메뉴 건너뛰기




Volumn 8, Issue , 2007, Pages 203-226

A probabilistic analysis of EM for mixtures of separated, spherical Gaussians

Author keywords

Clustering; Expectation maximization; Mixtures of Gaussians; Probabilistic analysis; Unsupervised learning

Indexed keywords

NEAR-OPTIMAL PRECISION; PROBABILISTIC ANALYSIS; SPHERICAL GAUSSIANS;

EID: 33847128516     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (139)

References (20)
  • 2
    • 14544275956 scopus 로고    scopus 로고
    • Learning mixtures of separated nonspherical Gaussians
    • 15(1A):69-92
    • S. Arora and R. Kannan. Learning mixtures of separated nonspherical Gaussians. Annals of Applied Probability, 15(1A):69-92, 2005.
    • (2005) Annals of Applied Probability
    • Arora, S.1    Kannan, R.2
  • 5
    • 0002629270 scopus 로고
    • Maximum-likelihood from incomplete data via the EM algorithm
    • A. Dempster, N. Laird, and D. Rubin. Maximum-likelihood from incomplete data via the EM algorithm. J. Royal Statist. Soc. Ser. B, 39:1-38, 1977.
    • (1977) J. Royal Statist. Soc. Ser. B , vol.39 , pp. 1-38
    • Dempster, A.1    Laird, N.2    Rubin, D.3
  • 6
    • 0001493668 scopus 로고
    • Asymptotics of graphical projection pursuit
    • P. Diaconis and D. Freedman. Asymptotics of graphical projection pursuit. Annals of Statistics, 12:793-815, 1984.
    • (1984) Annals of Statistics , vol.12 , pp. 793-815
    • Diaconis, P.1    Freedman, D.2
  • 8
    • 0011275803 scopus 로고    scopus 로고
    • k do not cut all subsets of k + 2 points. Advances in Mathematics, 31:306-308, 1979.
    • k do not cut all subsets of k + 2 points. Advances in Mathematics, 31:306-308, 1979.
  • 11
    • 0021938963 scopus 로고
    • Clustering to minimize the maximum intercluster distance
    • T. Gonzalez. Clustering to minimize the maximum intercluster distance. Theoretical Computer Science, 38:293-306, 1985.
    • (1985) Theoretical Computer Science , vol.38 , pp. 293-306
    • Gonzalez, T.1
  • 12
    • 0002192516 scopus 로고
    • Decision-theoretic generalizations of the PAC model for neural net and other learning applications
    • D. Haussler. Decision-theoretic generalizations of the PAC model for neural net and other learning applications. Information and Computation, 100:78-150, 1992.
    • (1992) Information and Computation , vol.100 , pp. 78-150
    • Haussler, D.1
  • 15
    • 0021404166 scopus 로고
    • Mixture densities, maximum likelihood and the EM algorithm
    • R. Redner and H. Walker. Mixture densities, maximum likelihood and the EM algorithm. SIAM Review, 26(2): 195-239, 1984.
    • (1984) SIAM Review , vol.26 , Issue.2 , pp. 195-239
    • Redner, R.1    Walker, H.2
  • 17
    • 3042606899 scopus 로고    scopus 로고
    • A spectral algorithm for learning mixtures of distributions
    • S. Vempala and G. Wang. A spectral algorithm for learning mixtures of distributions. Journal of Computer and Systems Sciences, 68(4):841-860, 2004.
    • (2004) Journal of Computer and Systems Sciences , vol.68 , Issue.4 , pp. 841-860
    • Vempala, S.1    Wang, G.2
  • 19
    • 0002210265 scopus 로고
    • On the convergence properties of the EM algorithm
    • C.F.J. Wu. On the convergence properties of the EM algorithm. Annals of Statistics, 11:95-103, 1983.
    • (1983) Annals of Statistics , vol.11 , pp. 95-103
    • Wu, C.F.J.1
  • 20
    • 2342533082 scopus 로고    scopus 로고
    • On convergence properties of the EM algorithm for Gaussian mixtures
    • L. Xu and M.I. Jordan. On convergence properties of the EM algorithm for Gaussian mixtures. Neural Computation, 8:129-151, 1996.
    • (1996) Neural Computation , vol.8 , pp. 129-151
    • Xu, L.1    Jordan, M.I.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.