-
1
-
-
0141607824
-
Latent dirichlet allocation
-
David M. Blei, Andrew Ng, and Michael Jordan. Latent dirichlet allocation. JMLR, 3:993-1022, 2003.
-
(2003)
JMLR
, vol.3
, pp. 993-1022
-
-
Blei, D.M.1
Ng, A.2
Jordan, M.3
-
2
-
-
0021404166
-
Mixture densities, maximum likelihood and the em algorithm
-
R. A. Redner and H. F. Walker. Mixture densities, maximum likelihood and the EM algorithm. SIAM Review, 26(2):195-239, 1984.
-
(1984)
SIAM Review
, vol.26
, Issue.2
, pp. 195-239
-
-
Redner, R.A.1
Walker, H.F.2
-
3
-
-
84923510633
-
Distributed gibbs sampling for latent variable models
-
Cambridge Univ Pr
-
A. Asuncion, P. Smyth, M. Welling, D. Newman, I. Porteous, and S. Triglia. Distributed gibbs sampling for latent variable models. In Scaling Up Machine Learning: Parallel and Distributed Approaches. Cambridge Univ Pr, 2011.
-
(2011)
Scaling Up Machine Learning: Parallel and Distributed Approaches
-
-
Asuncion, A.1
Smyth, P.2
Welling, M.3
Newman, D.4
Porteous, I.5
Triglia, S.6
-
4
-
-
85162005069
-
Online learning for latent dirichlet allocation
-
M.D. Hoffman, D.M. Blei, and F. Bach. Online learning for latent dirichlet allocation. In NIPS, 2010.
-
(2010)
NIPS
-
-
Hoffman, M.D.1
Blei, D.M.2
Bach, F.3
-
5
-
-
0001509519
-
Probilistic latent semantic analysis
-
Thomas Hofmann. Probilistic latent semantic analysis. In UAI, 1999.
-
(1999)
UAI
-
-
Hofmann, T.1
-
6
-
-
0033592606
-
Learning the parts of objects by nonnegative matrix factorization
-
Daniel D. Lee and H. Sebastian Seung. Learning the parts of objects by nonnegative matrix factorization. Nature, 401, 1999.
-
(1999)
Nature
, vol.401
-
-
Lee, D.D.1
Sebastian Seung, H.2
-
8
-
-
84871948324
-
-
arXiv:1204.6703
-
A. Anandkumar, D. P. Foster, D. Hsu, S. M. Kakade, and Y.-K. Liu. Two svds suffice: spectral decompositions for probabilistic topic models and latent dirichlet allocation, 2012. arXiv:1204.6703.
-
(2012)
Two Svds Suffice: Spectral Decompositions for Probabilistic Topic Models and Latent Dirichlet Allocation
-
-
Anandkumar, A.1
Foster, D.P.2
Hsu, D.3
Kakade, S.M.4
Liu, Y.-K.5
-
9
-
-
0034297382
-
Latent semantic indexing: A probabilistic analysis
-
Christos H. Papadimitriou, Prabhakar Raghavan, Hisao Tamaki, and Santosh Vempala. Latent semantic indexing: A probabilistic analysis. J. Comput. Syst. Sci., 61(2), 2000.
-
(2000)
J. Comput. Syst. Sci.
, vol.61
, Issue.2
-
-
Papadimitriou, C.H.1
Raghavan, P.2
Tamaki, H.3
Vempala, S.4
-
10
-
-
84863403791
-
Learning mixutres of Gaussians
-
S. Dasgupta. Learning mixutres of Gaussians. In FOCS, 1999.
-
(1999)
FOCS
-
-
Dasgupta, S.1
-
11
-
-
0009827232
-
A two-round variant of em for gaussian mixtures
-
S. Dasgupta and L. Schulman. A two-round variant of em for gaussian mixtures. In UAI, 2000.
-
(2000)
UAI
-
-
Dasgupta, S.1
Schulman, L.2
-
12
-
-
0034830274
-
Learning mixtures of arbitrary Gaussians
-
S. Arora and R. Kannan. Learning mixtures of arbitrary Gaussians. In STOC, 2001.
-
(2001)
STOC
-
-
Arora, S.1
Kannan, R.2
-
13
-
-
0036957867
-
A spectral algorithm for learning mixtures of distributions
-
S. Vempala and G. Wang. A spectral algorithm for learning mixtures of distributions. In FOCS, 2002.
-
(2002)
FOCS
-
-
Vempala, S.1
Wang, G.2
-
14
-
-
33746066585
-
The spectral method for general mixture models
-
R. Kannan, H. Salmasian, and S. Vempala. The spectral method for general mixture models. In COLT, 2005.
-
(2005)
COLT
-
-
Kannan, R.1
Salmasian, H.2
Vempala, S.3
-
15
-
-
33748603939
-
On spectral learning of mixtures of distributions
-
D. Achlioptas and F. McSherry. On spectral learning of mixtures of distributions. In COLT, 2005.
-
(2005)
COLT
-
-
Achlioptas, D.1
McSherry, F.2
-
16
-
-
84898062517
-
Learning mixtures of product distributions using correlations and independence
-
K. Chaudhuri and S. Rao. Learning mixtures of product distributions using correlations and independence. In COLT, 2008.
-
(2008)
COLT
-
-
Chaudhuri, K.1
Rao, S.2
-
17
-
-
57949105623
-
Isotropic PCA and affine-invariant clustering
-
S. C. Brubaker and S. Vempala. Isotropic PCA and affine-invariant clustering. In FOCS, 2008.
-
(2008)
FOCS
-
-
Brubaker, S.C.1
Vempala, S.2
-
19
-
-
77954731171
-
Efficiently learning mixtures of two Gaussians
-
A. T. Kalai, A. Moitra, and G. Valiant. Efficiently learning mixtures of two Gaussians. In STOC, 2010.
-
(2010)
STOC
-
-
Kalai, A.T.1
Moitra, A.2
Valiant, G.3
-
20
-
-
78751519918
-
Polynomial learning of distribution families
-
M. Belkin and K. Sinha. Polynomial learning of distribution families. In FOCS, 2010.
-
(2010)
FOCS
-
-
Belkin, M.1
Sinha, K.2
-
21
-
-
78751527010
-
Settling the polynomial learnability of mixtures of Gaussians
-
A. Moitra and G. Valiant. Settling the polynomial learnability of mixtures of Gaussians. In FOCS, 2010.
-
(2010)
FOCS
-
-
Moitra, A.1
Valiant, G.2
-
22
-
-
84873335281
-
A method of moments for mixture models and hidden markov models
-
A. Anandkumar, D. Hsu, and S. M. Kakade. A method of moments for mixture models and hidden markov models. In COLT, 2012.
-
(2012)
COLT
-
-
Anandkumar, A.1
Hsu, D.2
Kakade, S.M.3
-
23
-
-
84871960604
-
Learning topic models-going beyond svd
-
S. Arora, R. Ge, and A. Moitra. Learning topic models-going beyond svd. In FOCS, 2012.
-
(2012)
FOCS
-
-
Arora, S.1
Ge, R.2
Moitra, A.3
-
24
-
-
0030588055
-
Full reconstruction of Markov models on evolutionary trees: Identifiability and consistency
-
J. T. Chang. Full reconstruction of Markov models on evolutionary trees: Identifiability and consistency. Mathematical Biosciences, 137:51-73, 1996.
-
(1996)
Mathematical Biosciences
, vol.137
, pp. 51-73
-
-
Chang, J.T.1
-
25
-
-
33746918412
-
Learning nonsingular phylogenies and hidden Markov models
-
E. Mossel and S. Roch. Learning nonsingular phylogenies and hidden Markov models. Annals of Applied Probability, 16(2):583-614, 2006.
-
(2006)
Annals of Applied Probability
, vol.16
, Issue.2
, pp. 583-614
-
-
Mossel, E.1
Roch, S.2
-
26
-
-
84898066687
-
A spectral algorithm for learning hidden Markov models
-
D. Hsu, S. M. Kakade, and T. Zhang. A spectral algorithm for learning hidden Markov models. In COLT, 2009.
-
(2009)
COLT
-
-
Hsu, D.1
Kakade, S.M.2
Zhang, T.3
-
30
-
-
64249149689
-
Learning a parallelepiped: Cryptanalysis of GGH and NTRU signatures
-
P. Q. Nguyen and O. Regev. Learning a parallelepiped: Cryptanalysis of GGH and NTRU signatures. Journal of Cryptology, 22(2):139-160, 2009.
-
(2009)
Journal of Cryptology
, vol.22
, Issue.2
, pp. 139-160
-
-
Nguyen, P.Q.1
Regev, O.2
-
31
-
-
84877781888
-
Provable ICA with unknown Gaussian noise, and implications for Gaussian mixtures and autoencoders
-
S. Arora, R. Ge, A. Moitra, and S. Sachdeva. Provable ICA with unknown Gaussian noise, and implications for Gaussian mixtures and autoencoders. In NIPS, 2012.
-
(2012)
NIPS
-
-
Arora, S.1
Ge, R.2
Moitra, A.3
Sachdeva, S.4
-
32
-
-
70450128164
-
Two-view feature generation model for semi-supervised learning
-
R. Ando and T. Zhang. Two-view feature generation model for semi-supervised learning. In ICML, 2007.
-
(2007)
ICML
-
-
Ando, R.1
Zhang, T.2
-
33
-
-
70450148854
-
Multi-view regression via canonical correlation analysis
-
Sham M. Kakade and Dean P. Foster. Multi-view regression via canonical correlation analysis. In COLT, 2007.
-
(2007)
COLT
-
-
Kakade, S.M.1
Foster, D.P.2
-
35
-
-
33745909504
-
Probabilistic topic models
-
T. Landauer, D. Mcnamara, S. Dennis, and W. Kintsch, editors,. Laurence Erlbaum
-
Mark Steyvers and Tom Griffiths. Probabilistic topic models. In T. Landauer, D. Mcnamara, S. Dennis, and W. Kintsch, editors, Latent Semantic Analysis: A Road to Meaning. Laurence Erlbaum, 2006.
-
(2006)
Latent Semantic Analysis: A Road to Meaning
-
-
Steyvers, M.1
Griffiths, T.2
-
36
-
-
0040350289
-
Numerical methods for simultaneous diagonalization
-
A. Bunse-Gerstner, R. Byers, and V. Mehrmann. Numerical methods for simultaneous diagonalization. SIAM Journal on Matrix Analysis and Applications, 14(4):927-949, 1993.
-
(1993)
SIAM Journal on Matrix Analysis and Applications
, vol.14
, Issue.4
, pp. 927-949
-
-
Bunse-Gerstner, A.1
Byers, R.2
Mehrmann, V.3
-
37
-
-
84873344588
-
-
arXiv:1210.7559
-
A. Anandkumar, R. Ge, D. Hsu, S. M. Kakade, and T. Telgarsky. Tensor decompositions for learning latent variable models, 2012. arXiv:1210.7559.
-
(2012)
Tensor Decompositions for Learning Latent Variable Models
-
-
Anandkumar, A.1
Ge, R.2
Hsu, D.3
Kakade, S.M.4
Telgarsky, T.5
|