
    • Dasgupta, S.1    Schulman, L.2
  • 12
    • 0034830274 scopus 로고    scopus 로고
    • Learning mixtures of arbitrary Gaussians
    • S. Arora and R. Kannan. Learning mixtures of arbitrary Gaussians. In STOC, 2001.
    • (2001) STOC
    • Arora, S.1    Kannan, R.2
  • 13
    • 0036957867 scopus 로고    scopus 로고
    • A spectral algorithm for learning mixtures of distributions
    • S. Vempala and G. Wang. A spectral algorithm for learning mixtures of distributions. In FOCS, 2002.
    • (2002) FOCS
    • Vempala, S.1    Wang, G.2
  • 14
    • 33746066585 scopus 로고    scopus 로고
    • The spectral method for general mixture models
    • R. Kannan, H. Salmasian, and S. Vempala. The spectral method for general mixture models. In COLT, 2005.
    • (2005) COLT
    • Kannan, R.1    Salmasian, H.2    Vempala, S.3
  • 15
    • 33748603939 scopus 로고    scopus 로고
    • On spectral learning of mixtures of distributions
    • D. Achlioptas and F. McSherry. On spectral learning of mixtures of distributions. In COLT, 2005.
    • (2005) COLT
    • Achlioptas, D.1    McSherry, F.2
  • 16
    • 84898062517 scopus 로고    scopus 로고
    • Learning mixtures of product distributions using correlations and independence
    • K. Chaudhuri and S. Rao. Learning mixtures of product distributions using correlations and independence. In COLT, 2008.
    • (2008) COLT
    • Chaudhuri, K.1    Rao, S.2
  • 17
    • 57949105623 scopus 로고    scopus 로고
    • Isotropic PCA and affine-invariant clustering
    • S. C. Brubaker and S. Vempala. Isotropic PCA and affine-invariant clustering. In FOCS, 2008.
    • (2008) FOCS
    • Brubaker, S.C.1    Vempala, S.2
  • 19
    • 77954731171 scopus 로고    scopus 로고
    • Efficiently learning mixtures of two Gaussians
    • A. T. Kalai, A. Moitra, and G. Valiant. Efficiently learning mixtures of two Gaussians. In STOC, 2010.
    • (2010) STOC
    • Kalai, A.T.1    Moitra, A.2    Valiant, G.3
  • 20
    • 78751519918 scopus 로고    scopus 로고
    • Polynomial learning of distribution families
    • M. Belkin and K. Sinha. Polynomial learning of distribution families. In FOCS, 2010.
    • (2010) FOCS
    • Belkin, M.1    Sinha, K.2
  • 21
    • 78751527010 scopus 로고    scopus 로고
    • Settling the polynomial learnability of mixtures of Gaussians
    • A. Moitra and G. Valiant. Settling the polynomial learnability of mixtures of Gaussians. In FOCS, 2010.
    • (2010) FOCS
    • Moitra, A.1    Valiant, G.2
  • 22
    • 84873335281 scopus 로고    scopus 로고
    • A method of moments for mixture models and hidden markov models
    • A. Anandkumar, D. Hsu, and S. M. Kakade. A method of moments for mixture models and hidden markov models. In COLT, 2012.
    • (2012) COLT
    • Anandkumar, A.1    Hsu, D.2    Kakade, S.M.3
  • 23
    • 84871960604 scopus 로고    scopus 로고
    • Learning topic models-going beyond svd
    • S. Arora, R. Ge, and A. Moitra. Learning topic models-going beyond svd. In FOCS, 2012.
    • (2012) FOCS
    • Arora, S.1    Ge, R.2    Moitra, A.3
  • 24
    • 0030588055 scopus 로고    scopus 로고
    • Full reconstruction of Markov models on evolutionary trees: Identifiability and consistency
    • J. T. Chang. Full reconstruction of Markov models on evolutionary trees: Identifiability and consistency. Mathematical Biosciences, 137:51-73, 1996.
    • (1996) Mathematical Biosciences , vol.137 , pp. 51-73
    • Chang, J.T.1
  • 25
    • 33746918412 scopus 로고    scopus 로고
    • Learning nonsingular phylogenies and hidden Markov models
    • E. Mossel and S. Roch. Learning nonsingular phylogenies and hidden Markov models. Annals of Applied Probability, 16(2):583-614, 2006.
    • (2006) Annals of Applied Probability , vol.16 , Issue.2 , pp. 583-614
    • Mossel, E.1    Roch, S.2
  • 26
    • 84898066687 scopus 로고    scopus 로고
    • A spectral algorithm for learning hidden Markov models
    • D. Hsu, S. M. Kakade, and T. Zhang. A spectral algorithm for learning hidden Markov models. In COLT, 2009.
    • (2009) COLT
    • Hsu, D.1    Kakade, S.M.2    Zhang, T.3
  • 29
  • 30
    • 64249149689 scopus 로고    scopus 로고
    • Learning a parallelepiped: Cryptanalysis of GGH and NTRU signatures
    • P. Q. Nguyen and O. Regev. Learning a parallelepiped: Cryptanalysis of GGH and NTRU signatures. Journal of Cryptology, 22(2):139-160, 2009.
    • (2009) Journal of Cryptology , vol.22 , Issue.2 , pp. 139-160
    • Nguyen, P.Q.1    Regev, O.2
  • 31
    • 84877781888 scopus 로고    scopus 로고
    • Provable ICA with unknown Gaussian noise, and implications for Gaussian mixtures and autoencoders
    • S. Arora, R. Ge, A. Moitra, and S. Sachdeva. Provable ICA with unknown Gaussian noise, and implications for Gaussian mixtures and autoencoders. In NIPS, 2012.
    • (2012) NIPS
    • Arora, S.1    Ge, R.2    Moitra, A.3    Sachdeva, S.4
  • 32
    • 70450128164 scopus 로고    scopus 로고
    • Two-view feature generation model for semi-supervised learning
    • R. Ando and T. Zhang. Two-view feature generation model for semi-supervised learning. In ICML, 2007.
    • (2007) ICML
    • Ando, R.1    Zhang, T.2
  • 33
    • 70450148854 scopus 로고    scopus 로고
    • Multi-view regression via canonical correlation analysis
    • Sham M. Kakade and Dean P. Foster. Multi-view regression via canonical correlation analysis. In COLT, 2007.
    • (2007) COLT
    • Kakade, S.M.1    Foster, D.P.2
  • 35
    • 33745909504 scopus 로고    scopus 로고
    • Probabilistic topic models
    • T. Landauer, D. Mcnamara, S. Dennis, and W. Kintsch, editors,. Laurence Erlbaum
    • Mark Steyvers and Tom Griffiths. Probabilistic topic models. In T. Landauer, D. Mcnamara, S. Dennis, and W. Kintsch, editors, Latent Semantic Analysis: A Road to Meaning. Laurence Erlbaum, 2006.
    • (2006) Latent Semantic Analysis: A Road to Meaning
    • Steyvers, M.1    Griffiths, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.