-
2
-
-
34250499792
-
Analysis of individual differences in multidimensional scaling via an n-way generalization of Eckart-Young decomposition
-
J.D. Carroll, and J.J. Chang Analysis of individual differences in multidimensional scaling via an n-way generalization of Eckart-Young decomposition Psychometrika 35 1970 283 319
-
(1970)
Psychometrika
, vol.35
, pp. 283-319
-
-
Carroll, J.D.1
Chang, J.J.2
-
3
-
-
0028416938
-
Independent component analysis, a new concept?
-
P. Comon Independent component analysis, a new concept? Signal Process. 36 1994 287 314 (hal-00417283)
-
(1994)
Signal Process.
, vol.36
, pp. 287-314
-
-
Comon, P.1
-
4
-
-
0030234706
-
Decomposition of quantics in sums of powers of linear forms
-
P. Comon, and B. Mourrain Decomposition of quantics in sums of powers of linear forms Signal Process. 53 1996 93 107
-
(1996)
Signal Process.
, vol.53
, pp. 93-107
-
-
Comon, P.1
Mourrain, B.2
-
5
-
-
0032224093
-
Blind channel identification and extraction of more sources than sensors
-
July 19-24 hal-00499421
-
P. Comon, Blind channel identification and extraction of more sources than sensors, in: Keynote Address at the SPIE Conference San Diego, July 19-24, 1998, pp. 2-13 (hal-00499421).
-
(1998)
Keynote Address at the SPIE Conference San Diego
, pp. 2-13
-
-
Comon, P.1
-
6
-
-
0346238834
-
Tensor decompositions
-
P. Comon Tensor decompositions J.G. McWhirter, I.K. Proudler, Mathematics in Signal Processing vol. V 2002 Clarendon Press Oxford, USA
-
(2002)
Mathematics in Signal Processing
, vol.5
-
-
Comon, P.1
-
8
-
-
33750148453
-
Parafac-based unified tensor modeling for wireless communication systems
-
A.L.F. de Almeida, G. Favier, and J.C.M. Mota Parafac-based unified tensor modeling for wireless communication systems Signal Process. 87 2007 337 351
-
(2007)
Signal Process.
, vol.87
, pp. 337-351
-
-
De Almeida, A.L.F.1
Favier, G.2
Mota, J.C.M.3
-
9
-
-
0034144761
-
On the best rank-1 and rank-(R 1, R 2,..., R N) approximation of higher-order tensors
-
L. De Lathauwer, B. De Moor, and J. Vandewalle On the best rank-1 and rank-(R 1, R 2,..., R N) approximation of higher-order tensors SIAM J. Matrix Anal. Appl. 21 2000 1324 1342
-
(2000)
SIAM J. Matrix Anal. Appl.
, vol.21
, pp. 1324-1342
-
-
De Lathauwer, L.1
De Moor, B.2
Vandewalle, J.3
-
10
-
-
0033653097
-
An introduction to independent component analysis
-
L. De Lathauwer, B. De Moor, and J. Vandewalle An introduction to independent component analysis J. Chemom. 14 2000 123 149
-
(2000)
J. Chemom.
, vol.14
, pp. 123-149
-
-
De Lathauwer, L.1
De Moor, B.2
Vandewalle, J.3
-
11
-
-
33750178584
-
Tensor-based techniques for the blind separation of DS-CDMA signals
-
L. De Lathauwer, and J. Castaing Tensor-based techniques for the blind separation of DS-CDMA signals Signal Process. 87 2007 322 336
-
(2007)
Signal Process.
, vol.87
, pp. 322-336
-
-
De Lathauwer, L.1
Castaing, J.2
-
12
-
-
55349142218
-
Tensor rank and the ill-posedness of the best low-rank approximation problem
-
V. De Silva, and L.-H. Lim Tensor rank and the ill-posedness of the best low-rank approximation problem SIAM J. Matrix Anal. Appl. 30 2008 1084 1127
-
(2008)
SIAM J. Matrix Anal. Appl.
, vol.30
, pp. 1084-1127
-
-
De Silva, V.1
Lim, L.-H.2
-
13
-
-
0002740437
-
Foundations of the Parafac procedure: Models and conditions for an "explanatory" multimodal factor analysis
-
R.A. Harshman Foundations of the Parafac procedure: models and conditions for an "explanatory" multimodal factor analysis UCLA Working Pap. Phonetics 16 1970 1 84
-
(1970)
UCLA Working Pap. Phonetics
, vol.16
, pp. 1-84
-
-
Harshman, R.A.1
-
14
-
-
85162707890
-
The expression of a tensor or a polyadic as a sum of products
-
F.L. Hitchcock The expression of a tensor or a polyadic as a sum of products J. Math. Phys. 6 1927 164 189
-
(1927)
J. Math. Phys.
, vol.6
, pp. 164-189
-
-
Hitchcock, F.L.1
-
15
-
-
85163188929
-
Multiple invariants and generalized rank of a p-way matrix or tensor
-
F.L. Hitchcock Multiple invariants and generalized rank of a p-way matrix or tensor J. Math. Phys. 7 1927 39 70
-
(1927)
J. Math. Phys.
, vol.7
, pp. 39-70
-
-
Hitchcock, F.L.1
-
16
-
-
1642323297
-
Optimal evaluation of pairs of bilinear forms
-
J. Ja'Ja' Optimal evaluation of pairs of bilinear forms SIAM J. Comput. 8 1979 443 462
-
(1979)
SIAM J. Comput.
, vol.8
, pp. 443-462
-
-
JaJa, J.1
-
17
-
-
0036018642
-
On the best rank-1 approximation of higher-order supersymmetric tensors
-
E. Kofidis, and P.A. Regalia On the best rank-1 approximation of higher-order supersymmetric tensors SIAM J. Matrix Anal. Appl. 23 2002 863 884
-
(2002)
SIAM J. Matrix Anal. Appl.
, vol.23
, pp. 863-884
-
-
Kofidis, E.1
Regalia, P.A.2
-
18
-
-
68649096448
-
Tensor decompositions and applications
-
T.G. Kolda, and B.W. Bader Tensor decompositions and applications SIAM Rev. 51 2009 455 500
-
(2009)
SIAM Rev.
, vol.51
, pp. 455-500
-
-
Kolda, T.G.1
Bader, B.W.2
-
19
-
-
52949104087
-
On the non-existence of optimal solutions and the occurrence of "degeneracy in the Candecomp/Parafac model
-
W.P. Krijnen, T.K. Dijkstra, and A. Stegeman On the non-existence of optimal solutions and the occurrence of "degeneracy in the Candecomp/Parafac model Psychometrika 73 2008 431 439
-
(2008)
Psychometrika
, vol.73
, pp. 431-439
-
-
Krijnen, W.P.1
Dijkstra, T.K.2
Stegeman, A.3
-
21
-
-
48749101457
-
Three-way arrays: Rank and uniqueness of trilinear decompositions, with applications to arithmetic complexity and statistics
-
J.B. Kruskal Three-way arrays: rank and uniqueness of trilinear decompositions, with applications to arithmetic complexity and statistics Linear Algebra Appl. 18 1977 95 138
-
(1977)
Linear Algebra Appl.
, vol.18
, pp. 95-138
-
-
Kruskal, J.B.1
-
22
-
-
0001837391
-
Rank, decomposition, and uniqueness for 3-way and N-way arrays
-
J.B. Kruskal Rank, decomposition, and uniqueness for 3-way and N-way arrays R. Coppi, S. Bolasco, Multiway Data Analysis 1998 North-Holland 7 18
-
(1998)
Multiway Data Analysis
, pp. 7-18
-
-
Kruskal, J.B.1
-
24
-
-
34548409985
-
On the best rank-1 approximation to higher-order symmetric tensors
-
G. Ni, and Y. Wang On the best rank-1 approximation to higher-order symmetric tensors Math. Comput. Model. 46 2007 1345 1352
-
(2007)
Math. Comput. Model.
, vol.46
, pp. 1345-1352
-
-
Ni, G.1
Wang, Y.2
-
25
-
-
33750796673
-
Rank eigenvalues of a supersymmetric tensor the multivariate homogeneous polynomial and the algebraic hypersurface it defines
-
L. Qi Rank eigenvalues of a supersymmetric tensor the multivariate homogeneous polynomial and the algebraic hypersurface it defines J. Symbol. Comput. 41 2006 1309 1327
-
(2006)
J. Symbol. Comput.
, vol.41
, pp. 1309-1327
-
-
Qi, L.1
-
29
-
-
33751214191
-
Degeneracy in Candecomp/Parafac explained for p × p × 2 arrays of rank p + 1 or higher
-
A. Stegeman Degeneracy in Candecomp/Parafac explained for p × p × 2 arrays of rank p + 1 or higher Psychometrika 71 2006 483 501
-
(2006)
Psychometrika
, vol.71
, pp. 483-501
-
-
Stegeman, A.1
-
30
-
-
38949176012
-
Degeneracy in Candecomp/Parafac explained for several three-sliced arrays with a two-valued typical rank
-
A. Stegeman Degeneracy in Candecomp/Parafac explained for several three-sliced arrays with a two-valued typical rank Psychometrika 72 2007 601 619
-
(2007)
Psychometrika
, vol.72
, pp. 601-619
-
-
Stegeman, A.1
-
31
-
-
52949146687
-
Low-rank approximation of generic p × q × 2 arrays and diverging components in the Candecomp/Parafac model
-
A. Stegeman Low-rank approximation of generic p × q × 2 arrays and diverging components in the Candecomp/Parafac model SIAM J. Matrix Anal. Appl. 30 2008 988 1007
-
(2008)
SIAM J. Matrix Anal. Appl.
, vol.30
, pp. 988-1007
-
-
Stegeman, A.1
-
32
-
-
33750991900
-
On Kruskal's uniqueness condition for the Candecomp/Parafac decomposition
-
A. Stegeman, and N.D. Sidiropoulos On Kruskal's uniqueness condition for the Candecomp/Parafac decomposition Linear Algebra Appl. 420 2007 40 552
-
(2007)
Linear Algebra Appl.
, vol.420
, pp. 40-552
-
-
Stegeman, A.1
Sidiropoulos, N.D.2
-
33
-
-
68649114427
-
A method to avoid diverging components in the Candecomp/Parafac model for generic i × J × 2 arrays SIAM
-
A. Stegeman, and L. De Lathauwer A method to avoid diverging components in the Candecomp/Parafac model for generic I × J × 2 arrays SIAM J. Matrix Anal. Appl. 30 2009 1614 1638
-
(2009)
SIAM J. Matrix Anal. Appl.
, vol.30
, pp. 1614-1638
-
-
Stegeman, A.1
De Lathauwer, L.2
-
34
-
-
0039957423
-
Rank and optimal computation of generic tensors
-
V. Strassen Rank and optimal computation of generic tensors Linear Algebra Appl. 52 1983 645 685
-
(1983)
Linear Algebra Appl.
, vol.52
, pp. 645-685
-
-
Strassen, V.1
-
35
-
-
0001158675
-
Explicit Candecomp/Parafac solutions for a contrived 2 × 2 × 2 array of rank three
-
J.M.F. Ten Berge, H.A.L. Kiers, and J. De Leeuw Explicit Candecomp/Parafac solutions for a contrived 2 × 2 × 2 array of rank three Psychometrika 53 1988 579 584
-
(1988)
Psychometrika
, vol.53
, pp. 579-584
-
-
Ten Berge, J.M.F.1
Kiers, H.A.L.2
De Leeuw, J.3
-
36
-
-
0041595584
-
Simplicity of core arrays in three-way principal component analysis and the typical rank of p × q × 2 arrays
-
J.M.F. Ten Berge, and H.A.L. Kiers Simplicity of core arrays in three-way principal component analysis and the typical rank of p × q × 2 arrays Linear Algebra Appl. 294 1999 169 179
-
(1999)
Linear Algebra Appl.
, vol.294
, pp. 169-179
-
-
Ten Berge, J.M.F.1
Kiers, H.A.L.2
-
37
-
-
3142774353
-
Typical rank and indscal dimensionality for symmetric three-way arrays of order i × 2 × 2 or i × 3 × 3
-
J.M.F. Ten Berge, N.D. Sidiropoulos, and R. Rocci Typical rank and indscal dimensionality for symmetric three-way arrays of order I × 2 × 2 or I × 3 × 3 Linear Algebra Appl. 388 2004 363 377
-
(2004)
Linear Algebra Appl.
, vol.388
, pp. 363-377
-
-
Ten Berge, J.M.F.1
Sidiropoulos, N.D.2
Rocci, R.3
-
38
-
-
0036056838
-
Rank-one approximation to high order tensors
-
T. Zhang, and G. Golub Rank-one approximation to high order tensors SIAM J. Matrix Anal. Appl. 23 2001 534 550
-
(2001)
SIAM J. Matrix Anal. Appl.
, vol.23
, pp. 534-550
-
-
Zhang, T.1
Golub, G.2
|